Chapter 2. Subgroups, Cyclic Groups and Generators

2.1 Definition: A subgroup of a group G is a subset H C G which is also a group using
the same operation as in G. When H is a subgroup of G, we write H < G.

2.2 Example: In any group G we have the subgroups {e} < G and G < G. The group {e}
is called the trivial group. A subgroup H < G with H # G is called a proper subgroup
of G.

2.3 Example: We have Z < Q <R < C < H. and we have Z* < Q* < R* < C* < H*.

2.4 Example: Note that Z, = {0,1,---,n — 1} is not a subgroup of Z, indeed it is not
even a subset. Also, U, is not a subgroup of Z,, since it uses a different operation.

2.5 Theorem: (The Subgroup Test I) Let G be a group and let H C G. Then H < G if
and only if

(1) H contains the identity, that is e € H,
(2) H is closed under the operation, that is ab € H for all a,b € H, and
(3) H is closed under inversion, that is a=* € H for all a € H.

Proof: Note first that the operation on the group G restricts to a well defined operation
on H if and only if H is closed under the operation. In this case, the operation will be
associative on H since it is associative on G. Next note that if e = eq € H then e is an
identity element for H, and conversely if ey is an identity for H then since egyeyg = ey
(both in H and in G), cancellation in the group G gives ey = eg. Thus H has an identity
if and only if e = e € H. A similar argument shows that a given element a € H has an
inverse in H if and only if a=! € H where a~! denotes the inverse of a in G.

2.6 Theorem: (The Subgroup Test 1) Let G be a group and let H C G. Then H < G
if and only if

(1) H # 0, and

(2) for all a,b € H we have ab=' € H.

Proof: From the Subgroup Test I, it is clear that if H < G then (1) and (2) hold. Suppose,
conversely, that (1) and (2) hold. By (1) we can choose an element a € H, and then by (2)
we have e = aa~! € H, so H contains the identity. For a € H, we have a™' = ea™' € H
by (2), so H is closed under inversion. For a,b € H, we have ab = a(b~!)"! € H, so H is
closed under the operation.

2.7 Theorem: (The Finite Subgroup Test) Let G be a group and let H be a finite subset
of H. Then H < G if and only if

(1) H # 0, and
(2) H is closed under the operation, that is ab € H for all a,b € H.

Proof: The proof is left as an exercise.

2.8 Example: The set {(x, y) € Rﬂxy > O} is not a subgroup of R? since it is not closed
under addition.



2.9 Example: For n € Z1 we have C,, < Co, < S! < C* where
C, = {z € C*|z" = 1}
Coo = {z € (C*|z" =1 for some n € Z+}
St = {z € C*|||z|| =1}

2.10 Example: When R is a commutative ring with 1, in the general linear group GL,,(R)
we have the following subgroups, called the special linear group, the orthogonal group
and the special orthogonal group.

SL,(R) = {A € M,(R)|det(A) =1}
On(R) ={A € M,(R)|A"A=1}
SOn(R) = {A € M,(R)|ATA = I,det(A) = 1}
2.11 Example: For § € R, the rotation in R? about (0,0) by the angle @ is given by the

matrix
cosf) —siné
Fo = (sin9 cos 6 )
and the reflection in R? in the line through (0,0) and the point (cos 9 sin Q) is given by

2o°H 3
the matrix
- cosf sind
7 \sinh —cosf |-

O2(R) = {R@,Fg‘@ € R}
SO2(R) = {Rg|6 € R}

We have

In O3(R), for a, 5 € R we have
FgFy = Rg_o , FgRo = Fp_o , RgFo =Foyp, RgRoy = Ragp -
2.12 Example: For n € Z*, the dihedral group D,, is the group
Dy, ={Ry, Fplk € Zn} = {Ro, Ry, -, Rn—1, Fo, F1,- -+ Fr_1 }
where for k € Z,, we write Ry = Ry, and F}, = Fy, with 0 = % We have
D, < 05(R) < GLy(R) < Perm(R?)
and for k,l € Z,, the operation in D,, is given by
FiFy=R_k, iRy =F— , RiFy = Fxy, RiRr = Rp41 .
2.13 Definition: Let G be a group and let a € G. The centre of GG is the set
Z(G) = {a € Glaz = za for all x € G}
and the centralizer of a in G is the set
C(a) = Cg(a) = {z € Glaz = za} .
As an exercise, show that Z(G) and C,(G) are both subgroups of G.
2.14 Example: Find the centre of D4 and find the centralizers of Ry and F}) in Djy.



2.15 Example: If H and K are subgroups of G then so is H N K. More generally, if A

is a set and H, < G for each o € A, then (| H, < G by the Subgroup Test II. Indeed
acA
we have eq € H, for all « € A so that eq € (| c4 Ha, and if a,b € (| H, then for every
acA

a € A we have a,b € H, hence ab™! € H,, and so ab™! € (| H,.
acA

2.16 Definition: Let G be a group and let S C GG. The subgroup of G generated by 5,
denoted by (.5), is the smallest subgroup of G which contains S, that is the intersection of all
subgroups of G which contain S. The elements of S are called generators of the group ().
When S is a finite set, we omit set brackets and write (a1, az, -+, a,) = <{a1, ag, -, an}>.
We say that G is finitely generated when G = (S) for some finite set S C G. We say
that G is cyclic when G = (a) for some a € G. When G is any group and a € G, the
group (a) is called the cyclic subgroup of G generated by a.

2.17 Theorem: (Elements of a Cyclic Group) Let G be a group and let a € G. Then
(1) we have (a) = {a*|k € Z}.

(2) If |a| = oo then the elements a*, k € 7 are all distinct so we have |(a)| = co.

(3) If |a| = n then for k,l € Z we have a* = a' <= k =1 mod n and so

(a) = {ak’k € Zn} = {e,a,a2,~~~,a"_1}

with the listed elements in the above set all distinct so that |(a)| = n. In particular, for
k € Z we have a* = e <= n!k:

Proof: First we show that (a) = {a*|k € Z}. By definition, (a) is the intersection of all
subgroups H < G with a € H. By closure under the operation and under inversion, if
H < G with a € H then a* € H for all k € Z, and so {a’“!k € Z} C (a). On the other
hand, since e = a® and a¥(a’)~! = a*~!, we see that {ak‘k‘ € Z} < G by the Subgroup
Test. Since {a*|k € Z} < G and a = a' € {a¥|k € Z}, it follows that (a) C {a*|k € Z}.

Now suppose that |a| = co and suppose, for a contradiction, that a* = a' with k < I.
Then a'~* = a!(a*)~! = a'(a’)~! = e but this contradicts the fact that |a| = oco.

Next suppose that |a| = n. Suppose that a* = a!. Then, as above, a!~* = e. Write
l—k=gqn+r with0<r <n. Then e =a"* = ai*" = (a")%" = a". Since |a| = n
we must have r = 0. Thus [ — k = ¢n, that is £ = [ mod n. Conversely, suppose that
k =1 mod n, say k = + gn. Then a* = a'T1" = a'(a™)? = a’.

2.18 Notation: When G is an abelian group under +, we have (a) = {kalk € Z}.

2.19 Example: The groups Z and Z,, are cyclic with Z = (1) and Z,, = (1). The group
C, = {z € C*|2" = 1} is cyclic with C,, = (e'27/").

2.20 Example: In the group Z we have (2) = {---,—-2,0,2,4,---}, but in the group R*
we have (2) = {---1,2.1,2,4,8,--- }.

2.21 Example: If G and H are groups then |G x H| = |G| |H|. For a € G and b € H,
|(a,b)| =lem(lal, [b]) .
Indeed if |a| = n and |b| = m then for k € Z we have

(a,b)F = > (a",b") = (eg,en) <= (a" =eg and b* = ey)

GxH
= n|k: and m‘k) <= k is a common multiple of n and m.



2.22 Example: The group Uss = {1,5,7,11,13,17} is cyclic with U;g = (5) because in
Uis we have
3 4 5

k0 1 2
1 5 7 17 13 11
S

5k
2.23 Theorem: (The Classification of Subgroups of a Cyclic Group) Let G be group and
let a € G. Then

(1) every subgroup of {a) is cyclic.

(2) If |a| = oo then (a*) = (a') <:> l = +k so the distinct subgroups of (a) are the trivial
group {a®) = {e} and the groups ( {akd‘k € Z} where d € ZT.

(3) If |a| = n then we have (a* > = ( Y <= gcd(k,n) = ged(l,n) and so the distinct
subgroups of {a) are the groups (a®) = {akd‘k’ € Zn/d} = {ao,ad,azd, = ~,a”_d} where d
is a positive divisor of n.

Proof: First we show that every subgroup of (a) is cyclic. Let H < (a). If H = {e} then
H = (e), which is cyclic. Suppose that H # {e}. Note that H contains some element of
the form a* with k € Z* since we can choose a' € H for some | # 0, and if [ < 0 then we
also have a=! = (a;)~! € H. Let k be the smallest positive integer such that a* € H. We
claim that H = (a*). Since a* € H, by closure under the operation and under inversion we
have (a¥)? € H for all i € Z and so (a*) C H. Let a' € H, where | € Z. Write | = kq +r
with 0 < 7 < k. Then a' = a*%a" so we have a” = a!(a*?)~! € H. By our choice of k we
must have r = 0 , so [ = ¢k and so a' € (a*). Thus H C (a").

Suppose that |a] = co. If I = £k then clearly (a') = (a*). Suppose that (a') = {a*).
Since a* € (a') we have | = kt for some ¢ € Z, so k|l. Since a* € (a') we have I|k. Since
k|l and I|k we have | = +k.

Now suppose that |a| = n. Note first that for any divisor d|n we have
dy — {adk‘k € Zpsa} = {a°, a® a®, ... a"" d}

with the listed elements distinct so that |a?| = 2. We claim that (a*) = (a®) where
d = ged(k,n). Since d|k we have a* € (a?) so (a*) C (a?). Choose s,t € Z so that
ks +nt = d. Then a¢ = aFst"t = (ak)s(a")t = (a*)* € (a*) and so {a?) C (a*). Thus
(a*) = (a?), as claimed. Now if (a ) = (a> and d = ged(k,n) and ¢ = ged(l,n) then
(a?) = (a*) = (a') = (a®) and so |(a?)| = |(a® ‘ that is 7 = 2, and so d = c¢. Conversely,
if d = ged(k,n) = ged(l,n) = c then we have (a*) = (a?) = <a%>.

Q

2.24 Corollary: (Orders of Elements in a Cyclic Group) Let G be a group and let a € G.

(1) If |a| = oo then |a°| =1 anda = oo for all 0 # k € Z, and

2) if la| = n then |a*| = forallk ¢ Z.
FICED)]

2.25 Corollary: (Generators of a Cyclic Group) Let G be a group and let a € G. Then
(1) if |a| = oo then (a k) = (a) <= k==1, and

(2) if |a| = n then (a*) = (a) <= gcd(k,n) =1 <= k€ U,.

2.26 Corollary: (The Number of Elements of Each Order in a Cyclic Group) Let G be
a group and let a € G with |a| = n. Then for each k € Z, the order of a* is a positive

divisor of n, and for each positive divisor d ’n, the number of elements in (a) of order d is
equal to p(d).



2.27 Corollary: For n € Z* we have >_ ¢(d) = n.
d|n

2.28 Corollary: (The Number of Elements of Each Order in a Finite Group) Let G be
a finite group. For each d € 7", the number of elements in G of order d is equal to p(d)
multiplied by the number of cyclic subgroups of G of order d.

2.29 Theorem: (Elements of (S)) Let G be a group and let ) # S C G. Then
(S) = {a1k1a2k2 . --alkl|l >0,a; € S,k; € Z}
= {alklang . --alkl|l > 0,a; € S with a; # a;+1,0 # k; € Z}
where the empty product (when | = 0) is the identity element. If G is abelian then
(S) = {a1k1a2k2 . --alk“l > 0,a; € S with a; # a; fori# 3,0 # k; € Z}.
Proof: The proof is left as an exercise.
2.30 Notation: If G is an additive abelian group then
(S) = SpanZ{S} = {k1a1 + koao + -+ + k:lal‘l >0,a; € S,a; #aj fori#j0#k € Z}.
2.31 Example: As an exercise, show that in Z we have (k,[) = (d) where d = ged(k,1).

2.32 Example: In Z2, the elements of <(1, 3), (2, 1)> are the vertices of parallelograms
which cover R2.

2.33 Example: We have D,, = <R1, Fy) < O2(R) because Ry, = R and F, = Ry Fp.
2.34 Definition: Let S be a set. The free group on S is the set whose elements are
F(S) = {alklang L ’l >0,a; € S,0#£k; € Z}
with the operation given by concatenation
(a7t - @) (b *r - b ) = @yt @b R by R

followed by grouping and cancellation in the sense that if a; = b; then we replace a;7 bk
by a;7*T*1 and if, in addition, j; + k; = 0 then we omit the term @;° and perform further
grouping if a;_1 = by. For example, in F'(a,b) we have

(ab?a2b) (b~ 'aPba™?) = ab®a bbb 'a*ba™? = ab®a 3a’ba? = ab*ba? = abPa 2.
Note that in the free group F(S) we have F'(S) = (95).
2.35 Definition: Let S be a set. The free abelian group on S is the set
A(S) = {k1a1 +---+klal‘l >0,a; € S with a; # a;,0 # k; € Z}.

If we identify the element kyay + ksas + - - - + kja; with the function f : S — Z given by
f(a;) = k; and f(a) = 0 for a # a; for any i, then we can identify A(S) with the set
A(S) = ZZ ={f:S = Z|f(a) = 0 for all but finitely many a € S}.
acsS

Under this identification, we use the operation given by (f + g)(a) = f(a) + g(a).



