Chapter 10. Ring Homomorphisms, Ideals and Quotient Rings

10.1 Definition: Let R and S be rings. A ring homomorphism from R to S is a map $\phi: R \to S$ such that

$$\phi(a+b) = \phi(a) + \phi(b)$$
 and
 $\phi(ab) = \phi(a)\phi(b)$

for all $a, b \in R$. The **kernel** of ϕ is the set

$$Ker(\phi) = \phi^{-1}(0) = \left\{ a \in R \, \middle| \, \phi(a) = 0 \right\}$$

and the **image** (or **range**) of ϕ is the set

Image
$$(\phi) = \phi(R) = \{\phi(a) | a \in R\}$$
.

A ring **isomorphism** from R to S is a bijective ring homomorphism from R to S. For two rings R and S, we say that R and S are **isomorphic**, and we write $R \cong S$, when there exists an isomorphism $\phi : R \to S$.

10.2 Theorem: Let $\phi : R \to S$ be a ring homomorphism. Then

(1) $\phi(0) = 0$,

(2) for $a \in R$ we have $\phi(ka) = k\phi(a)$ for all $k \in \mathbb{Z}$,

(3) if R has a 1 and ϕ is surjective, then S has a 1 and $\phi(1) = 1$,

(4) for $a \in R$ we have $\phi(a^k) = \phi(a)^k$ for all $k \in \mathbb{Z}^+$, and

(5) if R has a 1, ϕ is surjective, and $a \in R$ is a unit, then $\phi(a^k) = \phi(a)^k$ for all $k \in \mathbb{Z}$.

10.3 Theorem: Let $\phi : R \to S$ and $\psi : S \to T$ be ring homomorphisms. Then

(1) the identity map $I: R \to R$ is a ring homomorphism,

(2) the composite $\psi \circ \phi : R \to T$ is a homomorphism, and

(3) if ϕ is bijective then the inverse $\phi^{-1}: S \to R$ is a homomorphism.

10.4 Corollary: Isomorphism is an equivalence relation on the class of rings.

10.5 Theorem: Let $\phi : R \to S$ be a ring homomorphism. Then

(1) If K is a subgroup of R then $\phi(K)$ is a subgroup of S. In particular, $\text{Image}(\phi)$ is a subgroup of S.

(2) if L is a subgroup of S then $\phi^{-1}(L)$ is a subgroup of R. In particular, $\operatorname{Ker}(\phi)$ is a subgroup of R.

10.6 Theorem: Let $\phi : R \to S$ be a ring homomorphism. Then

(1) ϕ is injective if and only if $Ker(\phi) = \{0\}$, and

(2) ϕ is surjective if and only if $\text{Image}(\phi) = S$.

10.7 Example: For rings R and S, the **zero function** $0 : R \to S$, given by 0(x) = 0 for all $x \in R$, is a ring homomorphism. For a ring R, the **identity function** $I : R \to R$, given by I(x) = x for all $x \in R$, is a ring homomorphism.

10.8 Example: Let R be a ring. For $a \in R$, define $\phi_a : \mathbb{Z} \to R$ by $\phi_a(k) = ka$. Show that the ring homomorphisms $\phi : \mathbb{Z} \to R$ are the maps $\phi = \phi_a$ with $a \in R$ such that $a^2 = a$.

Solution: For $a \in R$, let $\phi_a : \mathbb{Z} \to R$ be the map given by $\phi_a(k) = ka$. Note that for any ring homomorphism $\phi : \mathbb{Z} \to R$, if we let $a = \phi(1)$ then for all $k \in \mathbb{Z}$ we have $\phi(k) = \phi(k \cdot 1) = k \cdot \phi(1) = ka = \phi_a(k)$. Thus every ring homomorphism $\phi : \mathbb{Z} \to R$ is of the form $\phi = \phi_a$ for some $a \in R$. Also note that in order for ϕ_a to be a ring homomorphism, we must have $a^2 = \phi(1)^2 = \phi(1^2) = \phi(1) = a$. Finally, note that given $a \in R$ with $a^2 = a$, the map ϕ_a is a ring homomorphism because $\phi_a(k+l) = (k+l)a = ka + la = \phi_a(k) + \phi_l(a)$ and $\phi_a(kl) = (kl)a = (kl)a^2 = (ka)(la) = \phi_a(k)\phi_l(a)$. Thus the ring homomorphisms from \mathbb{Z} to R are precisely the maps ϕ_a where $a \in R$ with $a^2 = a$.

10.9 Example: Let R be a ring. For $a, b \in R$, define the map $\phi_{a,b} : \mathbb{Z} \times \mathbb{Z} \to R$ by $\phi_{a,b}(k,l) = (ka)(lb)$. As an exercise, show that the ring homomorphisms $\phi : \mathbb{Z} \times \mathbb{Z} \to R$ are the maps $\phi = \phi_{a,b}$ with $a, b \in R$ such that $a^2 = a, b^2 = b$ and ab = ba = 0.

10.10 Definition: An element a in a ring R is called **idempotent** when $a^2 = a$.

10.11 Example: The complex conjugation map $\phi : \mathbb{C} \to \mathbb{C}$ given by $\phi(z) = \overline{z}$ is a ring homomorphism since $\overline{z+w} = \overline{z} + \overline{w}$ and $\overline{zw} = \overline{z} \overline{w}$, but the norm map $\psi(z) = ||z||$ is not a ring homomorphism because, in general, we do not have ||z+w|| = ||z|| + ||w||.

10.12 Definition: Let R be a ring. For $a \in R$, the map $\phi_a : R[x] \to R$ given by $\phi_a(f(x)) = f(a)$, that is by

$$\phi_a\Big(\sum_{i=0}^n c_i x^i\Big) = \sum_{i=0}^n c_i a^i,$$

is called the **evaluation map** at a. If $a \in Z(R)$ then ϕ_a is a homomorphism because for $f = \sum b_i x^i$ and $g = \sum c_i x^i$ we have

$$\phi_a(f+g) = \phi_a\Big(\sum_i (b_i + c_i)x^i\Big) = \sum_i (b_i + c_i)a^i = \sum_i b_i a^i + \sum_i c_i x^i = \phi_a(f) + \phi_a(g)$$

$$\phi_a(fg) = \phi_a\Big(\sum_{i,j} b_i c_j x^{i+j}\Big) = \sum_{i,j} b_i c_j a^{i+j} = \sum_{i,j} b_i a^i c_j a^j = \sum_i b_i x^i \sum_j c_j a^j = \phi_a(f)\phi_a(g).$$

The evaluation map $\phi : R[x] \to \operatorname{Func}(R, R)$ is then given by $\phi(f)(a) = \phi_a(f) = f(a)$, in other words ϕ sends the polynomial $f(x) = \sum c_i x^i$ to the function $f(x) = \sum c_i x^i$. If R is commutative, then the above calculation shows that this map ϕ is a homomorphism. If R is not commutative, then the multiplication operations in R[x] and in $\operatorname{Func}(R, R)$ are different and the evaluation map is not a homomorphism (in fact we are usually only interested in the polynomial ring R[x] in the case that R is commutative).

10.13 Example: Show that $\mathbb{R} \not\cong \mathbb{C}$ (as rings).

Solution: If $\phi : \mathbb{R} \to \mathbb{C}$ was a ring isomorphism, then the restriction of ϕ to \mathbb{R}^* would be a group isomorphism $\phi : \mathbb{R}^* \to \mathbb{C}^*$. But we know that the groups \mathbb{R}^* and \mathbb{C}^* are not isomorphic.

10.14 Example: Show that $2\mathbb{Z} \cong 3\mathbb{Z}$ (as rings).

Solution: In 2Z we have $2 \cdot 2 = 4 = 2 + 2$, but there is no element $0 \neq a \in 3\mathbb{Z}$ with $a \cdot a = a + a$.

10.15 Theorem: (Ideals and Quotient Rings) Let S be a subring of a ring R. Note that S is a subgroup of R under addition. Let R/S be the quotient group $R/S = \{a + S | a \in \mathbb{R}\}$ with addition operation given by (a + S) + (b + S) = (a + b) + S. We can define a multiplication operation on R/S by

$$(a+S)(b+S) = ab+S$$

if and only if S has the property that for all $r \in R$ and $s \in S$ we have

$$rs \in S$$
 and $sr \in S$.

In this case R/S is a ring under the above addition and multiplication operations. If R has identity 1, then R/S has identity 1 + S.

Proof: Suppose the formula (a+S)(b+S) = ab+S gives a well-defined operation on R/S. Then for all $a_1, a_2, b_1, b_2 \in R$, if $a_1+S = a_2+S$ and $b_1+S = b_2+S$ then $a_1b_1+S = a_2b_2+S$. Equivalently, for all $a_1, b_1, a_2, b_2 \in R$, if $a_1 - a_2 \in S$ and $b_1 - b_2 \in S$ then $a_1a_2 - b_1b_2 \in S$. Let $r \in R$ and $s \in S$. Taking $a_1 = a_2 = r$, $b_1 = s$ and $b_2 = 0$, we have $a_1 - a_2 = 0 \in S$ and $b_1 - b_2 = s \in S$ and so $rs = a_1b_1 - a_2b_2 \in S$. Similarly, taking $a_1 = s$, $a_2 = 0$ and $b_1 = b_2 = r$ we see that $sr \in S$.

Conversely, suppose that for all $r \in R$ and $s \in S$ we have $rs \in S$ and $sr \in S$. Let $a_1, a_2, b_1, b_2 \in R$ with $a_1 - a_2 \in S$ and $b_1 - b_2 \in S$. Say $a_1 - a_2 = s \in S$ and $b_1 - b_2 = t \in S$. Then $a_1b_1 - a_2b_2 = a_1b_1 - (a_1-s)(b_1-t) = a_1b_1 - (a_1b_1 - a_1t - sb_1 + st) = a_1t + sb_1 + st \in S$. Thus the formula (a + S)(b + S) = ab + S gives a well-defined operation on R/S.

Now we suppose that S has the required property so that (a+S)(b+S) = ab+S does give a well-defined multiplication operation. This multiplication is associative because

$$((a+S)(b+S))(c+S) = (ab+S)(c+S) = (ab)c+S = a(bc)+S$$
$$= (ab+S)(c+S) = (a+S)((b+S)(c+S))$$

and it is distributive over the addition operation on R/S because

$$(a+S)((b+S) + (c+S)) = (a+S)((b+c) + S) = a(b+c) + S = ab + ac + S$$
$$= (ab+S) + (ac+S) = (a+S)(b+S) + (a+S)(c+S)$$

and similarly ((a + S) + (b + S))(c + S) = (a + S)(c + S) + (b + S)(c + S). Thus R/S is a ring under these two operations.

10.16 Definition: Let R be a ring. An ideal in R is a subring $A \subseteq R$ with the property that for all $r \in R$ and $a \in A$ we have $ra \in A$ and $ar \in A$. When A is an ideal in R, the ring R/A, equipped with the operations of the above theorem, is called the **quotient ring** of R by A. It is easy to check that the zero element in R/A is 0 + A, the additive inverse of a + A in R/A is -(a + A) = -a + A, if R has identity 1 then R/A has identity 1 + A, and if $a \in R$ is a unit then a + A is a unit in R/A with $(a + A)^{-1} = a^{-1} + A$.

10.17 Example: In the cyclic group \mathbb{Z} , the subgroups are the groups $\langle n \rangle = n\mathbb{Z}$ with $n \geq 0$. Each of these subgroups is also an ideal in the ring \mathbb{Z} . For $n \in \mathbb{Z}^+$, the ring \mathbb{Z}_n is the quotient ring $\mathbb{Z}_n = \mathbb{Z}/\langle n \rangle = \mathbb{Z}/n\mathbb{Z}$.

10.18 Example: In the group \mathbb{Z}_n the subgroups are the groups $\langle d \rangle$ where d|n. Each of the subgroups is also an ideal in the ring \mathbb{Z}_n .

10.19 Example: In the group \mathbb{Q} , we have the subgroup $\langle 2 \rangle = \{\cdots, -2, 0, 2, 4, \cdots\} = 2\mathbb{Z}$. This subgroup is also a subring of \mathbb{Q} because it is closed under multiplication. But it is not an ideal in \mathbb{Q} because it is not closed under multiplication by elements in \mathbb{Q} , for example $2 \in \langle 2 \rangle$ and $\frac{1}{2} \in \mathbb{Q}$, but $1 = 2 \cdot \frac{1}{2} \notin \langle 2 \rangle$.

10.20 Definition: Let R be a ring and let $U \subseteq R$. The ideal in R generated by U, denoted by $\langle U \rangle$, is the smallest ideal in R which contains U, or equivalently, the intersection of all ideals in R which contain U. The elements in U are called generators of $\langle U \rangle$. When U is finite we often omit the set brackets, so for $U = \{u_1, u_2, \dots, u_n\}$ we write $\langle U \rangle = \langle u_1, u_2, \dots, u_n \rangle$. An ideal of the form $\langle u_1, u_2, \dots, u_n \rangle$ for some $u_i \in R$ is said to be finitely generated. An ideal of the form $\langle u \rangle$ for some $u \in R$ is called a principal ideal.

10.21 Theorem: Let R be a ring and let U be a non-empty subset of R.

(1) If R has a 1 then $\langle U \rangle = \Big\{ \sum_{i=1}^{n} r_i u_i s_i \Big| n \in \mathbb{Z}^+, u_i \in U, r_i, s_i \in R \Big\}.$

(2) If R is commutative with 1 then $\langle U \rangle = \left\{ \sum_{i=1}^{n} u_i r_i \middle| n \in \mathbb{Z}^+, u_i \in U, r_i \in R \right\}$. In particular, for $a \in R$ we have $\langle a \rangle = \{ar \mid r \in R\}$.

10.22 Note: In a field F, the only ideals are $\{0\}$ and F. Indeed let A be an ideal in F with $A \neq \{0\}$. Choose $0 \neq a \in A$. Since $a \in A$ and $a^{-1} \in F$, we must have $1 = a a^{-1} \in A$. Given any element $x \in F$, since $1 \in A$ and $x \in F$ we must have $x = x \cdot 1 \in A$. Thus A = F.

10.23 Definition: Let A and B be ideals in a ring R. The intersection, sum and the product of A and B are the sets

$$A \cap B = \left\{ a \in R \mid a \in A \text{ and } a \in B \right\},$$

$$A + B = \left\{ a + b \mid a \in A, b \in B \right\}, \text{ and}$$

$$AB = \left\{ \sum_{i=1}^{n} a_i b_i \mid n \in \mathbb{Z}^+, a_i \in A, b_i \in B \right\}.$$

As an exercise, show that $A \cap B$, A + B and AB are all ideals in R.

10.24 Example: In \mathbb{Z} , for $k, l \in \mathbb{Z}^+$ verify that

$$\langle k \rangle \cap \langle l \rangle = \langle m \rangle$$
 where $m = \operatorname{lcm}(k, l)$
 $\langle k \rangle + \langle l \rangle = \langle d \rangle$ where $d = \operatorname{gcd}(k, l)$, and
 $\langle k \rangle \langle l \rangle = \langle kl \rangle$.

10.25 Theorem: (The First Isomorphism Theorem) Let $\phi : R \to S$ be a homomorphism of rings. Let $K = Ker((\phi)$. Then K is an ideal in R and we have $R/K \cong \phi(R)$. Indeed the map $\Phi : R/K \to \phi(R)$ given by $\Phi(a + K) = \phi(a)$ is a ring isomorphism.

10.26 Theorem: (The Second Isomorphism Theorem) Let A and B be ideals in a ring R. Then A is an ideal in A + B, $A \cap B$ is an ideal in B, and

$$(A+B)/A \cong B/(A \cap B).$$

10.27 Theorem: (The Third Isomorphism Theorem) Let A and B be ideals in a ring R with $A \subseteq B \subseteq R$. Then B/A is an ideal in R/A and

$$(R/A)/(B/A) \cong R/B.$$

10.28 Example: Let $d, n \in \mathbb{Z}^+$ with d|n. Then the map $\phi : \mathbb{Z}_n \to \mathbb{Z}_d$ given by $\phi(k) = k$ is a ring homomorphism with $\operatorname{Ker}(\phi) = \langle d \rangle$. By the First Isomorphism Theorem, we have $\mathbb{Z}_n/\langle d \rangle \cong \mathbb{Z}_d$.

10.29 Example: Define a map $\phi : \mathbb{Q}[x] \to \mathbb{Q}[\sqrt{2}]$ by $\phi(f) = f(\sqrt{2})$. Then ϕ is a homomorphism because $\phi(f+g) = (f+g)(\sqrt{2}) = f(\sqrt{2}) + g(\sqrt{2}) = \phi(f) + \phi(g)$ and $\phi(fg) = (fg)(\sqrt{2}) = f(\sqrt{2})g(\sqrt{2}) = \phi(f)\phi(g)$. Also note that ϕ is surjective because $\phi(a+bx) = a + b\sqrt{2}$ for $a, b \in \mathbb{Q}$. Finally note that for $f \in \mathbb{Q}[x]$ we have

$$\begin{aligned} f(x) \in \operatorname{Ker}(\phi) &\iff f(\sqrt{2}) = 0 \in \mathbb{R} \iff f(\sqrt{2}) = f(-\sqrt{2}) = 0 \in \mathbb{R} \\ &\iff (x^2 - 2) \big| f(x) \iff f(x) \in \langle x^2 - 2 \rangle, \end{aligned}$$

where we used the fact that for $f(x) = \sum c_i x^i \in \mathbb{Q}[x]$ we have

j

 $f(\pm\sqrt{2}) = \left(\sum c_{2k}2^k\right) \pm \left(\sum c_{2k+1}2^k\right)\sqrt{2}$

so that $f(\sqrt{2}) = 0 \iff f(-\sqrt{2}) = 0 \iff \sum c_{2k}2^k = 0 = \sum c_{2k+1}2^k$. By the First Isomorphism Theorem, we have $\mathbb{Q}[x]/\langle x^2 - 2 \rangle \cong \mathbb{Q}[\sqrt{2}]$.

10.30 Example: Define $\phi : \mathbb{R}[x] \to \mathbb{C}$ by $\phi(f) = f(i)$. Then ϕ is a homomorphism since $\phi(f+g) = (f+g)(i) = f(i)+g(i) = \phi(f)+\phi(g)$ and $\phi(fg) = (fg)(i) = f(i)g(i) = \phi(f)\phi(g)$. The map ϕ is surjective because $\phi(a+bx) = a+bi$ for $a, b \in \mathbb{R}$. Also, for $f(x) \in \mathbb{R}[x]$,

$$f(x) \in \operatorname{Ker}(\phi) \iff f(i) = 0 \in \mathbb{C} \iff (x^2 + 1) | f(x) \in \mathbb{R}[x] \iff f(x) \in \langle x^2 + 1 \rangle \subseteq \mathbb{R}[x].$$

Thus by the First Isomorphism Theorem, we have $\mathbb{R}[x]/\langle x^2+1\rangle \cong \mathbb{C}$.

10.31 Example: Define $\phi : \mathbb{Z}[i] \to \mathbb{Z}_5$ by $\phi(a + bi) = a + 2b$. The map ϕ is a ring homomorphism because

$$\phi((a+bi) + (c+di)) = \phi((a+c) + (b+d)i) = (a+c) + 2(b+d)$$

= $(a+2b) + (c+2d) = \phi(a+bi) + \phi(c+di)$, and
 $\phi((a+bi)(c+di)) = \phi((ac-bd) + (ad+bc)i) = (ac-bd) + 2(ad+bc)$
= $ac + 2ad + 2bc + 4bd = (a+2b)(c+2d) = \phi(a+bi)\phi(c+di).$

Also note that ϕ is surjective because $\phi(a + 0i) = a$. Finally, note that

$$a + bi \in \operatorname{Ker}(\phi) \iff a + 2b = 0 \in \mathbb{Z}_5 \iff b = 2a \in \mathbb{Z}_5 \iff a + ib \in \langle 2 - i \rangle,$$

indeed if b = 2a then we have $a + bi = a + 2ai = (2 - i)(ai) \in \langle 2 - i \rangle$ and conversely, if $a + bi \in \langle 2 - i \rangle$, say a + bi = (2 - i)(x + yi) = (2x + y) + (2y - x)i, then we have a = 2x + y and b = 2y - x so that $2a = 2(2x + y) = 4x + 2y = 2y - x = b \in \mathbb{Z}_5$. By the First Isomorphism Theorem, we have $\mathbb{Z}[i]/\langle 2 - i \rangle \cong \mathbb{Z}_5$.

10.32 Definition: Let R be a commutative ring. Consider the evaluation homomorphism $\phi: R[x] \to \operatorname{Func}(R, R)$ given by $\phi(f) = f$, that is the map which sends the polynomial f(x) to the function f(x). A polynomial $f \in R[x]$ is equal to zero when all of its coefficients are equal to zero. A function $f \in \operatorname{Func}(R, R)$ is equal to zero when we have f(a) = 0 for all $a \in R$. The kernel of the evaluation homomorphism is

$$\operatorname{Ker}(\phi) = \left\{ f \in R[x] \, \middle| \, f(a) = 0 \text{ for all } a \in R \right\}.$$

The image $\phi(R[x]) \subseteq \operatorname{Func}(R, R)$ is called the **ring of polynomial functions** on R. By the First Isomorphism Theorem, it is isomorphic to the quotient ring $R[x]/\operatorname{Ker}(\phi)$.

10.33 Example: If R is an infinite field, then $\operatorname{Ker}(\phi) = 0$ since for $f(x) \in R[x]$, if f(a) = 0 for all $a \in R$ then f(x) has infinitely many roots, and so f(x) = 0 as a polynomial (a non-zero polynomial of degree $n \geq 0$ over a field has at most n roots). In this case, ϕ is injective so the polynomial ring R[x] is isomorphic to the ring of polynomial functions $\phi(R[x]) \subseteq \operatorname{Func}(R, R)$, and we often identify R[x] with $\phi(R[x])$.

If R is a finite field, the situation is quite different. In this case R[x] is infinite but $\operatorname{Func}(R, R)$ is finite, so R[x] is certainly not isomorphic to a subring of $\operatorname{Func}(R, R)$. Let us consider the case that $R = \mathbb{Z}_p$ where p is prime. By Fermat's Little Theorem, we know that $a^p = a$ for all $a \in \mathbb{Z}_p$, and so every $a \in \mathbb{Z}^p$ is a root of the polynomial $p(x) = x^p - x$. Since there are exactly p elements in \mathbb{Z}_p , it follows that p(x) factors as

$$p(x) = x^{p} - x = (x - 0)(x - 1)(x - 2) \cdots (x - (p - 1)).$$

For a polynomial $f(x) \in \mathbb{Z}_p[x]$ we have

$$f(x) \in \operatorname{Ker}(\phi) \iff f(a) = 0 \text{ for all } a \in \mathbb{Z}_p \iff (x-a) | f(x) \text{ for all } a \in \mathbb{Z}_p$$
$$\iff p(x) | f(x) \iff f(x) \in \langle p(x) \rangle = \langle x^p - x \rangle.$$

Furthermore, we claim that ϕ is surjective. For $a \in \mathbb{Z}_p$, let $g_a(x) \in \mathbb{Z}_p[x]$ be the polynomial

$$g_a(x) = \frac{\prod_{i \in \mathbb{Z}_p, i \neq a} (x-i)}{\prod_{i \in \mathbb{Z}_p, i \neq a} (a-i)}.$$

Notice that for all $k \in \mathbb{Z}_p$ we have

$$g_a(k) = \delta_{a,k} = \begin{cases} 1 \text{ if } k = a, \\ 0 \text{ if } k \neq a. \end{cases}$$

Given any function $f(x) \in \operatorname{Func}(\mathbb{Z}_p, \mathbb{Z}_p)$, for all $k \in \mathbb{Z}_p$ we have

$$\sum_{a \in \mathbb{Z}_p} f(a)g_a(k) = \sum_{a \in \mathbb{Z}_p} f(a)\delta_{a,k} = f(k).$$

It follows that $f(x) = \sum_{a \in \mathbb{Z}_p} f(a)g_a(x) \in \operatorname{Func}(\mathbb{Z}_p, \mathbb{Z}_p)$. Notice that $\sum_{a \in \mathbb{Z}_p} f(a)g_a(x) \in \mathbb{Z}_p[x]$ and we have $f(x) = \phi\left(\sum_{a \in \mathbb{Z}_p} f(a)g_a(x)\right)$. Thus ϕ is surjective, as claimed. Thus the ring of polynomial functions $\phi(\mathbb{Z}_p[x])$ is equal to the ring of all functions $\operatorname{Func}(\mathbb{Z}_p, \mathbb{Z}_p)$, and by the First Isomorphism Theorem, we have $\mathbb{Z}_p[x]/\langle x^p - x \rangle \cong \phi(\mathbb{Z}_p[x]) = \operatorname{Func}(\mathbb{Z}_p, \mathbb{Z}_p)$.