Chapter 10. Ring Homomorphisms, Ideals and Quotient Rings

10.1 Definition: Let R and S be rings. A ring homomorphism from R to S is a map
¢ : R — S such that

¢(a+b) = ¢(a) + ¢(b) and
¢(ab) = ¢(a)e(b)
for all a,b € R. The kernel of ¢ is the set
Ker(6) = 9(0) = {a € R|9(a) = 0}

and the image (or range) of ¢ is the set

Image(6) = ¢(R) = {¢(a)|a € R} .

A ring isomorphism from R to S is a bijective ring homomorphism from R to S. For two
rings R and S, we say that R and S are isomorphic, and we write R = S, when there
exists an isomorphism ¢ : R — S.

10.2 Theorem: Let ¢ : R — S be a ring homomorphism. Then

(1) ¢(0) =0,

(2) for a € R we have ¢(ka) = k¢(a) for all k € Z,

(3) if R has a 1 and ¢ is surjective, then S has a 1 and ¢(1) =1,

(4) for a € R we have ¢(a*) = ¢(a)* for all k € ZT, and

(5) if R has a 1, ¢ is surjective, and a € R is a unit, then ¢(a*) = ¢(a)* for all k € Z.

10.3 Theorem: Let ¢ : R — S and ¢ : S — T be ring homomorphisms. Then

(1) the identity map I : R — R is a ring homomorphism,
(2) the composite 1 o ¢ : R — T is a homomorphism, and
(3) if ¢ is bijective then the inverse ¢! : S — R is a homomorphism.

10.4 Corollary: Isomorphism is an equivalence relation on the class of rings.

10.5 Theorem: Let ¢ : R — S be a ring homomorphism. Then

(1) If K is a subgroup of R then ¢(K) is a subgroup of S. In particular, Image(¢) is a
subgroup of S.
(2) if L is a subgroup of S then ¢ (L) is a subgroup of R. In particular, Ker(¢) is a
subgroup of R.

10.6 Theorem: Let ¢ : R — S be a ring homomorphism. Then

(1) ¢ is injective if and only if Ker(¢) = {0}, and

(2) ¢ is surjective if and only if Image(¢) = S.

10.7 Example: For rings R and S, the zero function 0 : R — S, given by 0(z) = 0

for all x € R, is a ring homomorphism. For a ring R, the identity function [ : R — R,
given by I(z) = z for all z € R, is a ring homomorphism.



10.8 Example: Let R be a ring. For a € R, define ¢, : Z — R by ¢,(k) = ka. Show that
the ring homomorphisms ¢ : Z — R are the maps ¢ = ¢, with a € R such that a? = a.

Solution: For a € R, let ¢, : Z — R be the map given by ¢,(k) = ka. Note that
for any ring homomorphism ¢ : Z — R, if we let a = ¢(1) then for all £ € Z we have
o(k) = p(k-1) = k-¢(1) = ka = ¢o(k). Thus every ring homomorphism ¢ : Z — R is of the
form ¢ = ¢, for some a € R. Also note that in order for ¢, to be a ring homomorphism,
we must have a? = ¢(1)? = ¢(12) = ¢(1) = a. Finally, note that given a € R with a? = q,
the map ¢, is a ring homomorphism because ¢4 (k+1) = (k+1)a = ka+la = ¢4 (k) + ¢i(a)
and ¢, (kl) = (kl)a = (kl)a? = (ka)(la) = ¢o(k)¢;(a). Thus the ring homomorphisms from
Z to R are precisely the maps ¢, where a € R with a? = a.

10.9 Example: Let R be a ring. For a,b € R, define the map ¢, : Z X Z — R by
Gap(k,l) = (ka)(lb). As an exercise, show that the ring homomorphisms ¢ : Z x Z — R
are the maps ¢ = ¢, with a,b € R such that a® = a, b> = b and ab = ba = 0.

10.10 Definition: An element a in a ring R is called idempotent when a? = a.

10.11 Example: The complex conjugation map ¢ : C — C given by ¢(z) = Z is a ring
homomorphism since z +w = Z + w and zZw = Zw, but the norm map ¥ (z) = ||z|| is not
a ring homomorphism because, in general, we do not have ||z + wl|| = ||z|| + ||w]|-

10.12 Definition: Let R be a ring. For a € R, the map ¢, : R[x] - R given by
¢a(f(x)) = f(a), that is by

n . n 3
¢a< > cixl) =Y ca’,

is called the evaluation map at a. If a € Z(R) then ¢, is a homomorphism because for
f=>bx* and g = > ¢;x" we have
Bulf +9) = ba( Sbi +c)at) = S+ e = Shial + 5 cia’ = da(f) + dal9)
¢a(fg) = (z)a( Zbicjx“_j) = z bicjai+j = Z biaicjaj = Z ble Z Cjaj = ¢a(f)¢a(g)'
0. 0. 0. i j

The evaluation map ¢ : R[x] — Func(R, R) is then given by ¢(f)(a) = ¢u(f) = f(a),
in other words ¢ sends the polynomial f(x) = >_ c;x? to the function f(z) = > ¢z, If
R is commutative, then the above calculation shows that this map ¢ is a homomorphism.
If R is not commutative, then the multiplication operations in R[z] and in Func(R, R)
are different and the evaluation map is not a homomorphism (in fact we are usually only
interested in the polynomial ring R[x] in the case that R is commutative).

10.13 Example: Show that R % C (as rings).

Solution: If ¢ : R — C was a ring isomorphism, then the restriction of ¢ to R* would
be a group isomorphism ¢ : R* — C*. But we know that the groups R* and C* are not
isomorphic.

10.14 Example: Show that 27 2 37 (as rings).

Solution: In 2Z we have 2 -2 = 4 = 2 4+ 2, but there is no element 0 # a € 3Z with
a-a=a-+a.



10.15 Theorem: (Ideals and Quotient Rings) Let S be a subring of a ring R. Note that S
is a subgroup of R under addition. Let R/S be the quotient group R/S = {a + S|a € R}
with addition operation given by (a + S) + (b + S) = (a +b) +S. We can define a
multiplication operation on R/S by

(a+S)(b+S)=ab+ S
if and only if S has the property that for all r € R and s € S we have
rs € S and sr € S.

In this case R/S is a ring under the above addition and multiplication operations. If R
has identity 1, then R/S has identity 1+ S.

Proof: Suppose the formula (a+S)(b+.5) = ab+ S gives a well-defined operation on R/S.
Then for all ay,as,b1,bs € R, if a1+S5 = as+S and by +S = bo+.5 then a1b1+S = asby+.S.
Equivalently, for all ay,b1,a2,bs € R, if ay —as € S and by — by € S then ajas — b1by € 5.
Let r € R and s € S. Taking a; = as =7, by = s and by =0, we have a1 —as =0 € S
and by — by = s € S and so rs = a1b; — agby € S. Similarly, taking a; = s, ap = 0 and
by = by = r we see that sr € S.

Conversely, suppose that for all » € R and s € S we have rs € S and sr € S. Let
al,a2,b1,b2 € Rwitha;—as € Sand by —by € S. Say ai—as=s€ Sand b —by=teS.
Then a1b1 —CLQbQ = a1b1 — (a1 —S)(bl —t) = a161 —(a1b1 —Cth—S b1 —I—St) = a1t+s bl +st € S.
Thus the formula (a + S)(b+ S) = ab+ S gives a well-defined operation on R/S.

Now we suppose that S has the required property so that (a+S5)(b+5) = ab+ S does
give a well-defined multiplication operation. This multiplication is associative because

((a+8)(b+95))(c+S)=(ab+ S)(c+ S) = (ab)c + S = a(bc) + S
= (ab+ S)(c+S) = (a+ 9)((b+ S)(c+9))
and it is distributive over the addition operation on R/S because
(a+9)((b+8)+(c+8)=(a+9)((b+c)+S)=ab+c)+S=ab+ac+ S
= (ab+ S)+ (ac+S) =(a+ S)(b+S) + (a+ 5)(c+95)

and similarly ((a +S5) + (b+8))(c+S5) = (a+ S)(c+ S) + (b+ S)(c+ S). Thus R/S is a
ring under these two operations.

10.16 Definition: Let R be a ring. An ideal in R is a subring A C R with the property
that for all r € R and a € A we have ra € A and ar € A. When A is an ideal in R, the
ring R/A, equipped with the operations of the above theorem, is called the quotient ring
of R by A. It is easy to check that the zero element in R/A is 0 4+ A, the additive inverse
ofa+Ain R/Ais —(a+ A) = —a + A, if R has identity 1 then R/A has identity 1+ A,
and if a € R is a unit then a + A is a unit in R/A with (a + A)™! =a™! + A.

10.17 Example: In the cyclic group Z, the subgroups are the groups (n) = nZ with
n > 0. Each of these subgroups is also an ideal in the ring Z. For n € Z™T, the ring Z, is
the quotient ring Z,, = Z/{n) = Z/n’Z.

10.18 Example: In the group Z, the subgroups are the groups (d) where d‘n. FEach of
the subgroups is also an ideal in the ring Z,.



10.19 Example: In the group Q, we have the subgroup (2) = {---,-2,0,2,4,---} = 2Z.
This subgroup is also a subring of Q because it is closed under multiplication. But it is not

an ideal in Q because it is not closed under multiplication by elements in Q, for example
2€(2)and 3 €Q, but 1=2-3 ¢ (2).

10.20 Definition: Let R be a ring and let U C R. The ideal in R generated by
U, denoted by (U), is the smallest ideal in R which contains U, or equivalently, the
intersection of all ideals in R which contain U. The elements in U are called generators
of (U). When U is finite we often omit the set brackets, so for U = {uy,ug, -, u,} we
write (U) = (u1,ug, -+, uy). An ideal of the form (uy,us,---,u,) for some u; € R is said
to be finitely generated. An ideal of the form (u) for some u € R is called a principal
ideal.

10.21 Theorem: Let R be a ring and let U be a non-empty subset of R.
(1) If R has a 1 then (U) = { >0 oriugs;

=1

neZt,u; €Ur;,s; € R}.

(2) If R is commutative with 1 then (U) = { > ur;
i=1

neZtu elUr; € R}. In particular,
for a € R we have (a) = {ar |r € R}.

10.22 Note: In a field F, the only ideals are {0} and F. Indeed let A be an ideal in F’
with A # {0}. Choose 0 # a € A. Sincea € A and a! € F, we must have 1 =aa™~! € A.

Given any element z € F, since 1 € A and ¢ € F we must have x = x -1 € A. Thus
A=F.

10.23 Definition: Let A and B be ideals in a ring R. The intersection, sum and the
product of A and B are the sets

AOB:{aGR}aEAandaEB},
A+B={a+blac Abe B}, and

4B = { S aiby
=1

As an exercise, show that AN B, A+ B and AB are all ideals in R.
10.24 Example: In Z, for k,l € Z™" verify that
(kY N (l) = (m) where m = lem(k, )
(k) + (I) = (d) where d = ged(k, 1), and
(k)1 = (kl).
10.25 Theorem: (The First Isomorphism Theorem) Let ¢ : R — S be a homomorphism

of rings. Let K = Ker((¢). Then K is an ideal in R and we have R/K = ¢(R). Indeed
the map ® : R/K — ¢(R) given by ®(a + K) = ¢(a) is a ring isomorphism.

10.26 Theorem: (The Second Isomorphism Theorem) Let A and B be ideals in a ring
R. Then A is an ideal in A+ B, AN B is an ideal in B, and

(A+ B)/A= B/(AN B).

10.27 Theorem: (The Third Isomorphism Theorem) Let A and B be ideals in a ring R
with A C B C R. Then B/A is an ideal in R/A and

(R/A)/(B/A) = R/B.

necZt a €Ab EB}.
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10.28 Example: Let d,n € Z* with d‘n. Then the map ¢ : Z,, — Zg4 given by ¢(k) =
is a ring homomorphism with Ker(¢) = (d). By the First Isomorphism Theorem, we have

Zn/(d) =

10.29 Example: Define a map ¢ : Q[z] — Q[v2] by #(f) = f(v/2). Then ¢ is a
homomorphism because ¢(f +g) = (f + 9)(V2) = f(V2) + 9(v2) = ¢(f) + ¢(9) and
o(f9) = (f9)(V2) = F(V2)g(vV2) = ¢(f)od(g). Also note that ¢ is surjective because
#(a +bx) = a+ by/?2 for a,b € Q. Finally note that for f € Q[z] we have

f(z) € Ker(¢) <= f(V2)=0€R < f(V2)=f(-V2)=0€R
= (2* = 2)|f(z) = f(z) € (2 - 2),
where we used the fact that for f(z) =" ¢;2* € Q[z] we have
f(EV2) = (202k2k> + <202k+12k>\/§
so that f(v2) =0 <= f(—v2) =0 <= Y cen2F =0 = > cory12F. By the First
Isomorphism Theorem, we have Q[z]/(z* — 2) = Q[v2].

10.30 Example: Define ¢ : Rjz] — C by ¢(f) = f(i). Then ¢ is a homomorphism since

o(f+g) = (f+9)(@) = f(1)+9(i) = ¢(f)+¢(g) and ¢(fg) = (f9)(1) = f(i)g(i) = ¢(f)P(g)-
The map ¢ is surjective because ¢(a + bx) = a + bi for a,b € R. Also, for f(z) € Rz],

f(z) € Ker(¢) <= f(i) =0€C <= (2°+1)|f(z) ER[z] < f(z) € (z°+1) C R[z].
Thus by the First Isomorphism Theorem, we have R[z]/(z? + 1) = C.

10.31 Example: Define ¢ : Z[i] — Zs by ¢(a + bi) = a + 2b. The map ¢ is a ring
homomorphism because

¢((a+bi) + (c+di)) = ¢((a+c) + (b+d)i) = (a+c¢) +2(b+d)
= (a+2b) + (c+ 2d) = ¢(a + bi) + ¢(c + di) , and
¢((a+ bi)(c+ di)) = ¢((ac — bd) + (ad + be)i) = (ac — bd) + 2(ad + be)
= ac + 2ad + 2bc + 4bd = (a + 2b)(c + 2d) = ¢(a + bi)p(c + di).
Also note that ¢ is surjective because ¢(a + 0i) = a. Finally, note that
a+bicKer(p) <= a+20=0€Zs <= b=2a€Zs <= a+ibe (2—1),

indeed if b = 2a then we have a + bi = a + 2ai = (2 — i)(ai) € (2 — 7) and conversely, if
a+bi€(2—i),say a+bi=(2—1i)(x+yi) = (2x+y)+ (2y — x)i, then we have a = 2x +y
and b = 2y — x so that 2a = 2(2z +y) = 4o + 2y = 2y —x = b € Zs. By the First
Isomorphism Theorem, we have Z[i] /(2 — i) = Zs.



10.32 Definition: Let R be a commutative ring. Consider the evaluation homomorphism
¢ : R[z] — Func(R, R) given by ¢(f) = f, that is the map which sends the polynomial
f(z) to the function f(x). A polynomial f € R[z] is equal to zero when all of its coefficients
are equal to zero. A function f € Func(R, R) is equal to zero when we have f(a) = 0 for
all a € R. The kernel of the evaluation homomorphism is

Ker(¢) = {f € R[z]| f(a) =0 for all a € R}.

The image ¢(R[z]) C Func(R, R) is called the ring of polynomial functions on R. By
the First Isomorphism Theorem, it is isomorphic to the quotient ring R[z]/Ker(®).

10.33 Example: If R is an infinite field, then Ker(¢) = 0 since for f(z) € R[z], if f(a) =0
for all @ € R then f(z) has infinitely many roots, and so f(z) = 0 as a polynomial (a non-
zero polynomial of degree n > 0 over a field has at most n roots). In this case, ¢ is
injective so the polynomial ring R[x] is isomorphic to the ring of polynomial functions
¢(R[z]) C Func(R, R), and we often identify R[z] with ¢(R[z]).

If R is a finite field, the situation is quite different. In this case R[z] is infinite but
Func(R, R) is finite, so R[z] is certainly not isomorphic to a subring of Func(R, R). Let
us consider the case that R = Z, where p is prime. By Fermat’s Little Theorem, we know
that a? = a for all a € Z,, and so every a € Z” is a root of the polynomial p(z) = 2P — x.
Since there are exactly p elements in Z,, it follows that p(z) factors as

ple)=af —z=(2-0)(z-1)(z—-2)-(z—-(p—1)).
For a polynomial f(z) € Z,[x] we have
f(z) € Ker(¢p) < f(a)=0forallacZ, < (z—a)|f(z) for all a € Z,
= p(@)|f(x) &= f(z) € (p(x)) = (a¥ —z).
Furthermore, we claim that ¢ is surjective. For a € Z,, let g,(x) € Z,[x] be the polynomial

I (-1

1€Lp iF£a

“OZT

1€Lp,iF#a

Notice that for all k£ € Z,, we have

1if k =a,

akzda =
9a(k) = da.k {Oﬁk#w

Given any function f(z) € Func(Z,,Z,), for all k € Z, we have

Z f(a)ga(k) = Z f(a)éa,k: = f(k)

a€Zy a€Zp
It follows that f(z) = ). f(a)gs(x) € Func(Z,,Z,). Notice that ) f(a)g.(x) € Zp[z]
a€Ly a€Zy
and we have f(z) = ¢5< > f(a)ga(x)). Thus ¢ is surjective, as claimed. Thus the ring
a€lp

of polynomial functions ¢(Z,[z]) is equal to the ring of all functions Func(Z,, Z,,), and by
the First Isomorphism Theorem, we have Z,[z] /(2P — z) = ¢(Zp[z]) = Func(Zy, Z,) -



