Chapter 3. The Symmetric and Alternating Groups

3.1 Definition: An element o € S,, can be specified by giving its table of values in the
form

This is called array notation for a.

3.2 Example: In array notation, we have

5_123 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
3 1 2 3)°\1 3 2)'’\2 1 3)'’\2 3 1/)'\3 1 2)'\3 2 1/

Note that S3 is not abelian because for example

1 2 3 1 2 3\ (1 2 3 1 2 3 1 2 3\ (1 2 3
2 1 3 31 2) \3 2 1)72\3 1 2 2 1 3) \1 3 2
(since the operation is composition, in the product af, the permutation (5 is performed

before the permutation «).

3.3 Example: For n > 3, we can think of D,, as a subgroup of 5,, because an element

of D,, permutes the elements of C),, = {ei 27Tk/“’k: =12, ,n} and this determines a
permutation of {1,2,---,n}. For example, in Dg we have
1 2 3 4 5 6 1 2 3 4 5 6
Rl_(z 3 45 6 1)’R2_(3 45 6 1 2)
1 2 3 4 5 6 1 2 3 4 5 6
FO_(5 43 2 1 6)’F1_(6 5 4 3 2 1)'
3.4 Definition: When a,as, -, ay are distinct elements in {1,2,---,n} we write
o = (a17a27”'7a€)
for the permutation o € S,, given by
afar) =az , afaz) =az, -+, alae—1) =ae, ala) =a
a(k) =k for all k ¢ {a1,az2,---,as}.
Such a permutation is called a cycle of length ¢ or an /-cycle.
3.5 Note: We make several remarks.
(1) We have e = (1) = (2) = --- = (n).
<2> We have (a17a27' o JaZ) = (CLQ,CLg,' : '7a€7a1) = (CL3,CL4, U >a£7a17a2) =
(3) An {l-cycle with ¢ > 2 can be expressed uniquely in the form o = (a1, a9, -, ap)
with a3 = min{ay,azs, -, as}.
(4) For an f-cycle a = (a3, aq,---,a;) we have |a| = £.

(5) If n > 3 then we have (12)(23) = (123) and (23)(12) = (132) so S, is not abelian.

3.6 Definition: Two cycles o = (a1, a2,--+,a¢) and 5 = (by,be,--+,by,,) are said to be
disjoint when {aq,---,a¢} N {b1,---, by} =0, that is when the a; and b; are all distinct.
More generally the cycles a1 = (a1,1,-,a1,0,)s s 0m = (Qm,1,- "+, me,, ) are disjoint
when all of the a; ; are distinct.



3.7 Note: Disjoint cycles commute. Indeed if o = (ay,---,a¢) and g = (b1, -, b,,) are
disjoint, then

a(B(as))
a(B(b;)) = abj1) = bjp1 = B(b;) = B(a(b;)) , with subscripts in Z,,
()=a~w B(k) = B(ak)) for k # a,b;

3.8 Theorem: (Cycle Notation) Every o € S,, can be written as a product of disjoint
cycles. Indeed every o # e can be written uniquely in the form

ala;) = ajp1 = B(ai+1) = B(Q(ai)) , with subscripts in Z,

o = (a1,17 T al,fl)(allv T 7a27f2) T (am,b to ’amagm)
with m > 1, each ¢; > 2, each a;; = min{a;1,a;2, -, @i} and a1 < az1 < -+ < Q1.

Proof: Let e # a € S,, where n > 2. To write « in the given form, we must take
a1 to be the smallest element k£ € {1,2,---,n} with a(k) # k. Then we must have
a12 = a(a11), a13 = a(a12) = a?(ay 1), and so on. Eventually we must reach ¢; such that

a1 = al (a1.1), indeed since {1,2,---,n} is finite, eventually we find a’(a1,1) = o’ (a1,1)
for some 1 < 4 < j and then a1 = a *a’(a11) = a ‘al(a11) = a?/~%(ay1). For the
smallest such ¢; the elements a; 1,---, a1, will be disjoint since if we had a;; = a1 ; for
some 1 < i < j < /; then, as above, we would have o ~*(aj1) = a;; with 1 < j —i < 45.
This gives us the first cycle oy = (a11,a1.2,- -, 01.4,)-

If we have o = 7 we are done. Otherwise there must be some k € {1,2,---,n} with
k ¢ {a11,a12,---,a1, } such that a(k) # k, and we must choose ag; to be the smallest
such k. As above we obtain the second cycle ag = (ag,1,a2,2, -+, a2,,). Note that as must
be disjoint from a; because if we had a’(az 1) = a’(ay,1) for some i, j then we would have
ag1 = a_’o/(am) =a ‘ol (CL171) = oﬂ_l(aLl) S {a171, s al,gl}.

At this stage, if & = ajas we are done, and otherwise we continue the procedure.

3.9 Definition: When a permutation e # « € S, is written in the unique form of the
above theorem, we say that « is written in cycle notation. We usually write e as e = (1).

3.10 Example: In cycle notation we have

Ss = Ds = {(1),(12), (13), (23), (123), (132) }
Si={(1),(12),(13), (14),(23), (24), (34), (12)(34), (13)(24), (14)(23),
(123), (132), (124), (142), (134), (143), (234), (243),
(1234), (1243), (1324), (1342), (1423), (1432) }
.D4::{I.erRgnglﬁﬂfQ,Pbthfﬁ,PgrEbf%}
= {(1),(1234), (13)(24), (1432), (13), (14)(23), (24), (12)(34)}
3.11 Example: For oo = (1352)(46), 5 = (145)(263) € Se, express a8 in cycle notation.

3.12 Example: Find the number of elements in S5 which can be written as a product
of 3 disjoint 4-cycles.

Solution: When we write a = (ajasasas)(asagaras)(agaipaiiaiz), there are (13) ways to
choose the set {aq,---,a12} from {1,2,---,15}, then there is one choice for a; (it must
be the smallest of the a;), then there are 11 choices for ay, then 10 choices for as, then
9 choices for a4, and then there is only one choice for as (it must be the smallest of the

o . ! .
remaining a;, and so on. Thus there are (g) . % such elements in Si5.



3.13 Example: Find the number of elements in Sy which can be written as a product
of 7 disjoint cycles, with 4 of length 2, 2 of length 3, and 1 of length 4.

Solution: When we write a = (ajaz2)(asas)(asag)(aras) (b1babs)(babsbs) (c1cacsey), there

are (280) ways to choose {a1,as,---,as} from {1,2,---,20}, then (162) ways to choose
{by, -+, b} from {1,---,20} \ {a1,---,as}, and then there are (j) = 1 way to choose
{c1,--+,cq4)}. From the set {ay,---,as}, there is 1 way to choose a1, then 7 ways to choose

asz, then 1 way to choose ag, then 5 ways to choose a4, then 1 way to choose as, then 3
ways to choose ag, then 1 way to choose a; and then 1 way to choose ag. From the set
{b1,---,be}, there is 1 way to choose by, then 5 ways to choose by, then 4 ways to choose
b3, then 1 way to choose by, then 2 ways to choose bs and then 1 way to choose bg. From
the set {c1,---,cq}, there is 1 way to choose ¢1, then 3 ways to choose ¢z, then 2 ways to
choose c3 and then 1 way to choose ¢4. Thus the number of such elements in Soq is

20\ (12 (4 8! 6! . 4l
(8)(6)(4)'&6-42'@'1'
3.14 Theorem: (The Order of a Permutation) Let @ = ajag--- u, where the «; are
disjoint cycles with each «; of length ¢;. Then |a| = lem{ly,- -,y }.

Proof: Since the «; are disjoint, if we write ay = (ag1, -, ak,e,) then we have

alap1) = aps , &(ap1) =axs , -, &' Hag1) = age, , " (ag1) = ar -

If p is a common multiple of all the ¢;, say p = ¢;q;, then
P = ;%19 = (%)% = e = e for all 7.

Since the «; commute, we have o = (@1ag -+ - ap, )P = a1Pas? -+ a,P = e.
If, on the other hand, p is not a common multiple of the ¢;, then we can choose k so
that p is not a multiple of ¢x. Write p = g + r with 0 < r < ;. Then
ap? = akﬁkq+r — (akﬁk)qkakr = ay"
and we have aP(ax 1) = P (ar,1) = ag"(ag,1) # ag,1 since 0 < r < £y, and so o # e.

3.15 Theorem: (The Conjugacy Class of a Permutation) Let o, 8 € S,,. Then o and
are conjugate in S, if and only if, when written in cycle notation, o and [3 have the same
number of cycles of each length.

Proof: Write « in cycle notation as o = (a11, @12, -, a1,6,) - - (@m1,@m2, -+, Am.e,,). Note
that for all o € S,, we have

cac ' = (0(a11),0(a12), -, o(are)) - (0(am1), o(am2), -, 0(am.e,,))-

Indeed, for the permutation on the right, o(a; ;) is sent to o(a; j+1), and on the left, o(a; ;)
is sent by o to a; j, which is then sent to a; ;11 by «, which is then sent by o to o(a; j+1).

3.16 Example: Let a = (1693)(275)(15873) € S1o. Find |«|.

Solution: First we write o in as a product of disjoint cycles. We have o = (127)(369)(58)
and so |a| =1lem(3,3,2) = 6.

3.17 Example: As an exercise, find the number of elements of each order in Sg.



3.18 Theorem: (Even and Odd Permutations) In S,,, with n > 2,

(1) every a € Sy, is a product of 2-cycles,
(2) if e = (a1,b1)(az,b2) - - - (ag,by) then ¢ is even, that is £ = 0 mod 2, and
(3) if « = (a1,b1)(ag,b2) -+ (ag,be) = (c1,d1)(ca,d2) -+ (Cm, dp,) then £ =m mod 2.

Solution: To prove part (1), note that given o € \S,, we can write « as a product of cycles,
and we have

(a/17a27 e ,CL() - (a17a€)(a17a€—1) e (CLl,CLQ) .

We shall prove part (2) by induction. First note that we cannot write e as a single
2-cycle, but we can write e as a product of two 2-cycles, for example e = (1,2)(1,2). Fix
¢ > 3 and suppose, inductively, that for all £ < ¢, if we can write e as a product of k
2-cycles the k must be even. Suppose that e can be written as a product of ¢ 2-cycles,
say e = (a1,b1)(az,b2) - (ag, be). Let a = a;. Of all the ways we can write e as a product
of £ 2-cycles, in the form e = (z1,y1)(z2,y2) - - - (¢, ye), with z; = a for some i, choose
one way, say e = (r1,81)(ra,82) - (re,s¢) with r,, = a and ry,8; # a for all i < m,
with m being as large as possible. Note that m # ¢ since for a = (r1,51) -+ (74, s¢) with
re = a and r;,s; # a for i < ¢ we have a(sy) = a # sy and so a # e. Consider the
product (7, Sm)(Pm+1, Sm+1). This product must be (after possibly interchanging 7,1
and $,,+1) of one of the forms

(a,b)(a,b) , (a,b)(a,c), (a,b)(b,c), (a,b)(c,d)

where a, b, c,d are distinct. Note that

(a,b)(a,c) = (a,c,b) = (b,c)(a,b),
(a,b)(b,c) = (a,b,c) = (b,c)(a,c), and
(a7 b) (Cv d) = (C, d) (a> b) )

and so in each of these three cases we could rewrite e as a product of ¢ 2-cycles with the
first occurrence of a being farther to the right, contradicting the fact that we chose m to
be as large as possible. Thus the product (7., Sm)(Tm+1, Sm+1) is of the form (a,b)(a,b).
By cancelling these two terms, we can write e as a product of (£ — 2) 2-cycles. By the
induction hypothesis, (¢ — 2) is even, and so ¢ is even.

Finally, to prove part (3), suppose that a = (a1,b1) - (ag,be) = (c1,d1) -+ (Cm, dm)-
Then we have

e=aa = (a1,by) - (ag,be)(Cm,dm) - (c1,dy).

By part (2), £ + m is even, and so £ = m mod 2.
3.19 Example: Show that
Sy =((12), (13), (14), -, (In)) = ((12),(23),(34), -, (n — 1,n)) = ((12), (123 - - n)) .

Solution: By Part (1) of the above theorem, S,, is generated by the set of all 2-cycles (k).
Any 2-cycle (kl) can be written as (kl) = (1k)(11)(1k) so S, = ((12),(13),(14),-- -, (1n)).
Any 2-cycle of the form (1k) can be written as (1k) = (12)(23)---(k — 1,k)---(23)(12)
and so S, = ((12),(23),---,(n — 1,n)). Any 2-cycle of the form (k,k + 1) can be written
as (k,k+1) = (123---n)kF=1(12)(123---n)~* =Y and so S,, = ((12)(123---n)).



3.20 Definition: For n > 2, a permutation « € S), is called even if it can be written as
a product of an even number of 2-cycles. Otherwise @ can be written as a product of an
odd number of 2-cycles, and then it is called odd. We define the parity of o € S,, to be

1if « is even,

1) =
(=1) {—lifaisodd.
3.21 Theorem: (Properties of Parity) Let n > 2 and let o, 3 € S,,. Then

(1) (=1)° =1,

(2) if o is an f-cycle then (—1)% = (1)1,

(3) (=1)*" = (=1)*(-1)”, and

(4) () = (=1,

Proof: Part (1) holds because, for example, e = (1,2)(1,2). Part (2) holds because we have
(a1,az2,---,a¢) = (a1,a¢)(a1,ap—1) - - - (a1,asz). Part (3) holds because if « is a product of ¢

2-cycles and f is a product of m 2-cycles then af is a product of (¢ +m) 2-cycles. Part
(4) holds because if o = (ay,b1)(az,b2) - - (ap,be) then o=t = (ap,be) - - - (az,b2)(az, by).

3.22 Example: Let a = (1793)(245)(164385) € S1p. Find (—1)* and |«|.

Solution: By the above theorem, we have (—1)® = (—1)3(=1)?(—1)° = 1. To find |a|, we
first write « as a product of disjoint cycles. We find that a = (165793824) and so |a| = 9.

3.23 Definition: For n > 2 we define the alternating group A, to be
A, ={aeS,|(-1)*=1}.
Note that A,, < S,, by the Properties of Parity Theorem. Note that
[An| = 3190] = %
because we have a bijective correspondence
F:{aeS,|(-1)*=1} = {a € 8,[(-1)* = -1}
given by F(«a) = (12)a.

3.24 Remark: The rotation group of the regular tetrahedron can be identified with Ay
by labelling the vertices of the tetrahedron by 1, 2, 3 and 4 and identifying each rotation
with a permutation of {1,2,3,4}.

3.25 Example: Show that A, is generated by the set of all 3-cycles, then show that for
any a #b € {1,2,---,n}, A, is generated by the 3-cycles of the form (abk) with k # a,b.

Solution: We already know that every permutation in A,, is equal to a product of an even
number of 2-cycles. Every product of a pair of 2-cycles is of one of the forms (ab)(ab),
(ab)(ac) or (ab)(cd), where a, b, c,d are distinct, and we have

(ab)(ab) = (abc)(ach) , (ab)(ac) = (acdb) , (ab)(cd) = (adc)(abe),

and so A, is generated by the set of all 3-cycles. Now fix a,b € {1,2,---,n} with a # b.
Note that every 3-cycle is of one of the forms (abk), (akb), (akl), (bkl) or (kim), where
a,b, k,l,m are all distinct, and we have

(akb)=(abk)? , (akl)=(abl)(abk)? , (bkl)=(abl)?(abk) , (klm)=(abk)*(abm)(abl)*(abk).



