- 1: Show that no two of the groups \mathbb{Z}_{24} , U_{39} , D_{12} , S_4 and $SL(2,\mathbb{Z}_3)$ and are isomorphic.
- **2:** (a) Show that no two of the groups \mathbb{Q} , \mathbb{Q}^* and \mathbb{Q}^+ are isomorphic.
 - (b) Determine whether, for all $n, m \in \mathbb{Z}^+$, the groups \mathbb{Q}^n and \mathbb{Q}^m are isomorphic if and only if n = m.
 - (c) Determine whether any two of the rings \mathbb{Q}^2 , $\mathbb{Q}[\sqrt{2}]$ and $\mathbb{Q}[\sqrt{3}]$ are isomorphic (as rings).
- **3:** (a) Find a subgroup of S_4 which is isomorphic to U_8 .
 - (b) Find a subgroup of S_4 which is isomorphic to Aut (U_8) .
 - (c) Show that $\operatorname{Aut}(\mathbb{Z}_n) \cong U_n$.
- **4:** (a) Find a formula for the number of group homomorphisms $\phi : \mathbb{Z}_n \to \mathbb{Z}_m$, where $n, m \in \mathbb{Z}^+$.
 - (b) Find a formula for the number of group homomorphisms $\phi : \mathbb{Z}_n \times \mathbb{Z}_m \to \mathbb{Z}_\ell$, where $n, m, \ell \in \mathbb{Z}^+$.

(c) For a positive integer n, let $\omega(n)$ denote the number of distinct prime factors of n. Find a formula (in terms of n and m, using ω) for the number of ring homomorphisms $\phi : \mathbb{Z}_n \to \mathbb{Z}_m$, where $n, m \in \mathbb{Z}^+$.