
Chapter 3. The Symmetric and Alternating Groups

3.1 Definition: An element α ∈ Sn can be specified by giving its table of values in the
form

α =

(
1 2 · · · n

α(1) α(2) · · · α(n)

)
This is called array notation for α.

3.2 Example: In array notation, we have

S3 =

{(
1 2 3
1 2 3

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
2 1 3

)
,

(
1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)
,

(
1 2 3
3 2 1

)}
.

Note that S3 is not abelian because for example(
1 2 3
2 1 3

)(
1 2 3
3 1 2

)
=

(
1 2 3
3 2 1

)
,

(
1 2 3
3 1 2

)(
1 2 3
2 1 3

)
=

(
1 2 3
1 3 2

)
(since the operation is composition, in the product αβ, the permutation β is performed
before the permutation α).

3.3 Example: For n ≥ 3, we can think of Dn as a subgroup of Sn because an element
of Dn permutes the elements of Cn =

{
ei 2πk/n

∣∣k = 1, 2, · · · , n
}

and this determines a
permutation of {1, 2, · · · , n}. For example, in D6 we have

R1 =

(
1 2 3 4 5 6
2 3 4 5 6 1

)
, R2 =

(
1 2 3 4 5 6
3 4 5 6 1 2

)
F0 =

(
1 2 3 4 5 6
5 4 3 2 1 6

)
, F1 =

(
1 2 3 4 5 6
6 5 4 3 2 1

)
.

3.4 Definition: When a1, a2, · · · , a` are distinct elements in {1, 2, · · · , n} we write

α = (a1, a2, · · · , a`)

for the permutation α ∈ Sn given by

α(a1) = a2 , α(a2) = a3 , · · · , α(a`−1) = a` , α(a`) = a1

α(k) = k for all k /∈ {a1, a2, · · · , a`} .

Such a permutation is called a cycle of length ` or an `-cycle.

3.5 Note: We make several remarks.

(1) We have e = (1) = (2) = · · · = (n).
(2) We have (a1, a2, · · · , a`) = (a2, a3, · · · , a`, a1) = (a3, a4, · · · , a`, a1, a2) = · · ·.
(3) An `-cycle with ` ≥ 2 can be expressed uniquely in the form α = (a1, a2, · · · , a`)
with a1 = min{a1, a2, · · · , a`}.
(4) For an `-cycle α = (a1, a2, · · · , a`) we have |α| = `.
(5) If n ≥ 3 then we have (12)(23) = (123) and (23)(12) = (132) so Sn is not abelian.

3.6 Definition: Two cycles α = (a1, a2, · · · , a`) and β = (b1, b2, · · · , bm) are said to be
disjoint when {a1, · · · , a`} ∩ {b1, · · · , bm} = ∅, that is when the ai and bj are all distinct.
More generally the cycles α1 = (a1,1, · · · , a1,`1), · · · , αm = (am,1, · · · , am,`m) are disjoint
when all of the ai,j are distinct.
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3.7 Note: Disjoint cycles commute. Indeed if α = (a1, · · · , a`) and β = (b1, · · · , bm) are
disjoint, then

α
(
β(ai)

)
= α(ai) = ai+1 = β(ai+1) = β

(
α(ai)

)
, with subscripts in Z`

α
(
β(bj)

)
= α(bj+1) = bj+1 = β(bj) = β

(
α(bj)

)
, with subscripts in Zm

α
(
β(k)

)
= α(k) = k = β(k) = β

(
α(k)

)
for k 6= ai, bj .

3.8 Theorem: (Cycle Notation) Every α ∈ Sn can be written as a product of disjoint
cycles. Indeed every α 6= e can be written uniquely in the form

α = (a1,1, · · · , a1,`1)(a2,1, · · · , a2,`2) · · · (am,1, · · · , am,`m)

with m ≥ 1, each `i ≥ 2, each ai,1 = min{ai,1, ai,2, · · · , ai,`i} and a1,1 < a2,1 < · · · < am,1.

Proof: Let e 6= α ∈ Sn where n ≥ 2. To write α in the given form, we must take
a1,1 to be the smallest element k ∈ {1, 2, · · · , n} with α(k) 6= k. Then we must have
a1,2 = α(a1,1), a1,3 = α(a1,2) = α2(a1,1), and so on. Eventually we must reach `1 such that
a1,1 = α`1(a1,1), indeed since {1, 2, · · · , n} is finite, eventually we find αi(a1,1) = αj(a1,1)
for some 1 ≤ i < j and then a1,1 = α−iαi(a1,1) = α−iαj(a1,1) = αj−i(a1,1). For the
smallest such `1 the elements a1,1, · · · , a1,`1 will be disjoint since if we had a1,i = a1,j for
some 1 ≤ i < j ≤ `1 then, as above, we would have αj−i(a11) = a11 with 1 ≤ j − i < `1.
This gives us the first cycle α1 = (a1,1, a1,2, · · · , a1,`1).

If we have α = α1 we are done. Otherwise there must be some k ∈ {1, 2, · · · , n} with
k /∈ {a1,1, a1,2, · · · , a1,`1} such that α(k) 6= k, and we must choose a2,1 to be the smallest
such k. As above we obtain the second cycle α2 = (a2,1, a2,2, · · · , a2,`2). Note that α2 must
be disjoint from α1 because if we had αi(a2,1) = αj(a1,1) for some i, j then we would have
a2,1 = α−iαi(a2,1) = α−iαj(a1,1) = αj−i(a1,1) ∈ {a1,1, · · · , a1,`1}.

At this stage, if α = α1α2 we are done, and otherwise we continue the procedure.

3.9 Definition: When a permutation e 6= α ∈ Sn is written in the unique form of the
above theorem, we say that α is written in cycle notation. We usually write e as e = (1).

3.10 Example: In cycle notation we have

S3 = D3 =
{

(1), (12), (13), (23), (123), (132)
}

S4 =
{

(1), (12), (13), (14), (23), (24), (34), (12)(34) , (13)(24) , (14)(23) ,

(123), (132), (124), (142), (134), (143), (234), (243),

(1234), (1243), (1324), (1342), (1423), (1432)
}

D4 =
{
I,R1, R2, R3.R4, R5, F0, F1, F2, F3, F4, F5

}
=
{

(1), (1234) , (13)(24) , (1432) , (13) , (14)(23) , (24) , (12)(34)
}

3.11 Example: For α = (1352)(46), β = (145)(263) ∈ S6, express αβ in cycle notation.

3.12 Example: Find the number of elements in S15 which can be written as a product
of 3 disjoint 4-cycles.

Solution: When we write α = (a1a2a3a4)(a5a6a7a8)(a9a10a11a12), there are
(
15
12

)
ways to

choose the set {a1, · · · , a12} from {1, 2, · · · , 15}, then there is one choice for a1 (it must
be the smallest of the ai), then there are 11 choices for a2, then 10 choices for a3, then
9 choices for a4, and then there is only one choice for a5 (it must be the smallest of the
remaining ai, and so on. Thus there are

(
15
12

)
· 12!
12·8·4 such elements in S15.
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3.13 Example: Find the number of elements in S20 which can be written as a product
of 7 disjoint cycles, with 4 of length 2, 2 of length 3, and 1 of length 4.

Solution: When we write α = (a1a2)(a3a4)(a5a6)(a7a8) (b1b2b3)(b4b5b6) (c1c2c3c4), there
are

(
20
8

)
ways to choose {a1, a2, · · · , a8} from {1, 2, · · · , 20}, then

(
12
6

)
ways to choose

{b1, · · · , b6} from {1, · · · , 20} \ {a1, · · · , a8}, and then there are
(
4
4

)
= 1 way to choose

{c1, · · · , c4)}. From the set {a1, · · · , a8}, there is 1 way to choose a1, then 7 ways to choose
a2, then 1 way to choose a3, then 5 ways to choose a4, then 1 way to choose a5, then 3
ways to choose a6, then 1 way to choose a7 and then 1 way to choose a8. From the set
{b1, · · · , b6}, there is 1 way to choose b1, then 5 ways to choose b2, then 4 ways to choose
b3, then 1 way to choose b4, then 2 ways to choose b5 and then 1 way to choose b6. From
the set {c1, · · · , c4}, there is 1 way to choose c1, then 3 ways to choose c2, then 2 ways to
choose c3 and then 1 way to choose c4. Thus the number of such elements in S20 is(

20
8

) (
12
6

) (
4
4

)
· 8!
8·6·4·2 ·

6!
6·3 ·

4!
4 .

3.14 Theorem: (The Order of a Permutation) Let α = α1α2 · · ·αm where the αi are
disjoint cycles with each αi of length `i. Then |α| = lcm{`1, · · · , `m}.

Proof: Since the αi are disjoint, if we write αk = (ak,1, · · · , ak,`k) then we have

α(ak,1) = ak,2 , α
2(ak,1) = ak,3 , · · · , α`m−1(ak,1) = ak,`m , α`m(ak,1) = ak,1 .

If p is a common multiple of all the `i, say p = `iqi, then

αi
p = αi

`iqi = (αi
`i)qi = eqi = e for all i .

Since the αi commute, we have αp = (α1α2 · · ·αm)p = α1
pα2

p · · ·αmp = e.
If, on the other hand, p is not a common multiple of the `i, then we can choose k so

that p is not a multiple of `k. Write p = `kq + r with 0 < r < `k. Then

αk
p = αk

`kq+r = (αk
`k)qkαk

r = αk
r

and we have αp(ak,1) = αk
p(ak,1) = αk

r(ak,1) 6= ak,1 since 0 < r < `k, and so αp 6= e.

3.15 Theorem: (The Conjugacy Class of a Permutation) Let α, β ∈ Sn. Then α and β
are conjugate in Sn if and only if, when written in cycle notation, α and β have the same
number of cycles of each length.

Proof: Write α in cycle notation as α = (a11, a12, · · · , a1,`1) · · · (am1, am2, · · · , am,`m). Note
that for all σ ∈ Sn we have

σασ−1 =
(
σ(a11), σ(a12), · · · , σ(a1,`1)

)
· · ·
(
σ(am1), σ(am2), · · · , σ(am,`m)

)
.

Indeed, for the permutation on the right, σ(ai,j) is sent to σ(ai,j+1), and on the left, σ(ai,j)
is sent by σ to ai,j , which is then sent to ai,j+1 by α, which is then sent by σ to σ(ai,j+1).

3.16 Example: Let α = (1693)(275)(15873) ∈ S10. Find |α|.

Solution: First we write α in as a product of disjoint cycles. We have α = (127)(369)(58)
and so |α| = lcm(3, 3, 2) = 6.

3.17 Example: As an exercise, find the number of elements of each order in S6.
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3.18 Theorem: (Even and Odd Permutations) In Sn, with n ≥ 2,

(1) every α ∈ Sn is a product of 2-cycles,
(2) if e = (a1, b1)(a2, b2) · · · (a`, b`) then ` is even, that is ` = 0 mod 2, and
(3) if α = (a1, b1)(a2, b2) · · · (a`, b`) = (c1, d1)(c2, d2) · · · (cm, dm) then ` = m mod 2.

Solution: To prove part (1), note that given α ∈ Sn we can write α as a product of cycles,
and we have

(a1, a2, · · · , a`) = (a1, a`)(a1, a`−1) · · · (a1, a2) .

We shall prove part (2) by induction. First note that we cannot write e as a single
2-cycle, but we can write e as a product of two 2-cycles, for example e = (1, 2)(1, 2). Fix
` ≥ 3 and suppose, inductively, that for all k < `, if we can write e as a product of k
2-cycles the k must be even. Suppose that e can be written as a product of ` 2-cycles,
say e = (a1, b1)(a2, b2) · · · (a`, b`). Let a = a1. Of all the ways we can write e as a product
of ` 2-cycles, in the form e = (x1, y1)(x2, y2) · · · (x`, y`), with xi = a for some i, choose
one way, say e = (r1, s1)(r2, s2) · · · (r`, s`) with rm = a and ri, si 6= a for all i < m,
with m being as large as possible. Note that m 6= ` since for α = (r1, s1) · · · (r`, s`) with
r` = a and ri, si 6= a for i < ` we have α(s`) = a 6= s` and so α 6= e. Consider the
product (rm, sm)(rm+1, sm+1). This product must be (after possibly interchanging rm+1

and sm+1) of one of the forms

(a, b)(a, b) , (a, b)(a, c) , (a, b)(b, c) , (a, b)(c, d)

where a, b, c, d are distinct. Note that

(a, b)(a, c) = (a, c, b) = (b, c)(a, b),

(a, b)(b, c) = (a, b, c) = (b, c)(a, c), and

(a, b)(c, d) = (c, d)(a, b) ,

and so in each of these three cases we could rewrite e as a product of ` 2-cycles with the
first occurrence of a being farther to the right, contradicting the fact that we chose m to
be as large as possible. Thus the product (rm, sm)(rm+1, sm+1) is of the form (a, b)(a, b).
By cancelling these two terms, we can write e as a product of (` − 2) 2-cycles. By the
induction hypothesis, (`− 2) is even, and so ` is even.

Finally, to prove part (3), suppose that α = (a1, b1) · · · (a`, b`) = (c1, d1) · · · (cm, dm).
Then we have

e = αα−1 = (a1, b1) · · · (a`, b`)(cm, dm) · · · (c1, d1).

By part (2), `+m is even, and so ` = m mod 2.

3.19 Example: Show that

Sn = 〈(12), (13), (14), · · · , (1n)〉 = 〈(12), (23), (34), · · · , (n− 1, n)〉 = 〈(12), (123 · · ·n)〉 .

Solution: By Part (1) of the above theorem, Sn is generated by the set of all 2-cycles (kl).
Any 2-cycle (kl) can be written as (kl) = (1k)(1l)(1k) so Sn = 〈(12), (13), (14), · · · , (1n)〉.
Any 2-cycle of the form (1k) can be written as (1k) = (12)(23) · · · (k − 1, k) · · · (23)(12)
and so Sn = 〈(12), (23), · · · , (n− 1, n)〉. Any 2-cycle of the form (k, k + 1) can be written
as (k, k + 1) = (123 · · ·n)k−1(12)(123 · · ·n)−(k−1) and so Sn = 〈(12)(123 · · ·n)〉.
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3.20 Definition: For n ≥ 2, a permutation α ∈ Sn is called even if it can be written as
a product of an even number of 2-cycles. Otherwise α can be written as a product of an
odd number of 2-cycles, and then it is called odd. We define the parity of α ∈ Sn to be

(−1)α =

{
1 if α is even,

−1 if α is odd.

3.21 Theorem: (Properties of Parity) Let n ≥ 2 and let α, β ∈ Sn. Then
(1) (−1)e = 1,
(2) if α is an `-cycle then (−1)α = (−1)`−1,
(3) (−1)αβ = (−1)α(−1)β , and

(4) (−1)α
−1

= (−1)α.

Proof: Part (1) holds because, for example, e = (1, 2)(1, 2). Part (2) holds because we have
(a1, a2, · · · , a`) = (a1, a`)(a1, a`−1) · · · (a1, a2). Part (3) holds because if α is a product of `
2-cycles and β is a product of m 2-cycles then αβ is a product of (`+m) 2-cycles. Part
(4) holds because if α = (a1, b1)(a2, b2) · · · (a`, b`) then α−1 = (a`, b`) · · · (a2, b2)(a1, b1).

3.22 Example: Let α = (1793)(245)(164385) ∈ S10. Find (−1)α and |α|.

Solution: By the above theorem, we have (−1)α = (−1)3(−1)2(−1)5 = 1. To find |α|, we
first write α as a product of disjoint cycles. We find that α = (165793824) and so |α| = 9.

3.23 Definition: For n ≥ 2 we define the alternating group An to be

An =
{
α ∈ Sn

∣∣(−1)α = 1
}
.

Note that An ≤ Sn by the Properties of Parity Theorem. Note that

|An| = 1
2 |Sn| =

n!
2

because we have a bijective correspondence

F :
{
α ∈ Sn

∣∣(−1)α = 1
}
→
{
α ∈ Sn

∣∣(−1)α = −1
}

given by F (α) = (12)α.

3.24 Remark: The rotation group of the regular tetrahedron can be identified with A4

by labelling the vertices of the tetrahedron by 1, 2, 3 and 4 and identifying each rotation
with a permutation of {1, 2, 3, 4}.

3.25 Example: Show that An is generated by the set of all 3-cycles, then show that for
any a 6= b ∈ {1, 2, · · · , n}, An is generated by the 3-cycles of the form (abk) with k 6= a, b.

Solution: We already know that every permutation in An is equal to a product of an even
number of 2-cycles. Every product of a pair of 2-cycles is of one of the forms (ab)(ab),
(ab)(ac) or (ab)(cd), where a, b, c, d are distinct, and we have

(ab)(ab) = (abc)(acb) , (ab)(ac) = (acb) , (ab)(cd) = (adc)(abc) ,

and so An is generated by the set of all 3-cycles. Now fix a, b ∈ {1, 2, · · · , n} with a 6= b.
Note that every 3-cycle is of one of the forms (abk), (akb), (akl), (bkl) or (klm), where
a, b, k, l,m are all distinct, and we have

(akb)=(abk)2 , (akl)=(abl)(abk)2 , (bkl)=(abl)2(abk) , (klm)=(abk)2(abm)(abl)2(abk) .
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