
Chapter 11. Factorization in Commutative Rings

11.1 Definition: Let R be a ring. An ideal P in R is called prime when P 6= R and for
all ideals A and B in R, if AB ⊆ P then either A ⊆ P or B ⊆ P . An ideal M in R is
called maximal when M 6= R and there is no ideal A in R with M ⊂6=A⊂6=R.

11.2 Example: As an exercise, use the above definition to show that the maximal ideals
in Z are the ideals of the form 〈p〉 with p prime, and the prime ideals in Z are the ideals
of the form 〈p〉 with p = 0 or p prime.

11.3 Theorem: Let R be a commutative ring with 1. Let P be an ideal in R with P 6= R.
Then P is prime if and only if P has the property that for all a, b ∈ R, if ab ∈ P then
either a ∈ P or b ∈ P .

Proof: Since R is commutative with 1, we have 〈a〉 =
{
ar
∣∣r ∈ R} and 〈b〉 =

{
bs
∣∣s ∈ R}

and so

〈a〉〈b〉 =
{ n∑
i=1

aibi

∣∣∣ai ∈ 〈a〉, bi ∈ 〈b〉} =
{ n∑
i=1

(ari)(bsi)
∣∣∣ri, si ∈ R}

=
{ n∑
i=1

(ab)ti

∣∣∣ti ∈ R} = 〈ab〉.

Suppose that P is prime. Let a, b ∈ R with ab ∈ P . Then 〈a〉〈b〉 = 〈ab〉 ⊆ P and so, since
P is prime, either 〈a〉 ⊆ P or 〈b〉 ⊆ P , and hence either a ∈ P or b ∈ P .

Conversely, suppose that P has the property that for all a, b ∈ R, if ab ∈ P then either
a ∈ P or b ∈ P . Let A and B be ideals in R with AB ⊆ P . Suppose that A 6⊆ P . Choose
a ∈ A with a /∈ P . Let b ∈ B be arbitrary. Then ab ∈ AB ⊆ P and so, because of the
property held by P , either a ∈ P or b ∈ P . Since a /∈ P we must have b ∈ P . Thus B ⊆ P .

11.4 Theorem: Let R be a commutative ring with 1. Let P be an ideal in R. Then P is
prime if and only if R/P is an integral domain.

Proof: Suppose that P is prime. Since P 6= R we have 1 /∈ P (since 〈1〉 = R) and so
1 +P 6= 0 +P ∈ P/R. Since R is commutative, so is R/P . Finally, note that R/P has no
zero divisors because for a, b ∈ R we have

(a+ P )(b+ P ) = (0 + P ) =⇒ ab+ P = 0 + P =⇒ ab ∈ P =⇒ a ∈ P or b ∈ P
=⇒ a+ P = 0 + P or b+ P = 0 + P.

Conversely, suppose that R/P is an integral domain. Since 1 + P 6= 0 + P ∈ R/P , it
follows that 1 /∈ P and so P 6= R. Let a, b ∈ R with ab ∈ P . Then we have ab+P = 0+P ,
and so (a + P )(b + P ) = 0 + P . Since R/P has no zero divisors, this implies that either
a+ P = 0 + P or b+ P = 0 + P , and so either a ∈ P or b ∈ P .

11.5 Example: Let R be a commutative ring with 1. Show that every maximal ideal in
R is also prime.

Solution: Let M be a maximal ideal in R. Let a, b ∈ R with ab ∈M . Suppose that a /∈M .
Then we have M ⊂6=M + 〈a〉 and so, since M is maximal, we must have M + 〈a〉 = R. In

particular 1 ∈M + 〈a〉, so we have 1 = m+ ar for some r ∈ R. Thus

b = b · 1 = b(m+ ar) = bm+ ab r ∈M .

We remark that this result also follows from the following theorem.
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11.6 Theorem: Let R be a commutative ring with 1. Let M be an ideal in R. Then M
is maximal if and only if R/M is a field.

Proof: Suppose M is maximal. Since M 6= R we have 1 /∈M and so 1+M 6= 0+M ∈ R/M .
Since R is commutative, so is R/M . Let a+M be a nonzero element in R/M . We must
show that a + M is a unit. Since a + M 6= 0 + M we have a /∈ M . Since a /∈ M we have
M ⊂6=M+〈a〉. Since M is maximal, we must have M+〈a〉 = R. In particular, 1 ∈M+〈a〉,
say 1 = m + ar with r ∈ R. Then 1 + M = ar + M = (a + M)(r + M) and so r + M is
the inverse of a+M .

Conversely, suppose that R/M is a field. Since 1 + M 6= 0 + M in R/M , we have
1 /∈ M so M 6= R. Let A be an ideal with M ⊆ A ⊆ R. Suppose A 6= M . Choose a ∈ A
with a /∈M . Since a /∈M we have a+M 6= 0 +M in R/M . Since R/M is a field, a+M
has an inverse, say (a+M)(b+M) = 1+M . Then ab+M = 1+M so we have 1−ab ∈M .
Since M ⊆ A we have 1−ab ∈ A. Since a ∈ A we have ab ∈ A, so 1 ∈ A and hence A = R.

11.7 Example: Find all prime and maximal ideals in Z (that is redo example 10.2) using
Theorems 10.4 and 10.6.

11.8 Example: Since Q[x]
/
〈x2 − 2〉 ∼= Q[

√
2], which is a field, it follows that 〈x2 − 2〉

is maximal (and prime). In R[x], however, we have (x2 − 2) = (x −
√

2)(x +
√

2), and so
the ideal 〈x2 − 2〉 is not maximal because 〈x2 − 2〉⊂6= 〈x −

√
2〉⊂6=R[x] and it is not prime

because (x−
√

2)(x+
√

2) ∈ 〈x2 − 2〉 but (x−
√

2) /∈ 〈x2 − 2〉 and (x+
√

2) /∈ 〈x2 − 2〉.

11.9 Example: In Z[x], we have 〈x〉 =
{
f ∈ Z[x]

∣∣f(0) = 0
}

. The ideal 〈x〉 is prime
because for f, g ∈ Z[x], if fg ∈ 〈x〉 then f(0)g(0) = 0 and so either f(0) = 0 or g(0) = 0.
But the ideal 〈x〉 is not maximal since 〈x〉⊂6= 〈2, x〉 =

{
f ∈ Z[x]

∣∣f(0) is even
}⊂6=Z[x].

11.10 Definition: Let R be a commutative ring with 1. Let a, b ∈ R. We say that a
divides b (or that a is a divisor or factor of b, or that b is a multiple of a), and we
write a

∣∣b, when b = ar for some r ∈ R. We say that a and b are associates, and we write

a ∼ b, when a
∣∣b and b

∣∣a. Note that association is an equivalence relation on R.

11.11 Theorem: Let R be a commutative ring with 1. Let a, b ∈ R. Then

(1) a
∣∣b if and only if b ∈ 〈a〉 if and only if 〈b〉 ⊆ 〈a〉,

(2) a ∼ b if and only if 〈a〉 = 〈b〉 if and only if a and b have the same multiples and divisors,
(3) a ∼ 0 if and only if a = 0 if and only if 〈a〉 = {0},
(4) a ∼ 1 if and only if a is a unit if and only if 〈a〉 = R.
(5) if R is an integral domain then a ∼ b if and only if b = au for some unit u ∈ R.

Proof: We prove Part (5) and leave the other proofs as an exercise. Suppose that b = au
where u ∈ R is a unit. Since b = au we have a|b and since a = bu−1 we have b|a. Since
a|b and b|a we have a ∼ b (we did not need to assume that R is an integral domain for
this direction). Now suppose that R is an integral domain and that a ∼ b, say a = br and
b = as with r, s ∈ R. Then we have b = as = brs so that b(1 − rs) = 0. Since R is an
integral domain, either b = 0 or 1− rs = 0. If b = 0 then a = br = 0, so we have b = a · u
for any unit u (for example u = 1). If 1− rs = 0 then rs = 1 so that r and s are units, so
we have b = au where u = s (which is a unit).

11.12 Example: In the ring Z, we have k ∼ ` ⇐⇒ k = ±`. Verify that in Z12 the
association classes are {0}, {1, 5, 7, 11}, {2, 10}, {3, 9}, {4, 8}, {6}.
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11.13 Definition: Let R be a commutative ring with 1. Let a ∈ R be a non-zero non-
unit. We say that a is reducible when a = bc for some non-units b, c ∈ R, and otherwise
we say that a is irreducible. We say that a is prime when for all b, c ∈ R, if a

∣∣bc then

either a
∣∣b or a

∣∣c.
11.14 Theorem: Let R be a commutative ring with 1. Let a, b ∈ R with a ∼ b. Then

(1) a = 0 if and only if b = 0,
(2) a is a unit if and only if b is a unit,
(3) a is reducible if and only if b is reducible,
(4) a is irreducible if and only if b is irreducible,
(5) a is prime if and only if b is prime.

Proof: The proof is left as an exercise.

11.15 Example: In the ring Z, for k ∈ Z, k is irreducible if and only if k is prime if and
only if k = ±p for some (positive) prime number p.

11.16 Example: As an exercise, verify that in the ring Z12, the irreducible elements are
2 and 10 and the prime elements are 2, 3, 9 and 10.

11.17 Example: Use the method of the Sieve of Eratosthenes to find several irreducible
elements in Z[

√
3 i] and also some irreducible elements which are not prime.

11.18 Theorem: Let R be a commutative ring with 1. Let a ∈ R. Then

(1) If a is irreducible then the divisors of a are the units in R and the associates of a in R.
(2) a is prime if and only if 〈a〉 is a non-zero prime ideal.

Proof: The proof is left as an exercise.

11.19 Theorem: Let R be an integral domain and let a ∈ R. Then

(1) if a is prime then a is irreducible,
(2) a is irreducible if and only if 〈a〉 is maximal amongst non-zero proper principal ideals,
(3) if R is a PID and a is irreducible, then a is prime.

Proof: To Prove Part (1), suppose that a is prime. Suppose that a = bc with b, c ∈ R.
Since a = bc we have a

∣∣bc and hence, since a is prime, either a|b or a|c. Suppose that a|b,
say b = ar. Then a = bc = arc so that a(1 − rc) = 0. Since R is an integral domain and
a 6= 0 it follows that rc = 1 so that c is a unit. A similar argument shows that if a|c then
b is a unit, and so a is irreducible, as required.

To prove Part (2), suppose that a is irreducible. Since a 6= 0 we have 〈a〉 6= 0 and
since a is not a unit we have 〈a〉 6= R. Let b ∈ R and suppose that 〈a〉 ⊆ 〈b〉 ⊆ R. Since
〈a〉 ⊆ 〈b〉 we have a ∈ 〈b〉, say a = bc with c ∈ R. Since a is irreducible, either b is a unit,
in which case 〈b〉 = R, or c is a unit in which case b ∼ a so that 〈b〉 = 〈a〉.

Suppose, conversely, that 〈a〉 is maximal amongst nonzero proper principal ideals in
R. Since 〈a〉 6= {0} we have a 6= 0 and since 〈a〉 6= R it follows that a is not a unit.
Suppose that a = bc where b, c ∈ R. Since a = bc we have a ∈ 〈b〉 so that 〈a〉 ⊆ 〈b〉. By
the maximality of 〈a〉, either 〈b〉 = 〈a〉 or 〈b〉 = R. If 〈b〉 = R then b is a unit. Suppose
that 〈b〉 = 〈a〉, say b = ar with r ∈ R. Then a = bc = arc so that a(1 − rc) = 0. Since
a(1− rc) = 0 and a 6= 0 and R is an integral domain, it follows that rc = 1 so that c is a
unit. This completes the proof of Part (2).

Finally note that if a is irreducible and R is a PID then, by Part (2), 〈a〉 is a maximal
ideal, hence 〈a〉 is a prime ideal, hence a is prime. This proves Part (3).
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11.20 Definition: A Euclidean domain (or ED) is an integral domain R together with
a function N : R \ {0} → N, called a norm, with the property that for all a, b ∈ R with
a 6= 0 there exist q, r ∈ R such that b = qa+ r and either r = 0 or N(r) < N(a).

11.21 Definition: A principal ideal domain (or PID) is an integral domain R such
that every ideal in R is principal.

11.22 Definition: A unique factorization domain (or UFD) is an integral domain R
with the property that for every nonzero non-unit a ∈ R we have

(1) a = a1a2 · · · al for some l ∈ Z+ and some irreducible elements ai ∈ R, and
(2) if a = a1a2 · · · al = b1b2 · · · bm where l,m ∈ Z+ and each ai and bj is irreducible, then
m = l and for some permutation σ ∈ Sm we have ai ∼ bσ(i) for all i.

11.23 Example: The ring Z is a Euclidean domain with norm given by N(k) = |k|.

11.24 Example: Every field F is a Euclidean domain, using any function N : F \{0} → N
as a norm. Indeed, given a, b ∈ F with a 6= 0 we can choose q = b

a and r = 0 to get
b = aq + r.

11.25 Example: If F is a field then F [x] is a Euclidean domain with norm N(f) = deg(f).

11.26 Example: Show that in the ring Z[
√

3 i], the elements 2 and 1±
√

3 i are irreducible
and 2 6∼ 1 ±

√
3 i. It follows that Z[

√
3 i] not a unique factorization domain because

4 = 2 · 2 = (1 +
√

3 i)(1−
√

3 i).

11.27 Theorem: Every Euclidean domain is a principal ideal domain.

Proof: Let R be a Euclidean domain with norm N . Let A be an ideal in R. If A = {0} then
A is principal with A = 〈0〉. Suppose that A 6= {0}. Choose a nonzero element 0 6= a ∈ A
of smallest possible norm. We claim that A = 〈a〉. Since a ∈ A we have 〈a〉 ⊆ A. Let
b ∈ A be arbitrary. Choose q, r ∈ R such that b = qa+ r and either r = 0 or N(r) < N(a).
Note that r = b− qa ∈ A so we must have r = 0 by the choice of a. Thus b = qa ∈ 〈a〉.

11.28 Definition: A ring R is called Noetherian when it satisfies the following condition,
which is called the ascending chain condition: for every ascending chain of ideals
A1 ⊆ A2,⊆ A3 ⊆ · · · in R, there exists n ∈ Z+ such that Ak = An for all k ≥ n.

11.29 Theorem: Every principal ideal domain is Noetherian.

Proof: Let R be a principal ideal domain. Let a1, a2, a3, · · · ∈ R with

〈a1〉 ⊆ 〈a2〉 ⊆ 〈a3〉 ⊆ · · · .

Let A =
∞⋃
k=1

〈ak〉. Verify that A is an ideal. Choose a ∈ R so that A = 〈a〉. Since a ∈ A, we

can choose n ∈ Z+ so that a ∈ 〈an〉. For all k ≥ n, we have 〈ak〉 ⊆ A = 〈a〉 ⊆ 〈an〉 ⊆ 〈ak〉
and so 〈ak〉 = 〈an〉.
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11.30 Theorem: Every principal ideal domain is a unique factorization domain.

Proof: Let R be a principal ideal domain. Let a ∈ R be a non-zero non-unit. We claim
that a has an irreducible factor. If a is irreducible then we are done. Suppose that a
is reducible, say a = a1b1 where a1 and b1 are non-units. Note that 〈a〉⊂6= 〈a1〉. If a1 is

irreducible then we are done. Suppose that a1 is reducible, say a1 = a2b2 where a2 and
b2 are non-units. Then a = a1b1 = a2b2b1 and 〈a〉⊂6= 〈a1〉⊂6= 〈a2〉. If a2 is irreducible then

we are done, and otherwise we continue this procedure. Eventually, the procedure must
end giving us an irreducible factor an of a, otherwise we would obtain an infinite chain of
ideals 〈a〉⊂6= 〈a1〉⊂6= 〈a2〉⊂6= · · ·, contradicting the fact that R is Noetherian.

Next we claim that a = a1a2 · · · al for some l ∈ Z+ and some irreducible ai ∈ R. If
a is irreducible then we are done. Suppose that a is reducible. Let a1 be an irreducible
factor of a, and say a = a1b1. Note that b1 is not a unit since, if it was then we would have
a ∼ a1, but a is reducible and a1 is not. If b1 is irreducible then we are done. Suppose
b1 is reducible. Let a2 be an irreducible factor of b1 and say b1 = a2b2. As above, note
that b2 is not a unit. If b2 is irreducible then we are done, and otherwise we continue the
procedure. Eventually, the procedure must end giving us a = a1a2 · · · anbn with each ai
and nn irreducible, otherwise we would obtain an infinite chain 〈a〉⊂6= 〈b1〉⊂6= 〈b2〉⊂6= · · ·.

Finally, we claim that if a = a1a2 · · · al = b1b2 · · · bl with l,m ∈ Z+ and each ai
and bj irreducible, then m = l and for some permutation σ ∈ Sm we have ai ∼ bσ(i)
for all i. Suppose that a = a1a2 · · · al = b1b2 · · · bm where l,m ∈ Z+ and the ai and bj
are irreducible. Since a1

∣∣a1a2 · · · al, we have a1
∣∣b1b2 · · · bm. Since a1 is irreducible and

R is a principal ideal domain, it follows that a1 is prime by Part 3 of Theorem 10.19.
Since a1 is prime and a1

∣∣b1b2 · · · bm, it follows that a1
∣∣bk for some k. After permuting

the elements bi we can assume a1
∣∣b1. Since b1 is irreducible, its divisors are units and

associates and, since a1 is not a unit, we have a1 ∼ b1. Since a1 ∼ b1 we have b1 = a1u for
some unit u. Thus we have a1a2 · · · al = b1b2 · · · bm = a1ub2b3 · · · bm, and by cancellation,
a2a3 · · · al = ub2b3 · · · bm. A suitable induction argument gives l = m and ai ∼ bi for all i.

11.31 Example: Show that Z[i] is a ED.

11.32 Example: Since Z[
√

3 i] is not aUFD, it cannot be a PID. Find an ideal in Z[
√

3 i]
which is not principal.

11.33 Example: Show that Z
[
1+
√
19 i

2

]
is a PID, but not a ED (under any norm).
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