Chapter 10. Ring Homomorphisms, Ideals and Quotient Rings

10.1 Definition: Let R and S be rings. A ring homomorphism from R to S is a map $\phi: R \rightarrow S$ such that

$$
\begin{aligned}
\phi(a+b) & =\phi(a)+\phi(b) \text { and } \\
\phi(a b) & =\phi(a) \phi(b)
\end{aligned}
$$

for all $a, b \in R$. The kernel of ϕ is the set

$$
\operatorname{Ker}(\phi)=\phi^{-1}(0)=\{a \in R \mid \phi(a)=0\}
$$

and the image (or range) of ϕ is the set

$$
\operatorname{Image}(\phi)=\phi(R)=\{\phi(a) \mid a \in R\}
$$

A ring isomorphism from R to S is a bijective ring homomorphism from R to S. For two rings R and S, we say that R and S are isomorphic, and we write $R \cong S$, when there exists an isomorphism $\phi: R \rightarrow S$.
10.2 Theorem: Let $\phi: R \rightarrow S$ be a ring homomorphism. Then
(1) $\phi(0)=0$,
(2) for $a \in R$ we have $\phi(k a)=k \phi(a)$ for all $k \in \mathbb{Z}$,
(3) if R has a 1 and ϕ is surjective, then S has a 1 and $\phi(1)=1$,
(4) for $a \in R$ we have $\phi\left(a^{k}\right)=\phi(a)^{k}$ for all $k \in \mathbb{Z}^{+}$, and
(5) if R has a $1, \phi$ is surjective, and $a \in R$ is a unit, then $\phi\left(a^{k}\right)=\phi(a)^{k}$ for all $k \in \mathbb{Z}$.
10.3 Theorem: Let $\phi: R \rightarrow S$ and $\psi: S \rightarrow T$ be ring homomorphisms. Then
(1) the identity map $I: R \rightarrow R$ is a ring homomorphism,
(2) the composite $\psi \circ \phi: R \rightarrow T$ is a homomorphism, and
(3) if ϕ is bijective then the inverse $\phi^{-1}: S \rightarrow R$ is a homomorphism.
10.4 Corollary: Isomorphism is an equivalence relation on the class of rings.
10.5 Theorem: Let $\phi: R \rightarrow S$ be a ring homomorphism. Then
(1) If K is a subgroup of R then $\phi(K)$ is a subgroup of S. In particular, Image (ϕ) is a subgroup of S.
(2) if L is a subgroup of S then $\phi^{-1}(L)$ is a subgroup of R. In particular, $\operatorname{Ker}(\phi)$ is a subgroup of R.
10.6 Theorem: Let $\phi: R \rightarrow S$ be a ring homomorphism. Then
(1) ϕ is injective if and only if $\operatorname{Ker}(\phi)=\{0\}$, and
(2) ϕ is surjective if and only if Image $(\phi)=S$.
10.7 Example: For rings R and S, the zero function $0: R \rightarrow S$, given by $0(x)=0$ for all $x \in R$, is a ring homomorphism. For a ring R, the identity function $I: R \rightarrow R$, given by $I(x)=x$ for all $x \in R$, is a ring homomorphism.
10.8 Example: Let R be a ring. For $a \in R$, define $\phi_{a}: \mathbb{Z} \rightarrow R$ by $\phi_{a}(k)=k a$. Show that the ring homomorphisms $\phi: \mathbb{Z} \rightarrow R$ are the maps $\phi=\phi_{a}$ with $a \in R$ such that $a^{2}=a$.

Solution: For $a \in R$, let $\phi_{a}: \mathbb{Z} \rightarrow R$ be the map given by $\phi_{a}(k)=k a$. Note that for any ring homomorphism $\phi: \mathbb{Z} \rightarrow R$, if we let $a=\phi(1)$ then for all $k \in \mathbb{Z}$ we have $\phi(k)=\phi(k \cdot 1)=k \cdot \phi(1)=k a=\phi_{a}(k)$. Thus every ring homomorphism $\phi: \mathbb{Z} \rightarrow R$ is of the form $\phi=\phi_{a}$ for some $a \in R$. Also note that in order for ϕ_{a} to be a ring homomorphism, we must have $a^{2}=\phi(1)^{2}=\phi\left(1^{2}\right)=\phi(1)=a$. Finally, note that given $a \in R$ with $a^{2}=a$, the $\operatorname{map} \phi_{a}$ is a ring homomorphism because $\phi_{a}(k+l)=(k+l) a=k a+l a=\phi_{a}(k)+\phi_{l}(a)$ and $\phi_{a}(k l)=(k l) a=(k l) a^{2}=(k a)(l a)=\phi_{a}(k) \phi_{l}(a)$. Thus the ring homomorphisms from \mathbb{Z} to R are precisely the maps ϕ_{a} where $a \in R$ with $a^{2}=a$.
10.9 Example: Let R be a ring. For $a, b \in R$, define the map $\phi_{a, b}: \mathbb{Z} \times \mathbb{Z} \rightarrow R$ by $\phi_{a, b}(k, l)=(k a)(l b)$. As an exercise, show that the ring homomorphisms $\phi: \mathbb{Z} \times \mathbb{Z} \rightarrow R$ are the maps $\phi=\phi_{a, b}$ with $a, b \in R$ such that $a^{2}=a, b^{2}=b$ and $a b=b a=0$.
10.10 Definition: An element a in a ring R is called idempotent when $a^{2}=a$.
10.11 Example: The complex conjugation map $\phi: \mathbb{C} \rightarrow \mathbb{C}$ given by $\phi(z)=\bar{z}$ is a ring homomorphism since $\overline{z+w}=\bar{z}+\bar{w}$ and $\overline{z w}=\bar{z} \bar{w}$, but the norm map $\psi(z)=\|z\|$ is not a ring homomorphism because, in general, we do not have $\|z+w\|=\|z\|+\|w\|$.
10.12 Definition: Let R be a ring. For $a \in R$, the map $\phi_{a}: R[x] \rightarrow R$ given by $\phi_{a}(f(x))=f(a)$, that is by

$$
\phi_{a}\left(\sum_{i=0}^{n} c_{i} x^{i}\right)=\sum_{i=0}^{n} c_{i} a^{i},
$$

is called the evaluation map at a. If $a \in Z(R)$ then ϕ_{a} is a homomorphism because for $f=\sum b_{i} x^{i}$ and $g=\sum c_{i} x^{i}$ we have

$$
\begin{aligned}
\phi_{a}(f+g) & =\phi_{a}\left(\sum_{i}\left(b_{i}+c_{i}\right) x^{i}\right)=\sum_{i}\left(b_{i}+c_{i}\right) a^{i}=\sum_{i} b_{i} a^{i}+\sum_{i} c_{i} x^{i}=\phi_{a}(f)+\phi_{a}(g) \\
\phi_{a}(f g) & =\phi_{a}\left(\sum_{i, j} b_{i} c_{j} x^{i+j}\right)=\sum_{i, j} b_{i} c_{j} a^{i+j}=\sum_{i, j} b_{i} a^{i} c_{j} a^{j}=\sum_{i} b_{i} x^{i} \sum_{j} c_{j} a^{j}=\phi_{a}(f) \phi_{a}(g) .
\end{aligned}
$$

The evaluation $\operatorname{map} \phi: R[x] \rightarrow \operatorname{Func}(R, R)$ is then given by $\phi(f)(a)=\phi_{a}(f)=f(a)$, in other words ϕ sends the polynomial $f(x)=\sum c_{i} x^{i}$ to the function $f(x)=\sum c_{i} x^{i}$. If R is commutative, then the above calculation shows that this map ϕ is a homomorphism. If R is not commutative, then the multiplication operations in $R[x]$ and in Func (R, R) are different and the evaluation map is not a homomorphism (in fact we are usually only interested in the polynomial ring $R[x]$ in the case that R is commutative).
10.13 Example: Show that $\mathbb{R} \not \not \mathbb{C}$ (as rings).

Solution: If $\phi: \mathbb{R} \rightarrow \mathbb{C}$ was a ring isomorphism, then the restriction of ϕ to \mathbb{R}^{*} would be a group isomorphism $\phi: \mathbb{R}^{*} \rightarrow \mathbb{C}^{*}$. But we know that the groups \mathbb{R}^{*} and \mathbb{C}^{*} are not isomorphic.
10.14 Example: Show that $2 \mathbb{Z} \not \approx 3 \mathbb{Z}$ (as rings).

Solution: In $2 \mathbb{Z}$ we have $2 \cdot 2=4=2+2$, but there is no element $0 \neq a \in 3 \mathbb{Z}$ with $a \cdot a=a+a$.
10.15 Theorem: (Ideals and Quotient Rings) Let S be a subring of a ring R. Note that S is a subgroup of R under addition. Let R / S be the quotient group $R / S=\{a+S \mid a \in \mathbb{R}\}$ with addition operation given by $(a+S)+(b+S)=(a+b)+S$. We can define a multiplication operation on R / S by

$$
(a+S)(b+S)=a b+S
$$

if and only if S has the property that for all $r \in R$ and $s \in S$ we have

$$
r s \in S \text { and } s r \in S
$$

In this case R / S is a ring under the above addition and multiplication operations. If R has identity 1 , then R / S has identity $1+S$.

Proof: Suppose the formula $(a+S)(b+S)=a b+S$ gives a well-defined operation on R / S. Then for all $a_{1}, a_{2}, b_{1}, b_{2} \in R$, if $a_{1}+S=a_{2}+S$ and $b_{1}+S=b_{2}+S$ then $a_{1} b_{1}+S=a_{2} b_{2}+S$. Equivalently, for all $a_{1}, b_{1}, a_{2}, b_{2} \in R$, if $a_{1}-a_{2} \in S$ and $b_{1}-b_{2} \in S$ then $a_{1} a_{2}-b_{1} b_{2} \in S$. Let $r \in R$ and $s \in S$. Taking $a_{1}=a_{2}=r, b_{1}=s$ and $b_{2}=0$, we have $a_{1}-a_{2}=0 \in S$ and $b_{1}-b_{2}=s \in S$ and so $r s=a_{1} b_{1}-a_{2} b_{2} \in S$. Similarly, taking $a_{1}=s, a_{2}=0$ and $b_{1}=b_{2}=r$ we see that $s r \in S$.

Conversely, suppose that for all $r \in R$ and $s \in S$ we have $r s \in S$ and $s r \in S$. Let $a_{1}, a_{2}, b_{1}, b_{2} \in R$ with $a_{1}-a_{2} \in S$ and $b_{1}-b_{2} \in S$. Say $a_{1}-a_{2}=s \in S$ and $b_{1}-b_{2}=t \in S$. Then $a_{1} b_{1}-a_{2} b_{2}=a_{1} b_{1}-\left(a_{1}-s\right)\left(b_{1}-t\right)=a_{1} b_{1}-\left(a_{1} b_{1}-a_{1} t-s b_{1}+s t\right)=a_{1} t+s b_{1}+s t \in S$. Thus the formula $(a+S)(b+S)=a b+S$ gives a well-defined operation on R / S.

Now we suppose that S has the required property so that $(a+S)(b+S)=a b+S$ does give a well-defined multiplication operation. This multiplication is associative because

$$
\begin{aligned}
((a+S)(b+S))(c+S) & =(a b+S)(c+S)=(a b) c+S=a(b c)+S \\
& =(a b+S)(c+S)=(a+S)((b+S)(c+S))
\end{aligned}
$$

and it is distributive over the addition operation on R / S because

$$
\begin{aligned}
(a+S)((b+S) & +(c+S))=(a+S)((b+c)+S)=a(b+c)+S=a b+a c+S \\
& =(a b+S)+(a c+S)=(a+S)(b+S)+(a+S)(c+S)
\end{aligned}
$$

and similarly $((a+S)+(b+S))(c+S)=(a+S)(c+S)+(b+S)(c+S)$. Thus R / S is a ring under these two operations.
10.16 Definition: Let R be a ring. An ideal in R is a subring $A \subseteq R$ with the property that for all $r \in R$ and $a \in A$ we have $r a \in A$ and $a r \in A$. When A is an ideal in R, the ring R / A, equipped with the operations of the above theorem, is called the quotient ring of R by A. It is easy to check that the zero element in R / A is $0+A$, the additive inverse of $a+A$ in R / A is $-(a+A)=-a+A$, if R has identity 1 then R / A has identity $1+A$, and if $a \in R$ is a unit then $a+A$ is a unit in R / A with $(a+A)^{-1}=a^{-1}+A$.
10.17 Example: In the cyclic group \mathbb{Z}, the subgroups are the groups $\langle n\rangle=n \mathbb{Z}$ with $n \geq 0$. Each of these subgroups is also an ideal in the ring \mathbb{Z}. For $n \in \mathbb{Z}^{+}$, the ring \mathbb{Z}_{n} is the quotient ring $\mathbb{Z}_{n}=\mathbb{Z} /\langle n\rangle=\mathbb{Z} / n \mathbb{Z}$.
10.18 Example: In the group \mathbb{Z}_{n} the subgroups are the groups $\langle d\rangle$ where $d \mid n$. Each of the subgroups is also an ideal in the ring \mathbb{Z}_{n}.
10.19 Example: In the group \mathbb{Q}, we have the subgroup $\langle 2\rangle=\{\cdots,-2,0,2,4, \cdots\}=2 \mathbb{Z}$. This subgroup is also a subring of \mathbb{Q} because it is closed under multiplication. But it is not an ideal in \mathbb{Q} because it is not closed under multiplication by elements in \mathbb{Q}, for example $2 \in\langle 2\rangle$ and $\frac{1}{2} \in \mathbb{Q}$, but $1=2 \cdot \frac{1}{2} \notin\langle 2\rangle$.
10.20 Definition: Let R be a ring and let $U \subseteq R$. The ideal in R generated by U, denoted by $\langle U\rangle$, is the smallest ideal in R which contains U, or equivalently, the intersection of all ideals in R which contain U. The elements in U are called generators of $\langle U\rangle$. When U is finite we often omit the set brackets, so for $U=\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ we write $\langle U\rangle=\left\langle u_{1}, u_{2}, \cdots, u_{n}\right\rangle$. An ideal of the form $\left\langle u_{1}, u_{2}, \cdots, u_{n}\right\rangle$ for some $u_{i} \in R$ is said to be finitely generated. An ideal of the form $\langle u\rangle$ for some $u \in R$ is called a principal ideal.
10.21 Theorem: Let R be a ring and let U be a non-empty subset of R.
(1) If R has a 1 then $\langle U\rangle=\left\{\sum_{i=1}^{n} r_{i} u_{i} s_{i} \mid n \in \mathbb{Z}^{+}, u_{i} \in U, r_{i}, s_{i} \in R\right\}$.
(2) If R is commutative with 1 then $\langle U\rangle=\left\{\sum_{i=1}^{n} u_{i} r_{i} \mid n \in \mathbb{Z}^{+}, u_{i} \in U, r_{i} \in R\right\}$. In particular, for $a \in R$ we have $\langle a\rangle=\{a r \mid r \in R\}$.
10.22 Note: In a field F, the only ideals are $\{0\}$ and F. Indeed let A be an ideal in F with $A \neq\{0\}$. Choose $0 \neq a \in A$. Since $a \in A$ and $a^{-1} \in F$, we must have $1=a a^{-1} \in A$. Given any element $x \in F$, since $1 \in A$ and $x \in F$ we must have $x=x \cdot 1 \in A$. Thus $A=F$.
10.23 Definition: Let A and B be ideals in a ring R. The intersection, sum and the product of A and B are the sets

$$
\begin{aligned}
A \cap B & =\{a \in R \mid a \in A \text { and } a \in B\}, \\
A+B & =\{a+b \mid a \in A, b \in B\}, \text { and } \\
A B & =\left\{\sum_{i=1}^{n} a_{i} b_{i} \mid n \in \mathbb{Z}^{+}, a_{i} \in A, b_{i} \in B\right\} .
\end{aligned}
$$

As an exercise, show that $A \cap B, A+B$ and $A B$ are all ideals in R.
10.24 Example: In \mathbb{Z}, for $k, l \in \mathbb{Z}^{+}$verify that

$$
\begin{aligned}
\langle k\rangle \cap\langle l\rangle & =\langle m\rangle \text { where } m=\operatorname{lcm}(k, l) \\
\langle k\rangle+\langle l\rangle & =\langle d\rangle \text { where } d=\operatorname{gcd}(k, l), \text { and } \\
\langle k\rangle\langle l\rangle & =\langle k l\rangle .
\end{aligned}
$$

10.25 Theorem: (The First Isomorphism Theorem) Let $\phi: R \rightarrow S$ be a homomorphism of rings. Let $K=\operatorname{Ker}((\phi)$. Then K is an ideal in R and we have $R / K \cong \phi(R)$. Indeed the map $\Phi: R / K \rightarrow \phi(R)$ given by $\Phi(a+K)=\phi(a)$ is a ring isomorphism.
10.26 Theorem: (The Second Isomorphism Theorem) Let A and B be ideals in a ring R. Then A is an ideal in $A+B, A \cap B$ is an ideal in B, and

$$
(A+B) / A \cong B /(A \cap B)
$$

10.27 Theorem: (The Third Isomorphism Theorem) Let A and B be ideals in a ring R with $A \subseteq B \subseteq R$. Then B / A is an ideal in R / A and

$$
(R / A) /(B / A) \cong R / B
$$

10.28 Example: Let $d, n \in \mathbb{Z}^{+}$with $d \mid n$. Then the map $\phi: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{d}$ given by $\phi(k)=k$ is a ring homomorphism with $\operatorname{Ker}(\phi)=\langle d\rangle$. By the First Isomorphism Theorem, we have $\mathbb{Z}_{n} /\langle d\rangle \cong \mathbb{Z}_{d}$.
10.29 Example: Define a map $\phi: \mathbb{Q}[x] \rightarrow \mathbb{Q}[\sqrt{2}]$ by $\phi(f)=f(\sqrt{2})$. Then ϕ is a homomorphism because $\phi(f+g)=(f+g)(\sqrt{2})=f(\sqrt{2})+g(\sqrt{2})=\phi(f)+\phi(g)$ and $\phi(f g)=(f g)(\sqrt{2})=f(\sqrt{2}) g(\sqrt{2})=\phi(f) \phi(g)$. Also note that ϕ is surjective because $\phi(a+b x)=a+b \sqrt{2}$ for $a, b \in \mathbb{Q}$. Finally note that for $f \in \mathbb{Q}[x]$ we have

$$
\begin{aligned}
f(x) \in \operatorname{Ker}(\phi) & \Longleftrightarrow f(\sqrt{2})=0 \in \mathbb{R} \Longleftrightarrow f(\sqrt{2})=f(-\sqrt{2})=0 \in \mathbb{R} \\
& \Longleftrightarrow\left(x^{2}-2\right) \mid f(x) \Longleftrightarrow f(x) \in\left\langle x^{2}-2\right\rangle
\end{aligned}
$$

where we used the fact that for $f(x)=\sum c_{i} x^{i} \in \mathbb{Q}[x]$ we have

$$
f(\pm \sqrt{2})=\left(\sum c_{2 k} 2^{k}\right) \pm\left(\sum c_{2 k+1} 2^{k}\right) \sqrt{2}
$$

so that $f(\sqrt{2})=0 \Longleftrightarrow f(-\sqrt{2})=0 \Longleftrightarrow \sum c_{2 k} 2^{k}=0=\sum c_{2 k+1} 2^{k}$. By the First Isomorphism Theorem, we have $\mathbb{Q}[x] /\left\langle x^{2}-2\right\rangle \cong \mathbb{Q}[\sqrt{2}]$.
10.30 Example: Define $\phi: \mathbb{R}[x] \rightarrow \mathbb{C}$ by $\phi(f)=f(i)$. Then ϕ is a homomorphism since $\phi(f+g)=(f+g)(i)=f(i)+g(i)=\phi(f)+\phi(g)$ and $\phi(f g)=(f g)(i)=f(i) g(i)=\phi(f) \phi(g)$. The map ϕ is surjective because $\phi(a+b x)=a+b i$ for $a, b \in \mathbb{R}$. Also, for $f(x) \in \mathbb{R}[x]$,
$f(x) \in \operatorname{Ker}(\phi) \Longleftrightarrow f(i)=0 \in \mathbb{C} \Longleftrightarrow\left(x^{2}+1\right) \mid f(x) \in \mathbb{R}[x] \Longleftrightarrow f(x) \in\left\langle x^{2}+1\right\rangle \subseteq \mathbb{R}[x]$.
Thus by the First Isomorphism Theorem, we have $\mathbb{R}[x] /\left\langle x^{2}+1\right\rangle \cong \mathbb{C}$.
10.31 Example: Define $\phi: \mathbb{Z}[i] \rightarrow \mathbb{Z}_{5}$ by $\phi(a+b i)=a+2 b$. The map ϕ is a ring homomorphism because

$$
\begin{aligned}
\phi((a+b i)+(c+d i)) & =\phi((a+c)+(b+d) i)=(a+c)+2(b+d) \\
& =(a+2 b)+(c+2 d)=\phi(a+b i)+\phi(c+d i), \text { and } \\
\phi((a+b i)(c+d i)) & =\phi((a c-b d)+(a d+b c) i)=(a c-b d)+2(a d+b c) \\
& =a c+2 a d+2 b c+4 b d=(a+2 b)(c+2 d)=\phi(a+b i) \phi(c+d i) .
\end{aligned}
$$

Also note that ϕ is surjective because $\phi(a+0 i)=a$. Finally, note that

$$
a+b i \in \operatorname{Ker}(\phi) \Longleftrightarrow a+2 b=0 \in \mathbb{Z}_{5} \Longleftrightarrow b=2 a \in \mathbb{Z}_{5} \Longleftrightarrow a+i b \in\langle 2-i\rangle,
$$

indeed if $b=2 a$ then we have $a+b i=a+2 a i=(2-i)(a i) \in\langle 2-i\rangle$ and conversely, if $a+b i \in\langle 2-i\rangle$, say $a+b i=(2-i)(x+y i)=(2 x+y)+(2 y-x) i$, then we have $a=2 x+y$ and $b=2 y-x$ so that $2 a=2(2 x+y)=4 x+2 y=2 y-x=b \in \mathbb{Z}_{5}$. By the First Isomorphism Theorem, we have $\mathbb{Z}[i] /\langle 2-i\rangle \cong \mathbb{Z}_{5}$.
10.32 Definition: Let R be a commutative ring. Consider the evaluation homomorphism $\phi: R[x] \rightarrow \operatorname{Func}(R, R)$ given by $\phi(f)=f$, that is the map which sends the polynomial $f(x)$ to the function $f(x)$. A polynomial $f \in R[x]$ is equal to zero when all of its coefficients are equal to zero. A function $f \in \operatorname{Func}(R, R)$ is equal to zero when we have $f(a)=0$ for all $a \in R$. The kernel of the evaluation homomorphism is

$$
\operatorname{Ker}(\phi)=\{f \in R[x] \mid f(a)=0 \text { for all } a \in R\} .
$$

The image $\phi(R[x]) \subseteq \operatorname{Func}(R, R)$ is called the ring of polynomial functions on R. By the First Isomorphism Theorem, it is isomorphic to the quotient ring $R[x] / \operatorname{Ker}(\phi)$.
10.33 Example: If R is an infinite field, then $\operatorname{Ker}(\phi)=0$ since for $f(x) \in R[x]$, if $f(a)=0$ for all $a \in R$ then $f(x)$ has infinitely many roots, and so $f(x)=0$ as a polynomial (a nonzero polynomial of degree $n \geq 0$ over a field has at most n roots). In this case, ϕ is injective so the polynomial ring $R[x]$ is isomorphic to the ring of polynomial functions $\phi(R[x]) \subseteq \operatorname{Func}(R, R)$, and we often identify $R[x]$ with $\phi(R[x])$.

If R is a finite field, the situation is quite different. In this case $R[x]$ is infinite but $\operatorname{Func}(R, R)$ is finite, so $R[x]$ is certainly not isomorphic to a subring of $\operatorname{Func}(R, R)$. Let us consider the case that $R=\mathbb{Z}_{p}$ where p is prime. By Fermat's Little Theorem, we know that $a^{p}=a$ for all $a \in \mathbb{Z}_{p}$, and so every $a \in \mathbb{Z}^{p}$ is a root of the polynomial $p(x)=x^{p}-x$. Since there are exactly p elements in \mathbb{Z}_{p}, it follows that $p(x)$ factors as

$$
p(x)=x^{p}-x=(x-0)(x-1)(x-2) \cdots(x-(p-1)) .
$$

For a polynomial $f(x) \in \mathbb{Z}_{p}[x]$ we have

$$
\begin{aligned}
f(x) \in \operatorname{Ker}(\phi) & \Longleftrightarrow f(a)=0 \text { for all } a \in \mathbb{Z}_{p} \Longleftrightarrow(x-a) \mid f(x) \text { for all } a \in \mathbb{Z}_{p} \\
& \Longleftrightarrow p(x) \mid f(x) \Longleftrightarrow f(x) \in\langle p(x)\rangle=\left\langle x^{p}-x\right\rangle .
\end{aligned}
$$

Furthermore, we claim that ϕ is surjective. For $a \in \mathbb{Z}_{p}$, let $g_{a}(x) \in \mathbb{Z}_{p}[x]$ be the polynomial

$$
g_{a}(x)=\frac{\prod_{i \in \mathbb{Z}_{p}, i \neq a}(x-i)}{\prod_{i \in \mathbb{Z}_{p}, i \neq a}(a-i)} .
$$

Notice that for all $k \in \mathbb{Z}_{p}$ we have

$$
g_{a}(k)=\delta_{a, k}=\left\{\begin{array}{l}
1 \text { if } k=a, \\
0 \text { if } k \neq a
\end{array}\right.
$$

Given any function $f(x) \in \operatorname{Func}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$, for all $k \in \mathbb{Z}_{p}$ we have

$$
\sum_{a \in \mathbb{Z}_{p}} f(a) g_{a}(k)=\sum_{a \in \mathbb{Z}_{p}} f(a) \delta_{a, k}=f(k) .
$$

It follows that $f(x)=\sum_{a \in \mathbb{Z}_{p}} f(a) g_{a}(x) \in \operatorname{Func}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$. Notice that $\sum_{a \in \mathbb{Z}_{p}} f(a) g_{a}(x) \in \mathbb{Z}_{p}[x]$ and we have $f(x)=\phi\left(\sum_{a \in \mathbb{Z}_{p}} f(a) g_{a}(x)\right)$. Thus ϕ is surjective, as claimed. Thus the ring of polynomial functions $\phi\left(\mathbb{Z}_{p}[x]\right)$ is equal to the ring of all functions $\operatorname{Func}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$, and by the First Isomorphism Theorem, we have $\mathbb{Z}_{p}[x] /\left\langle x^{p}-x\right\rangle \cong \phi\left(\mathbb{Z}_{p}[x]\right)=\operatorname{Func}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$.

