
Chapter 10. Ring Homomorphisms, Ideals and Quotient Rings

10.1 Definition: Let R and S be rings. A ring homomorphism from R to S is a map
φ : R→ S such that

φ(a+ b) = φ(a) + φ(b) and

φ(ab) = φ(a)φ(b)

for all a, b ∈ R. The kernel of φ is the set

Ker(φ) = φ−1(0) =
{
a ∈ R

∣∣φ(a) = 0
}

and the image (or range) of φ is the set

Image(φ) = φ(R) =
{
φ(a)

∣∣a ∈ R} .
A ring isomorphism from R to S is a bijective ring homomorphism from R to S. For two
rings R and S, we say that R and S are isomorphic, and we write R ∼= S, when there
exists an isomorphism φ : R→ S.

10.2 Theorem: Let φ : R→ S be a ring homomorphism. Then

(1) φ(0) = 0,
(2) for a ∈ R we have φ(ka) = kφ(a) for all k ∈ Z,
(3) if R has a 1 and φ is surjective, then S has a 1 and φ(1) = 1,
(4) for a ∈ R we have φ(ak) = φ(a)k for all k ∈ Z+, and
(5) if R has a 1, φ is surjective, and a ∈ R is a unit, then φ(ak) = φ(a)k for all k ∈ Z.

10.3 Theorem: Let φ : R→ S and ψ : S → T be ring homomorphisms. Then

(1) the identity map I : R→ R is a ring homomorphism,
(2) the composite ψ ◦ φ : R→ T is a homomorphism, and
(3) if φ is bijective then the inverse φ−1 : S → R is a homomorphism.

10.4 Corollary: Isomorphism is an equivalence relation on the class of rings.

10.5 Theorem: Let φ : R→ S be a ring homomorphism. Then

(1) If K is a subgroup of R then φ(K) is a subgroup of S. In particular, Image(φ) is a
subgroup of S.
(2) if L is a subgroup of S then φ−1(L) is a subgroup of R. In particular, Ker(φ) is a
subgroup of R.

10.6 Theorem: Let φ : R→ S be a ring homomorphism. Then

(1) φ is injective if and only if Ker(φ) = {0}, and
(2) φ is surjective if and only if Image(φ) = S.

10.7 Example: For rings R and S, the zero function 0 : R → S, given by 0(x) = 0
for all x ∈ R, is a ring homomorphism. For a ring R, the identity function I : R → R,
given by I(x) = x for all x ∈ R, is a ring homomorphism.
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10.8 Example: Let R be a ring. For a ∈ R, define φa : Z→ R by φa(k) = ka. Show that
the ring homomorphisms φ : Z→ R are the maps φ = φa with a ∈ R such that a2 = a.

Solution: For a ∈ R, let φa : Z → R be the map given by φa(k) = ka. Note that
for any ring homomorphism φ : Z → R, if we let a = φ(1) then for all k ∈ Z we have
φ(k) = φ(k ·1) = k ·φ(1) = ka = φa(k). Thus every ring homomorphism φ : Z→ R is of the
form φ = φa for some a ∈ R. Also note that in order for φa to be a ring homomorphism,
we must have a2 = φ(1)2 = φ(12) = φ(1) = a. Finally, note that given a ∈ R with a2 = a,
the map φa is a ring homomorphism because φa(k+ l) = (k+ l)a = ka+ la = φa(k)+φl(a)
and φa(kl) = (kl)a = (kl)a2 = (ka)(la) = φa(k)φl(a). Thus the ring homomorphisms from
Z to R are precisely the maps φa where a ∈ R with a2 = a.

10.9 Example: Let R be a ring. For a, b ∈ R, define the map φa,b : Z × Z → R by
φa,b(k, l) = (ka)(lb). As an exercise, show that the ring homomorphisms φ : Z × Z → R
are the maps φ = φa,b with a, b ∈ R such that a2 = a, b2 = b and ab = ba = 0.

10.10 Definition: An element a in a ring R is called idempotent when a2 = a.

10.11 Example: The complex conjugation map φ : C → C given by φ(z) = z is a ring
homomorphism since z + w = z + w and zw = z w, but the norm map ψ(z) = ||z|| is not
a ring homomorphism because, in general, we do not have ||z + w|| = ||z||+ ||w||.

10.12 Definition: Let R be a ring. For a ∈ R, the map φa : R[x] → R given by
φa
(
f(x)

)
= f(a), that is by

φa

( n∑
i=0

cix
i
)

=
n∑

i=0

cia
i,

is called the evaluation map at a. If a ∈ Z(R) then φa is a homomorphism because for
f =

∑
bix

i and g =
∑
cix

i we have

φa(f + g) = φa
(∑

i

(bi + ci)x
i
)

=
∑
i

(bi + ci)a
i =

∑
i

bia
i +
∑
i

cix
i = φa(f) + φa(g)

φa(fg) = φa
(∑

i,j

bicjx
i+j
)

=
∑
i,j

bicja
i+j =

∑
i,j

bia
icja

j =
∑
i

bix
i
∑
j

cja
j = φa(f)φa(g).

The evaluation map φ : R[x] → Func(R,R) is then given by φ(f)(a) = φa(f) = f(a),
in other words φ sends the polynomial f(x) =

∑
cix

i to the function f(x) =
∑
cix

i. If
R is commutative, then the above calculation shows that this map φ is a homomorphism.
If R is not commutative, then the multiplication operations in R[x] and in Func(R,R)
are different and the evaluation map is not a homomorphism (in fact we are usually only
interested in the polynomial ring R[x] in the case that R is commutative).

10.13 Example: Show that R 6∼= C (as rings).

Solution: If φ : R → C was a ring isomorphism, then the restriction of φ to R∗ would
be a group isomorphism φ : R∗ → C∗. But we know that the groups R∗ and C∗ are not
isomorphic.

10.14 Example: Show that 2Z 6∼= 3Z (as rings).

Solution: In 2Z we have 2 · 2 = 4 = 2 + 2, but there is no element 0 6= a ∈ 3Z with
a · a = a+ a.
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10.15 Theorem: (Ideals and Quotient Rings) Let S be a subring of a ring R. Note that S
is a subgroup of R under addition. Let R/S be the quotient group R/S =

{
a+ S

∣∣a ∈ R
}

with addition operation given by (a + S) + (b + S) = (a + b) + S. We can define a
multiplication operation on R/S by

(a+ S)(b+ S) = ab+ S

if and only if S has the property that for all r ∈ R and s ∈ S we have

rs ∈ S and sr ∈ S.

In this case R/S is a ring under the above addition and multiplication operations. If R
has identity 1, then R/S has identity 1 + S.

Proof: Suppose the formula (a+S)(b+S) = ab+S gives a well-defined operation on R/S.
Then for all a1, a2, b1, b2 ∈ R, if a1+S = a2+S and b1+S = b2+S then a1b1+S = a2b2+S.
Equivalently, for all a1, b1, a2, b2 ∈ R, if a1 − a2 ∈ S and b1 − b2 ∈ S then a1a2 − b1b2 ∈ S.
Let r ∈ R and s ∈ S. Taking a1 = a2 = r, b1 = s and b2 = 0, we have a1 − a2 = 0 ∈ S
and b1 − b2 = s ∈ S and so rs = a1b1 − a2b2 ∈ S. Similarly, taking a1 = s, a2 = 0 and
b1 = b2 = r we see that sr ∈ S.

Conversely, suppose that for all r ∈ R and s ∈ S we have rs ∈ S and sr ∈ S. Let
a1, a2, b1, b2 ∈ R with a1−a2 ∈ S and b1−b2 ∈ S. Say a1−a2 = s ∈ S and b1−b2 = t ∈ S.
Then a1b1−a2b2 = a1b1−(a1−s)(b1−t) = a1b1−(a1b1−a1t−s b1+st) = a1t+s b1+st ∈ S.
Thus the formula (a+ S)(b+ S) = ab+ S gives a well-defined operation on R/S.

Now we suppose that S has the required property so that (a+S)(b+S) = ab+S does
give a well-defined multiplication operation. This multiplication is associative because(

(a+ S)(b+ S)
)
(c+ S) = (ab+ S)(c+ S) = (ab)c+ S = a(bc) + S

= (ab+ S)(c+ S) = (a+ S)
(
(b+ S)(c+ S)

)
and it is distributive over the addition operation on R/S because

(a+ S)
(
(b+ S) + (c+ S)

)
= (a+ S)

(
(b+ c) + S

)
= a(b+ c) + S = ab+ ac+ S

= (ab+ S) + (ac+ S) = (a+ S)(b+ S) + (a+ S)(c+ S)

and similarly
(
(a+ S) + (b+ S)

)
(c+ S) = (a+ S)(c+ S) + (b+ S)(c+ S). Thus R/S is a

ring under these two operations.

10.16 Definition: Let R be a ring. An ideal in R is a subring A ⊆ R with the property
that for all r ∈ R and a ∈ A we have ra ∈ A and ar ∈ A. When A is an ideal in R, the
ring R/A, equipped with the operations of the above theorem, is called the quotient ring
of R by A. It is easy to check that the zero element in R/A is 0 +A, the additive inverse
of a+ A in R/A is −(a+ A) = −a+ A, if R has identity 1 then R/A has identity 1 + A,
and if a ∈ R is a unit then a+A is a unit in R/A with (a+A)−1 = a−1 +A.

10.17 Example: In the cyclic group Z, the subgroups are the groups 〈n〉 = nZ with
n ≥ 0. Each of these subgroups is also an ideal in the ring Z. For n ∈ Z+, the ring Zn is
the quotient ring Zn = Z/〈n〉 = Z/nZ.

10.18 Example: In the group Zn the subgroups are the groups 〈d〉 where d
∣∣n. Each of

the subgroups is also an ideal in the ring Zn.
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10.19 Example: In the group Q, we have the subgroup 〈2〉 = {· · · ,−2, 0, 2, 4, · · ·} = 2Z.
This subgroup is also a subring of Q because it is closed under multiplication. But it is not
an ideal in Q because it is not closed under multiplication by elements in Q, for example
2 ∈ 〈2〉 and 1

2 ∈ Q, but 1 = 2 · 12 /∈ 〈2〉.
10.20 Definition: Let R be a ring and let U ⊆ R. The ideal in R generated by
U , denoted by 〈U〉, is the smallest ideal in R which contains U , or equivalently, the
intersection of all ideals in R which contain U . The elements in U are called generators
of 〈U〉. When U is finite we often omit the set brackets, so for U = {u1, u2, · · · , un} we
write 〈U〉 = 〈u1, u2, · · · , un〉. An ideal of the form 〈u1, u2, · · · , un〉 for some ui ∈ R is said
to be finitely generated. An ideal of the form 〈u〉 for some u ∈ R is called a principal
ideal.

10.21 Theorem: Let R be a ring and let U be a non-empty subset of R.

(1) If R has a 1 then 〈U〉 =
{ n∑

i=1

riuisi

∣∣∣n ∈ Z+, ui ∈ U, ri, si ∈ R
}
.

(2) If R is commutative with 1 then 〈U〉 =
{ n∑

i=1

uiri

∣∣∣n ∈ Z+, ui ∈ U, ri ∈ R
}
. In particular,

for a ∈ R we have 〈a〉 =
{
ar
∣∣ r ∈ R}.

10.22 Note: In a field F , the only ideals are {0} and F . Indeed let A be an ideal in F
with A 6= {0}. Choose 0 6= a ∈ A. Since a ∈ A and a−1 ∈ F , we must have 1 = a a−1 ∈ A.
Given any element x ∈ F , since 1 ∈ A and x ∈ F we must have x = x · 1 ∈ A. Thus
A = F .

10.23 Definition: Let A and B be ideals in a ring R. The intersection, sum and the
product of A and B are the sets

A ∩B =
{
a ∈ R

∣∣ a ∈ A and a ∈ B
}
,

A+B =
{
a+ b

∣∣ a ∈ A, b ∈ B} , and

AB =
{ n∑

i=1

aibi

∣∣∣n ∈ Z+, ai ∈ A, bi ∈ B
}
.

As an exercise, show that A ∩B, A+B and AB are all ideals in R.

10.24 Example: In Z, for k, l ∈ Z+ verify that

〈k〉 ∩ 〈l〉 = 〈m〉 where m = lcm(k, l)

〈k〉+ 〈l〉 = 〈d〉 where d = gcd(k, l), and

〈k〉〈l〉 = 〈kl〉.

10.25 Theorem: (The First Isomorphism Theorem) Let φ : R→ S be a homomorphism
of rings. Let K = Ker((φ). Then K is an ideal in R and we have R/K ∼= φ(R). Indeed
the map Φ : R/K → φ(R) given by Φ(a+K) = φ(a) is a ring isomorphism.

10.26 Theorem: (The Second Isomorphism Theorem) Let A and B be ideals in a ring
R. Then A is an ideal in A+B, A ∩B is an ideal in B, and

(A+B)/A ∼= B/(A ∩B).

10.27 Theorem: (The Third Isomorphism Theorem) Let A and B be ideals in a ring R
with A ⊆ B ⊆ R. Then B/A is an ideal in R/A and

(R/A)
/

(B/A) ∼= R/B.
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10.28 Example: Let d, n ∈ Z+ with d
∣∣n. Then the map φ : Zn → Zd given by φ(k) = k

is a ring homomorphism with Ker(φ) = 〈d〉. By the First Isomorphism Theorem, we have
Zn

/
〈d〉 ∼= Zd.

10.29 Example: Define a map φ : Q[x] → Q[
√

2] by φ(f) = f(
√

2). Then φ is a
homomorphism because φ(f + g) = (f + g)(

√
2) = f(

√
2) + g(

√
2) = φ(f) + φ(g) and

φ(fg) = (fg)(
√

2) = f(
√

2)g(
√

2) = φ(f)φ(g). Also note that φ is surjective because
φ(a+ bx) = a+ b

√
2 for a, b ∈ Q. Finally note that for f ∈ Q[x] we have

f(x) ∈ Ker(φ) ⇐⇒ f(
√

2) = 0 ∈ R ⇐⇒ f(
√

2) = f(−
√

2) = 0 ∈ R
⇐⇒ (x2 − 2)

∣∣f(x) ⇐⇒ f(x) ∈ 〈x2 − 2〉,

where we used the fact that for f(x) =
∑
cix

i ∈ Q[x] we have

f(±
√

2) =
(∑

c2k2k
)
±
(∑

c2k+12k
)√

2

so that f(
√

2) = 0 ⇐⇒ f(−
√

2) = 0 ⇐⇒
∑
c2k2k = 0 =

∑
c2k+12k. By the First

Isomorphism Theorem, we have Q[x]
/
〈x2 − 2〉 ∼= Q[

√
2].

10.30 Example: Define φ : R[x]→ C by φ(f) = f(i). Then φ is a homomorphism since
φ(f+g) = (f+g)(i) = f(i)+g(i) = φ(f)+φ(g) and φ(fg) = (fg)(i) = f(i)g(i) = φ(f)φ(g).
The map φ is surjective because φ(a+ bx) = a+ bi for a, b ∈ R. Also, for f(x) ∈ R[x],

f(x) ∈ Ker(φ) ⇐⇒ f(i) = 0 ∈ C ⇐⇒ (x2 +1)
∣∣f(x) ∈ R[x] ⇐⇒ f(x) ∈ 〈x2 +1〉 ⊆ R[x].

Thus by the First Isomorphism Theorem, we have R[x]
/
〈x2 + 1〉 ∼= C.

10.31 Example: Define φ : Z[i] → Z5 by φ(a + bi) = a + 2b. The map φ is a ring
homomorphism because

φ
(
(a+ bi) + (c+ di)

)
= φ

(
(a+ c) + (b+ d)i

)
= (a+ c) + 2(b+ d)

= (a+ 2b) + (c+ 2d) = φ(a+ bi) + φ(c+ di) , and

φ
(
(a+ bi)(c+ di)

)
= φ

(
(ac− bd) + (ad+ bc)i

)
= (ac− bd) + 2(ad+ bc)

= ac+ 2ad+ 2bc+ 4bd = (a+ 2b)(c+ 2d) = φ(a+ bi)φ(c+ di).

Also note that φ is surjective because φ(a+ 0i) = a. Finally, note that

a+ bi ∈ Ker(φ) ⇐⇒ a+ 2b = 0 ∈ Z5 ⇐⇒ b = 2a ∈ Z5 ⇐⇒ a+ ib ∈ 〈2− i〉,

indeed if b = 2a then we have a + bi = a + 2a i = (2 − i)(ai) ∈ 〈2 − i〉 and conversely, if
a+ bi ∈ 〈2− i〉, say a+ bi = (2− i)(x+ yi) = (2x+ y) + (2y−x)i, then we have a = 2x+ y
and b = 2y − x so that 2a = 2(2x + y) = 4x + 2y = 2y − x = b ∈ Z5. By the First
Isomorphism Theorem, we have Z[i]

/
〈2− i〉 ∼= Z5.
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10.32 Definition: Let R be a commutative ring. Consider the evaluation homomorphism
φ : R[x] → Func(R,R) given by φ(f) = f , that is the map which sends the polynomial
f(x) to the function f(x). A polynomial f ∈ R[x] is equal to zero when all of its coefficients
are equal to zero. A function f ∈ Func(R,R) is equal to zero when we have f(a) = 0 for
all a ∈ R. The kernel of the evaluation homomorphism is

Ker(φ) =
{
f ∈ R[x]

∣∣ f(a) = 0 for all a ∈ R
}
.

The image φ
(
R[x]

)
⊆ Func(R,R) is called the ring of polynomial functions on R. By

the First Isomorphism Theorem, it is isomorphic to the quotient ring R[x]
/

Ker(φ).

10.33 Example: If R is an infinite field, then Ker(φ) = 0 since for f(x) ∈ R[x], if f(a) = 0
for all a ∈ R then f(x) has infinitely many roots, and so f(x) = 0 as a polynomial (a non-
zero polynomial of degree n ≥ 0 over a field has at most n roots). In this case, φ is
injective so the polynomial ring R[x] is isomorphic to the ring of polynomial functions
φ
(
R[x]

)
⊆ Func(R,R), and we often identify R[x] with φ

(
R[x]

)
.

If R is a finite field, the situation is quite different. In this case R[x] is infinite but
Func(R,R) is finite, so R[x] is certainly not isomorphic to a subring of Func(R,R). Let
us consider the case that R = Zp where p is prime. By Fermat’s Little Theorem, we know
that ap = a for all a ∈ Zp, and so every a ∈ Zp is a root of the polynomial p(x) = xp − x.
Since there are exactly p elements in Zp, it follows that p(x) factors as

p(x) = xp − x = (x− 0)(x− 1)(x− 2) · · · (x− (p− 1)).

For a polynomial f(x) ∈ Zp[x] we have

f(x) ∈ Ker(φ) ⇐⇒ f(a) = 0 for all a ∈ Zp ⇐⇒ (x− a)
∣∣f(x) for all a ∈ Zp

⇐⇒ p(x)
∣∣f(x) ⇐⇒ f(x) ∈

〈
p(x)

〉
= 〈xp − x〉.

Furthermore, we claim that φ is surjective. For a ∈ Zp, let ga(x) ∈ Zp[x] be the polynomial

ga(x) =

∏
i∈Zp,i6=a

(x− i)∏
i∈Zp,i6=a

(a− i)
.

Notice that for all k ∈ Zp we have

ga(k) = δa,k =

{
1 if k = a,

0 if k 6= a.

Given any function f(x) ∈ Func(Zp,Zp), for all k ∈ Zp we have∑
a∈Zp

f(a)ga(k) =
∑

a∈Zp

f(a)δa,k = f(k).

It follows that f(x) =
∑

a∈Zp

f(a)ga(x) ∈ Func(Zp,Zp). Notice that
∑

a∈Zp

f(a)ga(x) ∈ Zp[x]

and we have f(x) = φ
( ∑

a∈Zp

f(a)ga(x)
)

. Thus φ is surjective, as claimed. Thus the ring

of polynomial functions φ
(
Zp[x]

)
is equal to the ring of all functions Func(Zp,Zp), and by

the First Isomorphism Theorem, we have Zp[x]
/
〈xp − x〉 ∼= φ

(
Zp[x]

)
= Func(Zp,Zp) .
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