Chapter 12. Polynomial Rings

12.1 Note: Here are a few remarks about polynomials. Recall that $R[x]$ denotes the ring of polynomials with coefficients in the ring R, and R^{R} denotes the ring of all functions $f: R \rightarrow R$.
(1) A polynomial $f \in R[x]$ determines a function $f \in R^{R}$. Given $f(x)=\sum_{i=0}^{n} a_{i} x^{i} \in R[x]$ we obtain the function $f: R \rightarrow R$ given by $f(x)=\sum_{i=0}^{n} a_{i} x^{i}$.
(2) Although we do not usually distinguish notationally between the polynomial $f \in R[x]$ and its corresponding function $f \in R^{R}$, they are not always identical. If the ring R is not commutative then multiplication of polynomials does not agree with multiplication of functions. For $f, g \in R[x]$ given by $f(x)=a+b x$ and $g(x)=c+d x$, in the ring $R[x]$ we have $(f g)(x)=(a+b x)(c+d x)=(a c)+(a d+b c) x+(b d) x^{2}$, but in the ring R^{R} we have $(f g)(x)=(a+b x)(c+d x)=a c+a d x+b x c+b x d x$.
(3) Equality of polynomials may not agree with equality of functions. For $f, g \in R[x]$ given by $f(x)=\sum_{i=0}^{n} a_{i} x^{i}$ and $g(x)=\sum_{i=0}^{m} b_{i} x^{i}$ we have $f=g \in R[x]$ if and only if $a_{i}=b_{i}$ for all i (and if say $n<m$ then $b_{i}=a_{i}=0$ for $i>n$), but $f=g \in R^{R}$ if and only if $f(x)=g(x)$ for all $x \in R$. These two notions of equality do not always agree. For example if R is finite then the ring $R[x]$ is infinite but the ring R^{R} is finite. Indeed if $|R|=n$ then $R[x]$ is countably infinite but $\left|R^{R}\right|=n^{n}$. For a more specific example, if $f(x)=x^{p}-x$ then we have $f \neq 0 \in \mathbb{Z}_{p}[x]$ (because its coefficients are not equal to zero) but $f=0 \in \mathbb{Z}_{p} \mathbb{Z}_{p}$ because, by Fermat's Little Theorem, we have $f(x)=0$ for all $x \in \mathbb{Z}_{p}$.
(4) Recall that for $f(x)=\sum_{i=0}^{n} a_{i} x^{i}$ with each $a_{i} \in R$ and $a_{n} \neq 0$, the element $a_{n} \in R$ is called the leading coefficient of f, and the non-negative integer n is called the degree of $f(x)$, and we write $\operatorname{deg}(f)=n$. For convenience, we also define $\operatorname{deg}(0)=-1$. When R is an integral domain, it is easy to see that for $0 \neq f, g \in R[x]$ we have $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$. When R is not an integral domain, however, we only have $\operatorname{deg}(f g) \leq \operatorname{deg}(f)+\operatorname{deg}(g)$ because the product of the two leading coefficients can be equal to zero.
(5) When R is an integral domain, because we have $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$ for all $0 \neq f, g \in R[x]$, it is easy to see that the units in $R[x]$ are the constant polynomials $f(x)=c$ where c is a unit in R. In particular, when F is a field, the units in $F[x]$ are the elements $f \in F[x]$ with $\operatorname{deg}(f)=0$. In the ring $\mathbb{Z}_{4}[x]$ (which is not an integral domain) we have $(1+2 x)^{2}=1+4 x+4 x^{2}=1$, so $f(x)=(1+2 x)$ is a unit in $\mathbb{Z}_{4}[x]$.
12.2 Theorem: (Division Algorithm) Let R be a ring. Let $f, g \in R[x]$ and suppose that the leading coefficient of g is a unit in R. Then there exist unique polynomials $q, r \in R$ such that $f=q g+r$ and $\operatorname{deg}(r)<\operatorname{deg}(g)$.

Proof: First we prove existence. If $\operatorname{deg}(f)<\operatorname{deg}(g)$ then we can take $q=0$ and $r=f$. Suppose that $\operatorname{deg}\left(f \geq \operatorname{deg}(g)\right.$, Say $f(x)=\sum_{i=0}^{n} a_{i} x^{i}$ with $a_{i} \in R$ and $a_{n} \neq 0$ and $g(x)=\sum_{i=0}^{m} b_{i} x^{i}$ with $b_{i} \in R$ and b_{m} is a unit. Note that the polynomial $a_{n} b_{m}{ }^{-1} x^{n-m} g(x)$ has degree n and leading coefficient a_{n}. It follows that the polynomial $f(x)-a_{n} b_{m}{ }^{-1} x^{n-m} g(x)$ has degree smaller than n (because the leading coefficients cancel). We can suppose, inductively, that there exist polynomials $p, r \in R[x]$ such that $f(x)-a_{n} b_{m}{ }^{-1} x^{n-m} g(x)=p(x) g(x)+r(x)$ and $\operatorname{deg}(r)<\operatorname{deg}(g)$. Then we have $f=q g+r$ by taking $q(x)=a_{n} b_{m}{ }^{-1} x^{n-m}-p(x)$.

Next we prove uniqueness. Suppose that $f=q g+r=p g+s$ where $q, p, r, s \in R[x]$ with $\operatorname{deg}(r)<\operatorname{deg}(g)$ and $\operatorname{deg}(s)<\operatorname{deg}(g)$. Then we have $(q-p) g=s-r$ and so $\operatorname{deg}((q-p) g)=\operatorname{deg}(s-r)$. Since the leading coefficient of g is a unit (hence not a zero divisor), it follows that $\operatorname{deg}((q-p) g)=\operatorname{deg}(q-p)+\operatorname{deg}(g)$. If we had $q-p \neq 0$ then we would have $\operatorname{deg}((q-p) g) \geq \operatorname{deg}(g)$ but $\operatorname{deg}(s-r)<\operatorname{deg}(g)$, giving a contradiction. Thus we must have $q-p=0$. Since $q-p=0$ we have $s-r=(q-p) g=0$. Since $q-p=0$ and $s-r=0$ we have $q=p$ and $r=s$, proving uniqueness.
12.3 Corollary: (The Remainder Theorem) Let R be a ring, let $f \in R[x]$, and let $a \in R$. When we divide $f(x)$ by $(x-a)$ to obtain the quotient $q(x)$ and remainder $r(x)$, the remainder is the constant polynomial $r(x)=f(a)$.

Proof: Use the division algorithm to obtain $q, r \in R[x]$ such that $f=q(x)(x-a)+r(x)$ and $\operatorname{deg}(r)<\operatorname{deg}(x-a)$. Since $\operatorname{deg}(x-a)=1$ we have $\operatorname{deg}(r) \in\{-1,0\}$, and so r is a constant polynomial, say $r(x)=c$ with $c \in R$. Then we have $f(x)=q(x)(x-a)+c$. Put in $x=a$ to get $f(a)=q(a)(a-a)+c=q(a) \cdot 0+c=c$.
12.4 Corollary: (The Factor Theorem) Let R be a commutative ring, let $f \in R[x]$ and let $a \in R$. Then $f(a)=0$ if and only if $(x-a) \mid f(x)$.

Proof: Suppose that $f(a)=0$. Choose $q, r \in R[x]$ such that $f(x)=q(x)(x-a)+r(x)$ and $\operatorname{deg}(r)<\operatorname{deg}(x-a)$. Then $r(x)$ is the constant polynomial $r(x)=f(a)=0$ and so we have $f(x)=q(x)(x-a)$. Since $f(x)=(x-a) q(x)$ we have $(x-a) \mid f(x)$. Conversely, suppose that $(x-a) \mid f(a)$ and choose $p \in R[x]$ so that $f(x)=(x-a) p(x)$. Then $f(a)=$ $(a-a) p(a)=0 \cdot p(a)=0$.
12.5 Definition: Let R be a commutative ring, let $f \in R[x]$, and let $a \in R$. We say that a is a root of f when $f(a)=0$. When $f \neq 0$, we define the multiplicity of a as a root of f to be the largest $m=m(f, a) \in \mathbb{N}$ such that $(x-a)^{m} \mid f(x)$ (where we use the convention that $\left.(x-a)^{0}=1\right)$. Note that a is a root of f if and only if $m(f, a) \geq 1$.
12.6 Example: Let $f(x)=x^{3}-3 x-2 \in \mathbb{Q}[x]$. Since $f(x)=(x+1)^{2}(x-2) \in \mathbb{Q}[x]$, we have $m(f, 2)=1$ and $m(f,-1)=2$.
12.7 Example: Let p be an odd prime and let $f(x)=x^{p}-a \in \mathbb{Z}_{p}[x]$. Find $m(f, a)$.
12.8 Theorem: (The Roots Theorem) Let R be an integral domain, let $0 \neq f \in R[x]$ and let $n=\operatorname{deg}(f)$. Then
(1) f has at most n distinct roots in R, and
(2) if $a_{1}, a_{2}, \cdots, a_{\ell}$ are all of the distinct roots of f in R and $m_{i}=m\left(f, a_{i}\right)$ for $1 \leq i \leq \ell$, then $\left(x-a_{1}\right)^{m_{1}}\left(x-a_{2}\right)^{m_{2}} \cdots\left(x-a_{\ell}\right)^{m_{\ell}} \mid f(x)$ and so $\sum_{i=1}^{\ell} m(f, a) \leq n$.
Proof: We prove Part (1) and leave the proof of Part (2) as an exercise. If $\operatorname{deg}(f)=0$, then $f(x)=c$ for some $0 \neq c \in R$, and so $f(x)$ has no roots. Let f be a polynomial with $\operatorname{deg}(f)=n \geq 1$ and suppose, inductively, that every polynomial $g \in R[x]$ with $\operatorname{deg}(g)=n-1$ has at most $n-1$ distinct roots. Suppose that a is a root of f in R. By the Factor Theorem, $(x-a) \mid f(x)$ so we can choose a polynomial $g \in R[x]$ so that $f(x)=(x-a) g(x)$. Note that $\operatorname{deg}(g)=n-1$ so, by the induction hypothesis, g has at most $n-1$ distinct roots. Let $b \in R$ be any root of f with $b \neq a$. Since $f(x)=(x-a) g(x)$ and $f(b)=0$ we have $0=f(b)=(b-a) g(b)$. Since $(b-a) g(b)=0$ and $(b-a) \neq 0$ and R has no zero divisors, it follows that $g(b)=0$. Thus b must be one of the roots of g. Since every root b of f with $b \neq a$ is equal to one of the roots of g, and since g has at most $n-1$ distinct roots, it follows that f has at most n distinct roots, as required.
12.9 Example: When R is not an integral domain, a polynomial $f \in R[x]$ of degree n can have more than n roots. For example, in the ring $\mathbb{Z}_{6}[x]$ the polynomial $f(x)=x^{2}+x$ has roots $0,2,3$ and 5 .
12.10 Theorem: (The Rational Roots Theorem) Let $f(x)=\sum_{i=0}^{n} c_{i} x^{i} \in \mathbb{Z}[x]$ where $n \in \mathbb{Z}^{+}$ and $c_{n} \neq 0$. Let $r, s \in \mathbb{Z}$ with $s \neq 0$ and $\operatorname{gcd}(r, s)=1$. Then if $f\left(\frac{r}{s}\right)=0$ then $r \mid c_{0}$ and $s \mid c_{n}$. Proof: Suppose that $f\left(\frac{r}{s}\right)=0$, that is $c_{0}+c_{1} \frac{r}{s}+c_{2} \frac{r^{2}}{s^{2}}+\cdots+c_{n} \frac{r^{n}}{s^{n}}=0$. Multiply by s^{n} to get

$$
0=c_{0} s^{n}+c_{1} s^{n-1} r^{1}+\cdots+c_{n-1} s^{1} r^{n-1}+c_{n} r^{n} .
$$

Thus we have

$$
\begin{aligned}
& c_{0} s^{n}=-r\left(c_{1} s^{n-1}+\cdots+c_{n-1} s^{1} r^{n-2}+c_{n} r^{n-1}\right) \text { and } \\
& c_{n} r^{n}=-s\left(c_{0} s^{n-1}+c_{1} s^{n-2} r^{1}+\cdots+c_{n-1} r^{n-1}\right)
\end{aligned}
$$

and it follows that $r \mid c_{0} s^{n}$ and that $s \mid c_{n} r^{n}$. Since $\operatorname{gcd}(r, s)=1$ we also have $\operatorname{gcd}\left(r, s^{n}\right)=1$, and since $r \mid c_{0} s^{n}$ it follows that $r \mid c_{0}$. Since $\operatorname{gcd}(s, r)=1$ we also have $\operatorname{gcd}\left(s, r^{n}\right)=1$, and since $s \mid c_{n} r^{n}$ it follows that $s \mid c_{n}$.
12.11 Example: Show that $\sqrt{1+\sqrt{2}} \notin \mathbb{Q}$.
12.12 Note: Here are a few remarks about irreducible polynomials.
(1) When F is a field, we know that $F[x]$ is a unique factorization domain. For $f \in F[x]$ we know that $f=0$ if and only if $\operatorname{deg}(f)=-1$, and f is a unit if and only if $\operatorname{deg}(f)=0$, and for $0 \neq f, g \in F[x]$ we know that $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$. It follows that for $f \in F[x]$, if $\operatorname{deg}(f)=1$ then f is irreducible. It also follows that for $f \in F[x]$, if $\operatorname{deg}(f)=2$ or 3 then f is reducible in $F[x]$ if and only if f has a f has a root in F.
(2) For $f \in \mathbb{C}[x]$, we know (from the Fundamental Theorem of Algebra) that f is irreducible if and only if $\operatorname{deg}(f)=1$. For $f \in \mathbb{R}[x]$, we know that f is irreducible polynomial if and only if either $\operatorname{deg}(f)=1$ or $f(x)=a x^{2}+b x+c$ for some $a, b, c \in \mathbb{R}$ with $a \neq 0$ and $b^{2}-4 a c<0$.
(3) When p is a fairly small prime number and n is a fairly small positive integer, it is easy to list all reducible and irreducible polynomials $f \in \mathbb{Z}_{p}[x]$ with $\operatorname{deg}(f) \leq n$. Note that it suffices to list monic polynomials (since for $f \in \mathbb{Z}_{p}[x]$ and $0 \neq c \in \mathbb{Z}_{p}[x]$ we have $f \sim c f$). We start by listing all monic polynomials of degree 1 , that is all polynomials of the form $f(x)=x+a$ with $a \in \mathbb{Z}_{p}$, and noting that they are all irreducible. Having constructed all reducible and irreducible monic polynomials of all degrees less than n, we can construct all of the reducible monic polynomials of degree n by forming products of the reducible monic polynomials of smaller degree in all possible ways, and then all the remaining monic polynomials of degree n must be irreducible.
12.13 Example: Note that $f(x)=x^{3}-3 x+1$ is irreducible in $\mathbb{Q}[x]$ because it is cubic and has no roots in \mathbb{Q} by the Rational Roots Theorem. The same polynomial is reducible in $\mathbb{R}[x]$ and in $\mathbb{C}[x]$ because it is cubic.
12.14 Example: List all monic reducible and irreducible polynomials in $\mathbb{Z}_{2}[x]$ of degree less than 4 , then determine the number of irreducible polynomials in $\mathbb{Z}_{2}[x]$ of degree 4 .
12.15 Definition: Let R be an integral domain. Define a binary relation on the set $R \times(R \backslash\{0\})$ by stipulating that

$$
(a, b) \sim(b, d) \Longleftrightarrow a d=b c
$$

It is easy to check that this is an equivalence relation. Let

$$
F=Q(R)=(R \times(R \backslash\{0\})) / \sim=\{[(a, b)] \mid a, b \in R, b \neq 0\}
$$

Define addition an multiplication operations on F by

$$
\begin{aligned}
{[(a, b)]+[(c, d)] } & =[(a d+b c, b d)] \\
{[(a, b)][(c, d)] } & =[(a c, b d)] .
\end{aligned}
$$

It is not hard to verify that these operations are well-defined (noting that when $b \neq 0$ and $d \neq 0$ we also have $b d \neq 0$ because R is an integral domain) and that they make F into a field with zero element $[(0,1)]$ and identity element $[(1,1)]$. This field $F=Q(R)$ is called the quotient field of the integral domain R. For $a, b \in R$ with $b \neq 0$ we use the following notation:

$$
\frac{a}{b}=[(a, b)], a=[(a, 1)], \frac{1}{b}=[(1, b)] .
$$

The use of the notation $a=[(a, 1)]$, for $a \in R$, allows to consider R as a subring of its quotient field F.
12.16 Example: The quotient field of \mathbb{Z} is equal to \mathbb{Q}, and the quotient field of $\mathbb{Z}[\sqrt{2}]$ is equal to $\mathbb{Q}[\sqrt{2}]$.
12.17 Example: When R is an integral domain, the quotient field of the polynomial ring $R[x]$ is the field of rational functions $R(x)=\left\{\left.\frac{f}{g} \right\rvert\, f, g \in R[x], g \neq 0\right\}$. More generally, the quotient field of $R\left[x_{1}, \cdots, x_{n}\right]$ is the field of rational functions $R\left(x_{1}, \cdots, x_{n}\right)$.
12.18 Definition: Let R be a unique factorization domain. For a polynomial $f \in R[x]$, the content of f, written as $c(f)$, is a greatest common divisor of the coefficients of f. Note that the greatest common divisor is unique up to association and so $c(f)$ is unique up to association, that is up to multiplication by a unit. We often abuse notation by writing $c(f)=a$ when in fact $c(f) \sim a$. We say that f is primitive when $c(f)=1$ (that is when $c(f)$ is a unit). Note that $f=0$ if and only if $c(f)=0$. Note that when $f \in R[x]$ and $a \in R$ we have $c(a f)=a c(f)$. In particular, we have $f=c(f) g$ for a primitive polynomial $g \in R[x]$.
12.19 Example: For $f(x)=6 x+30 \in \mathbb{Z}[x]$ we have $c(f)=6$. Since $\operatorname{deg}(f)=1$, it follows that f is irreducible in $\mathbb{Q}[x]$. But since $c(f)=6$, it follows that f is reducible in $\mathbb{Z}[x]$, indeed in $\mathbb{Z}[x]$ we have $f(x)=2 \cdot 3 \cdot(x+5)$.
12.20 Theorem: (Gauss' Lemma) Let R be a UFD with quotient field F.
(1) For all $f, g \in R[x]$ we have $c(f g)=c(f) c(g)$.
(2) Let $0 \neq f \in R[x]$ and let $g(x)=\frac{1}{c(f)} f(x) \in R[x]$. Then f is irreducible in $F[x]$ if and only if g is irreducible in $R[x]$.
(3) Let $0 \neq f \in R[x]$. Then f is reducible in $F[x]$ if and only if f can be factored as a product of two nonconstant polynomials in $R[x]$.

Proof: Let $f, g \in R[x]$. If $f=0$ or $g=0$ then we have $c(f g)=0=c(f) c(g)$. Suppose that $f \neq 0$ and $g \neq 0$. Let $h(x)=\frac{1}{c(f)} f(x)$ and $k(x)=\frac{1}{c(g)} g(x)$. Then we have $h, k \in R[x]$ with $c(h)=c(k)=1$ and $f g=c(f) c(g) h k$ so that $c(f g)=c(f) c(g) c(h k)$. Thus to prove Part (1) it suffices to show that $c(h k)=1$. Let $h(x)=\sum_{i=0}^{n} a_{i} x^{i}$ and $k(x)=\sum_{i=0}^{m} b_{i} x^{i}$ with $a_{n} \neq 0$ and $b_{m} \neq 0$. Suppose, for a contradiction, that $c(h k) \neq 1$. Let p be a prime factor of $c(h k)$. Then p divides all of the coefficients of $(h k)(x)=\left(a_{0} b_{0}\right)+\left(a_{1} b_{0}+a_{0} b_{1}\right) x+\cdots+\left(a_{n} b_{m}\right) x^{n+m}$. Since $c(h)=1, p$ does not divide all the coefficients of $h(x)$, so we can choose an index $r \geq 0$ so that $p \mid a_{i}$ for all $i<r$ and $p \nmid a_{r}$. Since $c(k)=1$ we can choose an index $s \geq 0$ so that $p \mid b_{i}$ for all $i<s$ and $p \nmid b_{s}$. Since p divides every coefficient of $(h k)(x)$, it follows that in particular p divides the coefficient

$$
c_{r+s}=a_{0} b_{r+s}+a_{1} b_{r+s-1}+\cdots+a_{r} b_{s}+\cdots+a_{r+s-1} b_{1}+a_{r+s}
$$

Since $p \mid c_{r+s}$ and $p \mid a_{i}$ for all $i<r$ and $p \mid b_{i}$ for all $i<s$ it follows that $p \mid a_{r} b_{s}$. Since p is prime and $p \mid a_{r} b_{s}$ it follows that $p \mid a_{r}$ or $p \mid b_{s}$. But r and s were chosen so that $p \nmid a_{r}$ and $p \nmid b_{s}$ so we have obtained the desired contradiction. This proves Part (1).

To prove Parts (2) and (3), let $0 \neq f(x) \in R[x]$ and let $g(x)=\frac{1}{c(f)} f(x)$, and note that $g \in R[x]$ with $c(g)=1$. Suppose that g is reducible in $R[x]$, say $g(x)=h(x) k(x)$ where $h(x)$ and $k(x)$ are non-units in $R[x]$. Since $c(h) c(k)=c(h k)=c(g)=1$ it follows that $c(h)=c(k)=1$. Note that $h(x)$ cannot be a constant polynomial since if we had $h(x)=r$ with $r \in R$, then we would have $c(h)=r$ and also $c(h)=1$ so that r is a unit in R, but then h would be a unit in $R[x]$. Similarly $k(x)$ cannot be a constant polynomial. Since $h(x)$ and
$k(x)$ are nonconstant polynomials in $R[x]$, they are also nonconstant polynomials in $F[x]$. Since $f(x)=c(f) g(x)=c(f) h(x) k(x)$ and since $c(f) h(x)$ and $k(x)$ are both nonconstant polynomials (hence nonunits) in $F[x]$, it follows that $f(x)$ is reducible in $F[x]$.

Conversely, suppose that $f(x)$ is reducible in $F[x]$, say $f(x)=h(x) k(x)$ where h and k are nonzero, nonunits in $F[x]$. Since h and k are nonzero nonunits in $F[x]$, they are nonconstant polynomials. Let a be a least common multiple of the denominators of the coefficients of $h(x)$ and let b be a least common multiple of denominators of the coefficients of $k(x)$, and note that $a h(x) \in R[x]$ and $b k(x) \in R[x]$. Let $p(x)=\frac{1}{c(a h)} a h(x)$ and let $q(x)=\frac{1}{c(b k)} b k(x)$ and note that $p(x), q(x) \in R[x]$ with $c(p)=c(q)=1$ and that $\operatorname{deg}(p)=\operatorname{deg}(h)$ and $\operatorname{deg}(q)=\operatorname{deg}(k)$. Since $f(x)=a h(x) b k(x)=c(a h) c(b k) p(x) q(x)$ we have $c(f)=c(a h) c(b k) c(p q)=c(a h) c(b k)$ so $g(x)=\frac{1}{c(f)} f(x)=\frac{1}{c(a h) c(b k)} a h(x) b k(x)=p(x) q(x)$. Since $g(x)=p(x) q(x)$ where $p(x)$ and $q(x)$ are nonconstant polynomials in $R[x]$, we see that $g(x)$ is reducible in $R[x]$.
12.21 Theorem: (Modular Reduction) Let $f(x)=\sum_{i=0}^{n} c_{i} x^{i}$ with $n \in \mathbb{Z}^{+}, c_{i} \in \mathbb{Z}$ and $c_{n} \neq 0$. Let p be a prime number with $p \nmid c_{n}$. Let $\bar{f}(x)=\sum_{i=0}^{n} \overline{c_{i}} x^{i} \in \mathbb{Z}_{p}[x]$ where $\overline{c_{i}}=\left[c_{i}\right] \in \mathbb{Z}_{p}$. If \bar{f} is irreducible in $\mathbb{Z}_{p}[x]$ then f is irreducible in $\mathbb{Q}[x]$.

Proof: Suppose that $f(x)$ is reducible in $\mathbb{Q}[x]$. By Gauss' Lemma, we can choose two nonconstant polynomials $g, h \in \mathbb{Z}[x]$ such that $f=g h \in \mathbb{Z}[x]$. Write $g(x)=\sum_{i=0}^{k} a_{i} x^{k} \in \mathbb{Z}[x]$ and $h(x)=\sum_{i=0}^{\ell} b_{i} x^{i} \in \mathbb{Z}[x]$ with $a_{k} \neq 0, b_{\ell} \neq 0$ and $k, \ell \geq 1$. Let $\bar{g}=\sum_{i=0}^{k} \bar{a}_{i} x^{i} \in \mathbb{Z}_{p}[x]$ and $\bar{h}(x)=\sum_{i=0}^{\ell} \bar{b}_{i} x^{i} \in \mathbb{Z}_{p}[x]$, and note that $\bar{f}=\bar{g} \bar{h} \in \mathbb{Z}_{p}[x]$. Since $c_{n}=a_{k} b_{\ell}$ and $p \nmid c_{n}$ it follows that $p \nmid a_{k}$ and $p \nmid b_{\ell}$ in \mathbb{Z} so $\bar{a}_{k} \neq 0$ and $\bar{b}_{\ell} \neq 0$ in \mathbb{Z}_{p}. Thus $\operatorname{deg}(\bar{g})=\operatorname{deg}(g)=k$ and $\operatorname{deg}(\bar{h})=\operatorname{deg}(h)=\ell$ so that \bar{g} and \bar{h} are nonconstant polynomials in $\mathbb{Z}_{p}[x]$, and so the polynomial $\bar{f}=\bar{g} \bar{h}$ is reducible in $\mathbb{Z}_{p}[x]$.
12.22 Example: Prove that $f(x)=x^{5}+2 x+4$ is irreducible in $\mathbb{Q}[x]$ by working in $\mathbb{Z}_{3}[x]$.
12.23 Theorem: (Eisenstein's Criterion) Let $f(x)=\sum_{i=0}^{n} c_{i} x^{i}$ with $n \in \mathbb{Z}^{+}, c_{i} \in \mathbb{Z}$ and $c_{n} \neq 0$. Let p be a prime number such that $p_{i} \mid c_{i}$ for $0 \leq i<n$ and $p \nmid c_{n}$ and $p^{2} \nmid c_{0}$. Then f is irreducible in $\mathbb{Q}[x]$.

Proof: Suppose, for a contradiction, that $f(x)$ is reducible in $\mathbb{Q}[x]$. By Gauss' Lemma, we can choose two nonconstant polynomials $g, h \in \mathbb{Z}[x]$ such that $f=g h \in \mathbb{Z}[x]$. Write $g(x)=\sum_{i=0}^{k} a_{i} x^{k} \in \mathbb{Z}[x]$ and $h(x)=\sum_{i=0}^{\ell} b_{i} x^{i} \in \mathbb{Z}[x]$ with $k, \ell \geq 1$ and $a_{k} \neq 0, b_{\ell} \neq 0$. Since $c_{0}=a_{0} b_{0}$ and $p \mid c_{0}$ but $p^{2} \nmid c_{0}$, it follows that p divides exactly one of the two numbers a_{0} and b_{0}. Suppose that p divides a_{0} but not b_{0} (the case that p divides b_{0} but not a_{0} is similar). Since $p \mid c_{1}$, that is $p \mid\left(a_{0} b_{1}+a_{1} b_{0}\right)$, and $p \mid a_{0}$ it follows that $p \mid a_{1} b_{0}$, and since $p \nmid b_{0}$ it follows that $p \mid a_{1}$. Since $p \mid c_{2}$, that is $p \mid\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right)$ and $p \mid a_{0}$ and $p \mid a_{1}$, it follows that $p \mid a_{2} b_{0}$, and since $p \nmid b_{0}$ it then follows that $p \mid a_{2}$. Repeating this argument we find, inductively, that $p \mid a_{i}$ for all $i \geq 0$, and in particular we have $p \mid a_{k}$. Since $c_{n}=a_{k} b_{\ell}$ and $p \mid a_{k}$ it follows that $p \mid c_{n}$, giving the desired contradiction.
12.24 Example: Note that $f(x)=5 x^{5}+3 x^{4}-18 x^{3}+12 x+6$ is irreducible in $\mathbb{Q}[x]$ by Eisenstein's Criterion using $p=3$.
12.25 Example: Let p be a prime number. Show that $f(x)=1+x+x^{2}+\cdots+x^{p-1}$ is irreducible in $\mathbb{Q}[x]$,
12.26 Theorem: If R is a UFD then so is $R[x]$.

Proof: Suppose that R is a UFD and let F be the quotient field of R. Note that the units in $R[x]$ are the constant polynomials which are also units in R. Let $f \in R[x]$ be a non-zero non-unit. If f is a constant polynomial, then the factorization of f in $R[x]$ is the same as the factorization of f in R. Suppose that $\operatorname{deg}(f) \geq 1$. Let $g=\frac{1}{c(f)} f$ so that $g \in R[x]$ with $c(g)=1$. The factorization of $c(f)$ in $R[x]$ is the same as the factorization in R, so it suffices to show that the polynomial g factors uniquely into irreducibles in $R[x]$. Since $F[x]$ is a ED, hence a UFD, we know that g factors into irreducibles in $F[x]$. By Gauss' Lemma, we can multiply each of the irreducible factors in $F[x]$ by an element of F to write g as a product of irreducible factors in $R[x]$, say $g=f_{1} f_{2} \cdots f_{\ell}$ where each f_{j} is irreducible in $R[x]$. Since $c(g)=1$ we must have $c\left(f_{j}\right)=1$ for each index j.

Suppose that $g=f_{1} f_{2} \cdots f_{\ell}=g_{1} g_{2} \cdots g_{m}$ where f_{j} and g_{k} are irreducible in $R[x]$ with $c\left(f_{j}\right)=c\left(g_{k}\right)=1$ for all j, k. Note that each f_{j} must be non-constant since if we had $f_{j}(x)=r \in R$ then we would have $c\left(f_{j}\right)=r$ and $c\left(f_{j}\right)=1$ so that r is a unit in R, but then f_{j} would be a unit in $R[x]$. Similarly each g_{k} is non-constant. It follows that the polynomials f_{j} and g_{k} are also irreducible in $F[x]$. By unique factorization in $F[x]$, we must have $m=\ell$ and, after possibly reordering the polynomials g_{k}, we have $f_{j} \sim g_{j}$ in $F[x]$ for all indices j. Since $f_{j} \sim g_{j}$ in $F[x]$, we have $g_{j}=u f_{j}$ for some $0 \neq u \in F$. Say $u=\frac{a}{b}$ where $a, b \in R$ with $\operatorname{gcd}(a, b)=1$. Then we have $a f_{j}=b g_{j}$ in $R[x]$. Since $c\left(f_{j}\right)=c\left(g_{j}\right)=1$ we have $c\left(a f_{j}\right)=a$ and $c\left(b g_{j}\right)=b$ and it follows that $a \sim b$ in R, hence $a=b v$ for some unit $v \in R$. Thus we have $g_{j}=u f_{j}=\frac{a}{b} f_{j}=v f_{j}$ and so $f_{j} \sim g_{j}$ in $R[x]$.
12.27 Corollary: If R is a UFD then so is the polynomial ring $R\left[x_{1}, x_{2}, \cdots, x_{n}\right]$.

