Chapter 4. Group Homomorphisms and Isomorphisms

4.1 Note: We recall the following terminology. Let X and Y be sets. When we say that f is a **function** or a **map** from X to Y, written $f : X \to Y$, we mean that for every $x \in X$ there exists a unique corresponding element $y = f(x) \in Y$. The set X is called the **domain** of f and the **range** or **image** of f is the set $\text{Image}(f) = f(X) = \{f(x) | x \in X\}$. For a set $A \subseteq X$, the **image** of A under f is the set $f(A) = \{f(a) | a \in A\}$ and for a set $B \subseteq Y$, the **inverse image** of B under f is the set $f^{-1}(B) = \{x \in X | f(x) \in B\}$.

For a function $f: X \to Y$, we say f is **one-to-one** (written 1:1) or **injective** when for every $y \in Y$ there exists at most one $x \in X$ such that y = f(x), we say f is **onto** or **surjective** when for every $y \in Y$ there exists at least one $x \in X$ such that y = f(x), and we say f is **invertible** or **bijective** when f is 1:1 and onto, that is for every $y \in Y$ there exists a unique $x \in X$ such that y = f(x). When f is invertible, the **inverse** of f is the function $f^{-1}: Y \to X$ defined by $f^{-1}(y) = x \iff y = f(x)$.

For $f : X \to Y$ and $g : Y \to Z$, the **composite** $g \circ f : X \to Z$ is given by $(g \circ f)(x) = g(f(x))$. Note that if f and g are both injective then so is the composite $g \circ f$, and if f and g are both surjective then so is $g \circ f$.

4.2 Definition: Let G and H be groups. A group **homomorphism** from G to H is a function $\phi: G \to H$ such that

$$\phi(ab) = \phi(a)\phi(b)$$

for all $a, b \in G$, or to be more precise, such that $\phi(a * b) = \phi(a) \times \phi(b)$ for all $a, b \in G$, where * is the operation on G and \times is the operation on H. The **kernel** of ϕ is the set

$$\operatorname{Ker}(\phi) = \phi^{-1}(e) = \{a \in G | \phi(a) = e\}$$

where $e = e_{\rm H}$ is the identity in *H*, and the **image** (or **range**) of ϕ is

Image
$$(\phi) = \phi(G) = \{\phi(a) | a \in G\}.$$

A group **isomorphism** from G to H is a bijective group homomorphism $\phi : G \to H$. For two groups G and H, we say that G and H are **isomorphic** and we write $G \cong H$ when there exists an isomorphism $\phi : G \to H$. An **endomorphism** of a group G is a homomorphism from G to itself. An **automorphism** of a group G is an isomorphism from G to itself. The set of all homomorphisms from G to H, the set of all isomorphisms from G to H, the set of all endomorphisms of G, and the set of all automorphisms of G will be denoted by

$$\operatorname{Hom}(G, H)$$
, $\operatorname{Iso}(G, H)$, $\operatorname{End}(G)$, $\operatorname{Aut}(G)$.

4.3 Remark: In algebra, we consider isomorphic groups to be (essentially) equivalent. The **classification problem** for finite groups is to determine, given any $n \in \mathbb{Z}^+$, the complete list of all groups, up to isomorphism, of order n.

4.4 Example: The groups U_{12} and \mathbb{Z}_2^2 are isomorphic. One way to see this is to compare their operation tables.

	1	5	7	11		(0,0)	(0, 1)	(1, 0)	(1,1)
1	1	5	7	11	(0, 0)	(0, 0)	(0, 1)	(1, 0)	(1, 1)
5	5	1	11	7	(0,1)	(0, 1)	(0, 0)	(1, 1)	(1, 0)
$\overline{7}$	$\overline{7}$	11	1	5	(1, 0)	(1, 0)	(1, 1)	(0, 0)	(0, 1)
11	11	7	5	1	(1, 1)	(1, 1)	(1, 0)	(0, 1)	(0, 0)

We see that all the entries in these tables correspond under the map $\phi : U_{12} \to \mathbb{Z}_2^2$ given by $\phi(1) = (0,0), \ \phi(5) = (0,1), \ \phi(7) = (1,0)$ and $\phi(1,1) = (1,1)$, so ϕ is an isomorphism.

4.5 Example: Let G be a group and let $a \in G$. Then the map $\phi_a : \mathbb{Z} \to G$ given by $\phi_a(k) = a^k$ is a group homomorphism since $\phi_a(k+\ell) = a^{k+\ell} = a^k a^\ell = \phi_a(k)\phi_a(\ell)$. The image of ϕ_a is

Image
$$(\phi_a) = \left\{ a^k \middle| k \in \mathbb{Z} \right\} = \langle a \rangle$$

and the kernel of ϕ_a is

$$\operatorname{Ker}(\phi_a) = \left\{ k \in \mathbb{Z} \middle| a^k = e \right\} = \left\{ \begin{array}{l} \langle n \rangle = n\mathbb{Z} , \text{ if } |a| = n, \\ \langle 0 \rangle = \{0\} , \text{ if } |a| = \infty. \end{array} \right.$$

4.6 Example: Let G be a group and let $a \in G$. If $|a| = \infty$ then the map $\phi_a : \mathbb{Z} \to \langle a \rangle$ given by $\phi(k) = a^k$ is an isomorphism, and if |a| = n then the map $\phi_a : \mathbb{Z}_n \to \langle a \rangle$ given by $\phi_a(k) = a^k$ is an isomorphism (note that ϕ_a is well-defined because if $k = \ell \mod n$ then $a^k = a^\ell$ by Theorem 2.3). In each case, ϕ is a homomorphism since $a^{k+\ell} = a^k a^\ell$ and ϕ is bijective by Theorem 2.3.

4.7 Example: When R is a commutative ring with 1, the map $\phi : GL_n(R) \to R^*$ given by $\phi(A) = \det(A)$ is a group homomorphism since $\det(AB) = \det(A) \det(B)$. The kernel is

$$\operatorname{Ker}(\phi) = \left\{ A \in GL_n(R) \middle| \det(A) = 1 \right\} = SL_n(R)$$

and the image is

$$\operatorname{Image}(\phi) = \left\{ \det(A) \middle| A \in GL_n(R) \right\} = R^*$$

since for $a \in R^*$ we have det $(\text{diag}(a, 1, 1, \dots, 1)) = a$.

4.8 Example: The map $\phi : \mathbb{R} \to \mathbb{R}^+$ given by $\phi(x) = e^x$ is a group isomorphism since it is bijective and $\phi(x+y) = e^{x+y} = e^x e^y = \phi(x)\phi(y)$.

4.9 Example: The map $\phi: SO_2(\mathbb{R}) \to \mathbb{S}^1$ given by $\phi(R_\theta) = e^{i\theta}$ is a group isomorphism.

4.10 Theorem: Let G and H be groups and let $\phi : G \to H$ be a group homomorphism. Then

(1) $\phi(e_{\rm G}) = e_{\rm H}$, (2) $\phi(a^{-1}) = \phi(a)^{-1}$ for all $a \in G$, (3) $\phi(a^k) = \phi(a)^k$ for all $a \in G$ and all $k \in \mathbb{Z}$, and (4) for $a \in G$, if |a| is finite then $|\phi(a)|$ divides |a|.

Proof: To prove (1), note that $\phi(e_{\rm G}) = \phi(e_{\rm G} e_{\rm G}) = \phi(e_{\rm G})\phi(e_{\rm G})$ so $\phi(e_{\rm G}) = e_{\rm H}$ by cancellation. To prove (2) note that $\phi(a)\phi(a^{-1}) = \phi(aa^{-1}) = \phi(e_{\rm G}) = e_{\rm H}$, so $\phi(a)^{-1} = \phi(a^{-1})$ by cancellation. For part (3), note first that $\phi(a^0) = \phi(a)^0$ by part (1), and then note that when $k \in \mathbb{Z}^+$ we have $\phi(a^k) = \phi(aa\cdots a) = \phi(a)\phi(a)\cdots \phi(a) = \phi(a)^k$ and hence also $\phi(a^{-k}) = \phi((a^{-1})^k) = \phi(a^{-1})^k = (\phi(a)^{-1})^k = \phi(a)^{-k}$. For part (4) note that if |a| = n then we have $\phi(a)^n = \phi(a^n) = \phi(e_{\rm G}) = e_{\rm H}$ and so $|\phi(a)|$ divides n by Theorem 2.3.

4.11 Theorem: Let G, H and K be groups. Let $\phi : G \to H$ and $\psi : H \to K$ be group homomorphisms. Then

- (1) the identity $I: G \to G$ given by I(x) = x for all $x \in G$, is an isomorphism,
- (2) the composite $\psi \circ \phi : G \to K$ is a group homomorphism, and
- (3) if $\phi: G \to H$ is an isomorphism then so is its inverse $\phi^{-1}: H \to G$.

Proof: We prove part (3) and leave the proofs of (1) and (2) as an exercise. Suppose that $\phi: G \to H$ is an isomorphism. Let $\psi = \phi^{-1}: H \to G$. We know that ψ is bijective, so we just need to show that ψ is a homomorphism. Let $c, d \in H$. Let $a = \phi(c)$ and $b = \psi(d)$. Since ϕ is a homomorphism we have $\phi(ab) = \phi(a)\phi(b)$, and so

$$\psi(cd) = \psi(\phi(a)\phi(b)) = \psi(\phi(ab)) = ab = \psi(c)\psi(d).$$

4.12 Corollary: Isomorphism is an equivalence relation on the class of groups. This means that for all groups G, H and K we have

(1) $G \cong G$,

(2) if $G \cong H$ and $H \cong K$ then $G \cong K$, and

(3) if $G \cong H$ then $H \cong G$.

4.13 Corollary: For a group G, Aut(G) is a group under composition.

4.14 Theorem: Let $\phi: G \to H$ be a homomorphism of groups. Then

(1) if $K \leq G$ then $\phi(K) \leq H$, in particular Image $(\phi) \leq H$,

(2) if $L \leq H$ then $\phi^{-1}(L) \leq G$, in particular $\operatorname{Ker}(\phi) \leq G$.

Proof: The proof is left as an exercise.

4.15 Theorem: Let $\phi : G \to H$ be a homomorphism of groups. Then

(1) ϕ is injective if and only if $Ker(\phi) = \{e\}$, and

(2) ϕ is surjective if and only if Image(ϕ) = H.

Proof: The proof is left as an exercise.

4.16 Theorem: Let $\phi : G \to H$ be an isomorphism of groups. Then

- (1) G is abelian if and only if H is abelian,
- (2) for $a \in G$ we have $|\phi(a)| = |a|$,

(3) G is cyclic with $G = \langle a \rangle$ if and only if H is cyclic with $H = \langle \phi(a) \rangle$,

(4) for $n \in \mathbb{Z}^+$ we have $\left|\left\{a \in G \middle| |a| = n\right\}\right| = \left|\left\{b \in H \middle| |b| = n\right\}\right|$,

(5) for $K \leq G$ the restriction $\phi: K \to \phi(K)$ is an isomorphism of groups, and

(6) for any group C we have $|\{K \le G | K \cong C\}| = |\{L \le H | L \cong C\}|.$

Proof: The proof is left as an exercise.

4.17 Example: Note that $\mathbb{Q}^* \not\cong \mathbb{R}^*$ since $|\mathbb{Q}^*| \neq |\mathbb{R}^*|$. Similarly, $GL_3(\mathbb{Z}_2) \not\cong S_5$ because $|GL_3(\mathbb{Z}_2)| = 168$ but $|S_5| = 120$.

4.18 Example: $\mathbb{C}^* \not\cong GL_2(\mathbb{R})$ since \mathbb{C}^* is abelian but $GL_n(\mathbb{R})$ is not. Similarly, $S_4 \not\cong U_{35}$ because U_{35} is abelian but S_4 is not.

4.19 Example: $\mathbb{R}^* \not\cong \mathbb{C}^*$ since \mathbb{C}^* has elements of order $n \ge 3$, for example |i| = 4 in \mathbb{C}^* , but \mathbb{R}^* has no elements of order $n \ge 3$, indeed in \mathbb{R}^* , |1| = 1 and |-1| = 2 and for $x \ne \pm 1$ we have $|x| = \infty$.

4.20 Example: Determine whether $U_{35} \cong \mathbb{Z}_{24}$.

Solution: In U_{35} we have

We notice that U_{35} has at least two elements of order 2, namely 29 and 34, but \mathbb{Z}_{24} has only one element of order 2, namely 12. Thus $U_{35} \not\cong \mathbb{Z}_{24}$.

4.21 Theorem: Let $a, b \in \mathbb{Z}^+$ with gcd(a, b) = 1. Then

(1) $\mathbb{Z}_{ab} \cong \mathbb{Z}_a \times \mathbb{Z}_b$ and (2) $U_{ab} \cong U_a \times U_b$.

Proof: We prove part (2) (the proof of part (1) is similar). Define $\phi : U_{ab} \to U_a \times U_b$ by $\phi(k) = (k, k)$. This map ϕ is well-defined because if $k = \ell \mod a$ then $k = \ell \mod a$ and $k = \ell \mod b$ and because if gcd(k, ab) = 1 so that $k \in U_{ab}$ then gcd(k, a) = gcd(k, b) = 1. Also, ϕ is a group homomorphism since $\phi(k\ell) = (k\ell, k\ell) = (k, k)(\ell, \ell) = \phi(k)\phi(\ell)$. Finally note that ϕ is bijective by the Chinese Remainder Theorem, indeed ϕ is onto because given $k \in U_a$ and $\ell \in U_b$ there exists $x \in \mathbb{Z}$ with $x = k \mod a$ and $x = \ell \mod b$ and we then have gcd(x, a) = gcd(k, a) = 1 and $gcd(x, b) = gcd(\ell, b) = 1$ so that gcd(x, ab) = 1, that is $x \in U_{ab}$, and ϕ is 1:1 because this solution x is unique modulo ab.

4.22 Corollary: If $n = \prod_{i=1}^{\ell} p_i^{k_i}$ where the p_i are distinct primes and each $k_i \in \mathbb{Z}^+$ then

$$\phi(n) = \prod_{i=1}^{\ell} \left(p_i^{k_i} - p_i^{k_i - 1} \right) = n \cdot \prod_{i=1}^{\ell} \left(1 - \frac{1}{p_i} \right)$$

4.23 Definition: Let G be a group. For $a \in G$, we define **left multiplication** by a to be the map $L_a: G \to G$ given by

$$L_a(x) = ax$$
 for $x \in G$.

Note that $L_e = I$ (since $L_e(x) = ex = x = I(x)$ for all $x \in G$) and $L_a L_b = L_{ab}$ since $L_a(L_b(x)) = L_a(bx) = abx = L_{ab}(x)$ for all $x \in G$. Similarly, we define **rightmultiplication** by *a* to be the map $R_a : G \to G$ given by $R_a(x) = ax$ for $x \in G$. Also, we define **conjugation** by *a* to be the map $C_a : G \to G$ by

$$C_a(x) = a x a^{-1}$$
 for $x \in G$.

The map $L_a: G \to G$ is not necessarily a group homomorphism since $L_a(xy) = axy$ while $L_a(x)L_a(y) = axay$. On the other hand, the map $C_a: G \to G$ is a group homomorphism because $C_a(xy) = axya^{-1} = axa^{-1}aya^{-1} = C_a(x)C_a(y)$. Indeed C_a is an automorphism of G because it is invertible with $C_a^{-1} = C_{a^{-1}}$. An automorphism of G of the form C_a is called an **inner automorphism** of G. The set of all inner automorphisms of G is denoted by Inn(G), so we have

$$\operatorname{Inn}(G) = \left\{ C_a \middle| a \in G \right\}.$$

Note that $\text{Inn}(G) \leq \text{Aut}(G)$ because $I = C_e$, $C_a C_b = C_{ab}$ and $C_a^{-1} = C_{a^{-1}}$. Note that when $H \leq G$, the restriction of the conjugation map C_a gives an isomorphism from H to the group

$$C_a(H) = aHa^{-1} = \{aha^{-1} | h \in H\} \cong H.$$

The isomorphic groups H and $C_a(H) = aHa^{-1}$ are called **conjugate** subgroups of G.

4.24 Example: As an exercise, find $Inn(D_4)$ and show that $Inn(D_4) \neq Aut(D_4)$.

4.25 Example: Let G be a finite set with |G| = n. Let $S = \{1, 2, \dots, n\}$ and let $f: G \to S$ be a bijection. The map $C_f: \operatorname{Perm}(G) \to S_n$ given by $C_f(g) = fgf^{-1}$ is a group isomorphism. Indeed, C_f is well-defined since when $g \in \operatorname{Perm}(G)$ the map fgf^{-1} is invertible with $(fgf^{-1})^{-1} = fg^{-1}f^{-1}$, and C_f is a group homomorphism since $C_f(gh) = fghf^{-1} = fgf^{-1}fhf^{-1} = C_f(g)C_f(h)$, and C_f is bijective with inverse $C_f^{-1} = C_{f^{-1}}$.

4.26 Theorem: (Cayley's Theorem) Let G be a group.

(1) G is isomorphic to a subgroup of Perm(G).

(2) If |G| = n then G is isomorphic to a subgroup of S_n .

Proof: Define $\phi : G \to \operatorname{Perm}(G)$ by $\phi(a) = L_a$. Note that $L_a \in \operatorname{Perm}(G)$ because L_a is invertible with inverse $L_a^{-1} = L_{a^{-1}}$. Also, ϕ is a group homomorphism because $\phi(ab) = L_{ab} = L_a L_b$ and ϕ is injective because $L_a = I \Longrightarrow a = e$ (indeed if $L_a = I$ then $a = ae = L_a(e) = I(e) = e$). Thus ϕ is an isomorphism from G to $\phi(G)$, which is a subgroup of $\operatorname{Perm}(G)$.

Now suppose that |G| = n, say $f : G \to \{1, 2, \dots, n\}$ is a bijection. Then the map $C_f \circ \phi$ is an injective group homomorphism (where $C_f(g) = fgf^{-1}$, as above), and so G is isomorphic to $C_f(\phi(G))$ which is a subgroup of S_n .

4.27 Example: Show that $\operatorname{Hom}(\mathbb{Z}, G) = \{\phi_a | a \in G\}$, where $\phi_a(k) = a^k$.

Solution: Let $\phi \in \text{Hom}(\mathbb{Z}, G)$. Let $a = \phi(1)$. Then for all $k \in \mathbb{Z}$ we have $\phi(k) = \phi(k \cdot 1) = \phi(1)^k = a^k$, and so $\phi = \phi_a$. On the other hand, note that for $a \in G$ the map ϕ_a given by $\phi_a(k) = a^k$ is a group homomorphism because $\phi_a(k+l) = a^{k+l} = a^k a^l = \phi_a(k)\phi_a(l)$.

4.28 Example: Show that $\operatorname{Hom}(\mathbb{Z}_n, G) = \{\phi_a | a \in G, a^n = e\}$, where $\phi_a(k) = a^k$.

Solution: Let $\phi \in \text{Hom}(\mathbb{Z}_n, G)$. Let $a = \phi(1)$. Then for all $k \in \mathbb{Z}$ we have $\phi(k) = \phi(k \cdot 1) = \phi(1)^k = a^k$ so that $\phi = \phi_a$, and we have $a^n = \phi(n) = \phi(0) = e$. On the other hand, note that for $a \in G$ with $a^n = e$, the map ϕ_a is well-defined because if $k = l \mod n$ the $a^k = a^l$ and it is a homomorphism because $a^{k+l} = a^k a^l$.

4.29 Example: As an exercise, describe $\operatorname{Hom}(\mathbb{Z}_n \times \mathbb{Z}_m, G)$.

4.30 Example: As an exercise, describe $Hom(D_n, G)$.