Chapter 1. Definition and Examples of Groups and Rings

1.1 Definition: A binary operation on a set S is a function $*: S^2 \to S$, where

$$S^{2} = S \times S = \{(a, b) | a, b \in S\}.$$

We usually write a * b instead of *(a, b).

1.2 Definition: A ring (with identity) is a set R together with two binary operations + and \cdot (called **addition** and **multiplication**), where for $a, b \in R$ we often write $a \cdot b$ as ab, and two distinct elements $0, 1 \in R$ (called the **zero** and the **identity** elements), such that

(1) + is associative: (a + b) + c = a + (b + c) for all $a, b, c \in R$,

(2) + is commutative: a + b = b + a for all $a, b \in R$,

(3) 0 is an additive identity: 0 + a = a for all $a \in R$,

(4) every element has an additive inverse: for every $a \in R$ there exists $b \in R$ with a+b=0,

(5) \cdot is associative: (ab)c = a(bc) for all $a, b, c \in R$,

(6) 1 is a multiplicative identity: $1 \cdot a = a$ for all $a \in R$, and

(7) \cdot is distributive over +: a(b+c) = ab + ac for all $a, b, c \in R$,

A ring R is called **commutative** when

(8) \cdot is commutative: ab = ba for all $a, b \in R$.

For $0 \neq a \in R$, we say that a is a **unit** (or that a is **invertible**) when there exists an element $b \in R$ such that ab = 1 = ba. A **field** is a commutative ring R such that (9) every non-zero element is a unit: for every $0 \neq a \in R$ there exists $b \in R$ with ab = 1.

1.3 Example: The set of **integers** \mathbb{Z} is a commutative ring, but it is not a field because it does not satisfy Property (9). The set of **positive integers** $\mathbb{Z}^+ = \{1, 2, 3, \cdots\}$ is not a ring because $0 \notin \mathbb{Z}^+$ and \mathbb{Z}^+ does not satisfy Properties (3) and (4). The set of **natural numbers** $\mathbb{N} = \{0, 1, 2, \cdots\}$ is not a ring because it does not satisfy Property (4). The set of **rational numbers** \mathbb{Q} , the set of **real numbers** \mathbb{R} and the set of **complex numbers** \mathbb{C} are all fields. For $2 \leq n \in \mathbb{Z}$, the set $\mathbb{Z}_n = \{0, 1, \cdots, n-1\}$ of **integers modulo** n is a commutative ring, and \mathbb{Z}_n is a field if and only if n is prime (in $\mathbb{Z}_1 = \{0\}$ we have 0 = 1, so \mathbb{Z}_1 is not a ring with identity).

1.4 Example: Given a ring R, the set R[x] of **polynomials** with coefficients in R is a ring (under the usual addition and multiplication of polynomials). If R is commutative then so is R[x].

1.5 Example: Given a ring R and a positive integer n, the set $M_n(R)$ of $n \times n$ matrices with entries in R is a ring (under matrix addition and matrix multiplication). When $n \ge 2$, the ring $M_n(R)$ is not commutative.

1.6 Example: Given rings R and S, the **product** $R \times S = \{(a, b) | a \in R, b \in S\}$ is a ring (under componentwise addition and multiplication). If R and S are both commutative then so is $R \times S$. More generally, given a positive integer n and given rings R_1, R_2, \dots, R_n , the **product** $\prod_{i=1}^n R_i = R_1 \times R_2 \times \dots \times R_n = \{(a_1, a_2, \dots, a_n) | a_i \in R_i\}$ is a ring (under componentwise addition and multiplication). Given a ring R and a positive integer n we write $R^n = \prod_{i=1}^n R = R \times R \times \dots \times R$.

1.7 Theorem: (Uniqueness of the Inverse) Let R be a ring. Let $a \in R$. Then

(1) the additive inverse of a is unique: if a + b = 0 = a + c then b = c,

(2) for $a \neq 0$, if a has an inverse then it is unique: if ab = 1 = ac then b = c.

Proof: To prove (1), suppose that a + b = 0 = a + c. Then

$$b = 0 + b = (a + c) + b = b + (a + c) = (b + a) + c = (a + b) + c = 0 + c = c$$

To prove (2), suppose that $a \neq 0$ and that ab = 1 = ac. Then

$$b = 1 \cdot b = (ac)b = b(ac) = (ba)c = (ab)c = 1 \cdot c = c$$
.

1.8 Definition: Let R be a ring and let $a, b \in R$. We write the (unique) additive inverse of a as -a, and we write b - a = b + (-a). If $a \neq 0$ has a multiplicative inverse, we write the (unique) multiplicative inverse of a as a^{-1} . When R is commutative we also write a^{-1} as $\frac{1}{a}$, and we write $\frac{b}{a} = b \cdot \frac{1}{a}$.

1.9 Theorem: (Cancellation) Let R be a ring. Then for all $a, b, c \in R$,

(1) if a + b = a + c then b = c,

(2) if a + b = a then b = 0, and

(3) if a + b = 0 then b = -a.

Let F be a field. Then for all $a, b, c \in F$ we have

(4) if ab = ac then either a = 0 or b = c.

(5) if ab = a then either a = 0 or b = 1,

(6) if ab = 1 then $b = a^{-1}$, and

(7) if ab = 0 then either a = 0 or b = 0.

Proof: To prove (1), suppose that a + b = a + c. Then we have

b = 0 + b = -a + a + b = -a + a + c = 0 + c = c.

Part (2) follows from part (1) since if a + b = a then a + b = a + 0, and part (3) follows from part (1) since if a + b = 0 then a + b = a + (-a). To prove part (4), suppose that ab = ac and $a \neq 0$. Then we have

$$b = 1 \cdot b = a^{-1}ab = a^{-1}ac = 1 \cdot c = c$$
.

Note that parts (5), (6) and (7) all follow from part (4).

1.10 Remark: In the above proof, we used associativity and commutativity implicitly. If we wished to be explicit then the proof of part (1) would be as follows. Suppose that a + b = a + c. Then we have

b = 0 + b = (a - a) + b = (-a + a) + b = -a + (a + b) = -a + (a + c) = (-a + a) + c = 0 + c = c.

In the future, we shall often use associativity and commutativity implicitly in our calculations.

1.11 Theorem: (Multiplication by 0 and -1) Let R be a ring and let $a \in R$. Then (1) $0 \cdot a = 0$, and (2) (-1)a = -a.

Proof: We have 0a = (0+0)a = 0a + 0a. Subtracting 0a from both sides (using part 1 of the Cancellation Theorem) gives 0 = 0a. Also, we have a + (-1)a = (1)a + (-1)a = (1 + (-1))a = 0a = 0, and subtracting a from both sides gives (-1)a = -a.

1.12 Definition: A group is a set G together with a binary operation $*: G^2 \to G$ and an element $e = e_G \in G$ such that

(1) * is associative: (a * b) * c = a * (b * c) for all $a, b, c \in G$.

(2) e is an identity element: a * e = e * a = a for all $a \in G$, and

(3) every $a \in G$ has an inverse: for all $a \in G$ there exists $b \in G$ such that a * b = b * a = e.

If, in addition, * is commutative, that is a * b = b * a for all $a, b \in G$, then we say that G is **abelian**.

1.13 Theorem: (Uniqueness of the Identity) Let G be a group under *. For all $u, v \in G$, if u * a = a for all $a \in G$ and a * v = a for all $a \in G$ then u = v.

Proof: Let $u, v \in G$. Suppose that u * a = a for all $a \in G$ and a * v = a for all $a \in G$. Since u * a = a for all $a \in G$ we have u * v = v. Since a * v = a for all $a \in G$ we have u * v = u. Thus u = u * v = v.

1.14 Theorem: (Uniqueness of the Inverse) Let G be a group under * with identity e, and let $a \in G$. Then for all $u, v \in G$, if u * a = e and a * v = e then u = v.

Proof: Let $u, v \in G$. Suppose that u * a = e and a * v = e. Then

$$u = u * e = u * (a * v) = (u * a) * v = e * v = v.$$

1.15 Notation: Let G be a group. If the operation in G is called *addition*, then we denote the operation by + and we assume that it is commutative, we denote the (unique) identity in the group by 0, and we denote the (unique) inverse of a given point $a \in G$ by -a. For $a, b \in G$, we write a-b = a+(-b). For $a \in G$ and $k \in \mathbb{Z}^+$ we write $ka = a+a+\cdots+a$ (with k terms in the sum), 0a = 0, and $(-k)a = k(-a) = -a - a - \cdots - a$. With this notation, for all $a, b \in G$ and all $k, l \in \mathbb{Z}$ we have (k + l)a = ka + la, (-k)a = -(ka) = k(-a), -(-a) = a and -(a + b) = -a - b = -b - a. This notation is called **additive notation**, and any group G in which the operation is called addition, and is written using additive notation, is called an **additive group**. Additive groups are always assumed to be abelian.

1.16 Notation: When the operation * of a group G is any operation other than addition (or when the operation is unspecified), we usually write a * b simply as ab, we usually denote the (unique) identity element by e, 1 or I, and we denote the (unique) inverse of $a \in G$ by a^{-1} . For $a \in G$ and $k \in \mathbb{Z}^+$ we write $a^k = aa \cdots a$ (with k terms in the product), $a^0 = e$, and $a^{-k} = (a^{-1})^k = a^{-1}a^{-1}\cdots a^{-1}$. With this notation, for all $a, b \in G$ and all $k, l \in \mathbb{Z}$ we have $a^{k+l} = a^k a^l$, $a^{-k} = (a^k)^{-1} = (a^{-1})^k$, $(a^{-1})^{-1} = a$ and $(ab)^{-1} = b^{-1}a^{-1}$. The above notation is called **multiplicative notation**, and any group G in which the operation is written using multiplicative notation is called a **multiplicative group**.

1.17 Note: From now on, we shall use multiplicative notation as our default notation, unless the operation is known to be addition.

1.18 Theorem: (Cancellation) Let G be a group with identity e. Let $a, b, c \in G$. Then

- (1) if ab = ac or if ba = ca then b = c. (2) if ab = e then $a^{-1} = b$ and $b^{-1} = a$.
- (3) if ab = a or if ba = a then b = e.

Proof: To prove (1) note that if ab = ac then multiplying both sides on the left by a^{-1} gives b = c; in greater detail, we have

$$b = eb = (a^{-1}a)b = a^{-1}(ab) = a^{-1}(ac) = (a^{-1}a)c = ec = c.$$

Similarly, if ba = ca then multiplying on the right by a^{-1} gives b = c. To prove part (2) note that if ab = e then multiplying both sides on the left by a^{-1} gives $b = a^{-1}$, and multiplying on the right by b^{-1} gives $a = b^{-1}$. To prove part (3), note that if ab = a then multiplying on the left by a^{-1} gives b = e, and if ba = a then multiplying on the right by a^{-1} gives b = e, and if ba = a then multiplying on the right by a^{-1} gives b = e.

1.19 Example: If R is a ring under the operations + and \cdot , then R is also an abelian group under + with identity 0. This group is called the **additive group** of R. For example, \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{H} and \mathbb{Z}_n are abelian groups, under addition, with identity 0.

1.20 Example: If R is a ring, with identity 1, under \times , then the set of units

 $R^* = \{a \in R \mid a \text{ has an inverse under } \times \}$

is a group under \times with identity 1. This group is called the **group of units** of *R*. For example, $\mathbb{Z}^* = \{\pm 1\}, \mathbb{Q}^* = \mathbb{Q} \setminus \{0\}, \mathbb{R}^* = \mathbb{R} \setminus \{0\}, \mathbb{C}^* = \mathbb{C} \setminus \{0\}, \mathbb{H}^* = \mathbb{H} \setminus \{0\}$ and

 $U_n = \mathbb{Z}_n^* = \left\{ a \in \mathbb{Z}_n \,\middle| \, \gcd(a, n) = 1 \right\}$

are abelian groups, under multiplication, with identity 1.

1.21 Example: If S is a set and G is a group, then the set of functions

$$\operatorname{Func}(S,G) = G^S = \left\{ f: S \to G \right\}$$

is a group under the operation given by (fg)(x) = f(x)g(x) for all $x \in S$.

1.22 Example: For a set S, the set of permutations

$$\operatorname{Perm}(S) = \left\{ f : S \to S \middle| f \text{ is bijective} \right\}$$

is a group under composition with identity $I: S \to S$ given by I(x) = x for all $x \in S$. This group is non-abelian when $|S| \ge 3$. For $n \in \mathbb{Z}^+$, the nth symmetric group is the group

$$S_n = \operatorname{Perm}(\{1, 2, \cdots, n\}).$$

1.23 Example: When R is a commutative ring with identity, the set $M_n(R)$ of $n \times n$ matrices with entries in R is an abelian group, under matrix addition. with identity O, and the general linear group

$$GL_n(R) = M_n(R)^* = \{A \in M_n(R) | \det(A) \in R^*\}$$

is a group under matrix multiplication with identity I. This group is non-abelian for $n \ge 2$.

1.24 Example: If G and H are groups with identities e_G and e_H , then the **product**

$$G \times H = \left\{ (a, b) \middle| a \in G, b \in H \right\}$$

is a group under the operation given by (a,b)(c,d) = (ac,bd) with identity (e_G, e_H) . More generally, if G_1, G_2, \dots, G_n are groups then the direct product

$$\prod_{i=1}^{n} G_i = G_1 \times G_2 \times \cdots \times G_n = \{(a_1, a_2, \cdots, a_n) | a_i \in G_i\}$$

is a group under the operation $(a_1, a_2, \dots, a_n)(b_1, b_2, \dots, b_n) = (a_1b_1, a_2b_2, \dots, a_nb_n)$. For a group G, we write $G^n = \prod_{i=1}^n G = G \times G \times \dots \times G$. More generally still, if A is any set (possibly infinite) and G_α is a group for each $\alpha \in A$ the the direct product

$$\prod_{\alpha \in A} G_{\alpha} = \left\{ f : A \to \bigcup_{\alpha \in A} G_{\alpha} \middle| f(\alpha) \in G_{\alpha} \text{ for all } \alpha \in A \right\}$$

is a group with operation $(fg)(\alpha) = f(\alpha)g(\alpha) \in G_{\alpha}$ for all $\alpha \in A$. The **direct sum**

$$\sum_{\alpha \in A} G_{\alpha} = \left\{ f \in \prod_{\alpha \in A} G_{\alpha} \, \middle| \, f(\alpha) = e_{\alpha} \text{ for all but finitely many } \alpha \in A \right\}$$

where e_{α} is the identity in G_{α} , is also a group under the same operation (fg)(x) = f(x)g(x).

1.25 Definition: For a finite group G, we can specify its operation * by making a table showing the value of the product a * b for each pair $(a, b) \in G^2$. Such a table is called an **operation table** (or an addition, multiplication or composition table) for G.

1.26 Example: The multiplication table for the group $U_{12} = \{1, 5, 7, 11\}$ is shown below.

$a \backslash b$	1	5	7	11
1	1	5	7	11
5	5	1	11	7
$\overline{7}$	7	11	1	5
11	11	7	5	1

1.27 Definition: Let G be a group and let $a \in G$. The **order** of G is its cardinality |G|. The **order** of a in G, denoted by |a| or by $\operatorname{ord}_G(a)$, is the smallest positive integer n such that $a^n = e$ (or in additive notation, the smallest positive integer n such that na = 0), provided that such an integer exists. If no such positive integer n exists, then the order of a is infinite.

1.28 Example: The order of \mathbb{Z}_n is $|\mathbb{Z}_n| = n$. The order of $a \in \mathbb{Z}_n$ is $|a| = \frac{n}{\gcd(a,n)}$. Indeed if we let $d = \gcd(a, n)$ and write a = sd and n = td, then $\gcd(s, t) = 1$ and we have $ka = 0 \in \mathbb{Z}_n \iff n|ka \iff td|ksd \iff t|ks \iff t|k$ and so $|a| = t = \frac{n}{d}$.

1.29 Example: The order of U_n is $|U_n| = \varphi(n)$ where φ is the Euler phi function. We shall see later (in Corollary 4.22) that if $n = \prod p_i^{k_i}$ is the prime factorization of n then $\varphi(n) = \prod (p_i^{k_i} - p_i^{k_i-1}) = n \cdot \prod (1 - \frac{1}{p_i}).$

1.30 Example: The order of the group \mathbb{C}^* is $|\mathbb{C}^*| = \infty$ (or more accurately $|\mathbb{C}^*| = 2^{\aleph_0}$). For $a = re^{i\theta} \in \mathbb{C}^*$ where $r, \theta \in \mathbb{R}$ with r > 0, when $r \neq 1$ or when θ is not a rational multiple of 2π we have $|a| = \infty$, and when r = 1 and $\theta = \frac{2\pi k}{n}$ with $k, n \in \mathbb{Z}$ and $n \neq 0$ we have $|a| = \frac{n}{\gcd(k,n)}$.

1.31 Example: If S is a set and G is a group then $|\operatorname{Func}(S,G)| = |G|^{|S|}$.

1.32 Example: If S is a finite set then $|\operatorname{Perm}(S)| = |S|!$. In particular $|S_n| = n!$.

1.33 Example: When p is prime (so that \mathbb{Z}_p is a field), we have

$$|GL_n(\mathbb{Z}_p)| = (p^n - 1)(p^n - p)(p^n - p^2) \cdots (p^n - p^{n-1}).$$

Indeed, for a matrix $A \in M_n(\mathbb{Z}_p)$, in order for A to be invertible its columns must be linearly independent. The first column u_1 of A can be any non-zero vector in \mathbb{Z}_p^n so there are $p^n - 1$ choices for u_1 . Having chosen u_1 , the second column u_2 can be any vector in \mathbb{Z}_p^n which is not a multiple $t_1u_1, t_1 \in \mathbb{Z}_p$. Since there are p such multiples, there are $p^n - p$ choices for the u_2 . Having chosen u_1 and u_2 , the third column u_3 can be any vector in \mathbb{Z}_p^n which is not a linear combination $t_1u_1 + t_2u_2, t_1, t_2 \in \mathbb{Z}_p$. There are p^2 such linear combinations, so there are $p^n - p^2$ choices for u_3 . And so on.

1.34 Definition: Let G be a group. For $a, b \in G$, we say that a and b are **conjugate** in G, and we write $a \sim b$, when $b = xax^{-1}$ for some $x \in G$. For $a \in G$, we define the **conjugacy class** of a in G to be the set

$$Cl(a) = Cl_G(a) = \{b \in G | b \sim a\} = \{xax^{-1} | x \in G\}.$$

1.35 Note: The relation \sim is an **equivalence relation** on *G*. This means that for all $a, b, c \in G$ we have

- (1) $a \sim a$,
- (2) if $a \sim b$ then $b \sim a$, and
- (3) if $a \sim b$ and $b \sim c$ then $a \sim c$.

Indeed, given $a, b, c \in G$ we have $a \sim a$ since $a = eae^{-1}$, and if $a \sim b$, say $b = xax^{-1}$, then $a = x^{-1}b(x^{-1})^{-1}$ so $b \sim a$, and finally if $a \sim b$ and $b \sim c$ with say $b = xax^{-1}$ and $c = yby^{-1}$, then we have $c = yxay^{-1}x^{-1} = (yx)a(yx)^{-1}$ so $a \sim c$. It follows that G is the disjoint union of the distinct conjugacy classes.

1.36 Example: As an exercise, show that if $a \sim b$ in G, then |a| = |b|.