## Chapter 4. Group Homomorphisms and Isomorphisms

4.1 Note: We recall the following terminology. Let $X$ and $Y$ be sets. When we say that $f$ is a function or a map from $X$ to $Y$, written $f: X \rightarrow Y$, we mean that for every $x \in X$ there exists a unique corresponding element $y=f(x) \in Y$. The set $X$ is called the domain of $f$ and the range or image of $f$ is the set Image $(f)=f(X)=\{f(x) \mid x \in X\}$. For a set $A \subseteq X$, the image of $A$ under $f$ is the set $f(A)=\{f(a) \mid a \in A\}$ and for a set $B \subseteq Y$, the inverse image of $B$ under $f$ is the set $f^{-1}(B)=\{x \in X \mid f(x) \in B\}$.

For a function $f: X \rightarrow Y$, we say $f$ is one-to-one (written 1:1) or injective when for every $y \in Y$ there exists at most one $x \in X$ such that $y=f(x)$, we say $f$ is onto or surjective when for every $y \in Y$ there exists at least one $x \in X$ such that $y=f(x)$, and we say $f$ is invertible or bijective when $f$ is $1: 1$ and onto, that is for every $y \in Y$ there exists a unique $x \in X$ such that $y=f(x)$. When $f$ is invertible, the inverse of $f$ is the function $f^{-1}: Y \rightarrow X$ defined by $f^{-1}(y)=x \Longleftrightarrow y=f(x)$.

For $f: X \rightarrow Y$ and $g: Y \rightarrow Z$, the composite $g \circ f: X \rightarrow Z$ is given by $(g \circ f)(x)=g(f(x))$. Note that it $f$ and $g$ are both injective then so is the composite $g \circ f$, and if $f$ and $g$ are both surjective then so is $g \circ f$.
4.2 Definition: Let $G$ and $H$ be groups. A group homomorphism from $G$ to $H$ is a function $\phi: G \rightarrow H$ such that

$$
\phi(a b)=\phi(a) \phi(b)
$$

for all $a, b \in G$, or to be more precise, such that $\phi(a * b)=\phi(a) \times \phi(b)$ for all $a, b \in G$, where $*$ is the operation on $G$ and $\times$ is the operation on $H$. The kernel of $\phi$ is the set

$$
\operatorname{Ker}(\phi)=\phi^{-1}(e)=\{a \in G \mid \phi(a)=e\}
$$

where $e=e_{\mathrm{H}}$ is the identity in $H$, and the image (or range) of $\phi$ is

$$
\operatorname{Image}(\phi)=\phi(G)=\{\phi(a) \mid a \in G\}
$$

A group isomorphism from $G$ to $H$ is a bijective group homomorphism $\phi: G \rightarrow H$. For two groups $G$ and $H$, we say that $G$ and $H$ are isomorphic and we write $G \cong H$ when there exists an isomorphism $\phi: G \rightarrow H$. An endomorphism of a group $G$ is a homomorphism from $G$ to itself. An automorphism of a group $G$ is an isomorphism from $G$ to itself. The set of all homomorphisms from $G$ to $H$, the set of all isomorphisms from $G$ to $H$, the set of all endomorphisms of $G$, and the set of all automorphisms of $G$ will be denoted by

$$
\operatorname{Hom}(G, H), \operatorname{Iso}(G, H), \operatorname{End}(G), \operatorname{Aut}(G)
$$

4.3 Remark: In algebra, we consider isomorphic groups to be (essentially) equivalent. The classification problem for finite groups is to determine, given any $n \in \mathbb{Z}^{+}$, the complete list of all groups, up to isomorphism, of order $n$.
4.4 Example: The groups $U_{12}$ and $\mathbb{Z}_{2}{ }^{2}$ are isomorphic. One way to see this is to compare their operation tables.

|  | 1 | 5 | 7 | 11 |  | $(0,0)$ | $(0,1)$ | $(1,0)$ | $(1,1)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 5 | 7 | 11 | $(0,0)$ | $(0,0)$ | $(0,1)$ | $(1,0)$ | $(1,1)$ |
| 5 | 5 | 1 | 11 | 7 | $(0,1)$ | $(0,1)$ | $(0,0)$ | $(1,1)$ | $(1,0)$ |
| 7 | 7 | 11 | 1 | 5 | $(1,0)$ | $(1,0)$ | $(1,1)$ | $(0,0)$ | $(0,1)$ |
| 11 | 11 | 7 | 5 | 1 | $(1,1)$ | $(1,1)$ | $(1,0)$ | $(0,1)$ | $(0,0)$ |

We see that all the entries in these tables correspond under the map $\phi: U_{12} \rightarrow \mathbb{Z}_{2}{ }^{2}$ given by $\phi(1)=(0,0), \phi(5)=(0,1), \phi(7)=(1,0)$ and $\phi(1,1)=(1,1)$, so $\phi$ is an isomorphism.
4.5 Example: Let $G$ be a group and let $a \in G$. Then the map $\phi_{a}: \mathbb{Z} \rightarrow G$ given by $\phi_{a}(k)=a^{k}$ is a group homomorphism since $\phi_{a}(k+\ell)=a^{k+\ell}=a^{k} a^{\ell}=\phi_{a}(k) \phi_{a}(\ell)$. The image of $\phi_{a}$ is

$$
\operatorname{Image}\left(\phi_{a}\right)=\left\{a^{k} \mid k \in \mathbb{Z}\right\}=\langle a\rangle
$$

and the kernel of $\phi_{a}$ is

$$
\operatorname{Ker}\left(\phi_{a}\right)=\left\{k \in \mathbb{Z} \mid a^{k}=e\right\}=\left\{\begin{array}{l}
\langle n\rangle=n \mathbb{Z}, \text { if }|a|=n \\
\langle 0\rangle=\{0\}, \text { if }|a|=\infty
\end{array}\right.
$$

4.6 Example: Let $G$ be a group and let $a \in G$. If $|a|=\infty$ then the map $\phi_{a}: \mathbb{Z} \rightarrow\langle a\rangle$ given by $\phi(k)=a^{k}$ is an isomorphism, and if $|a|=n$ then the map $\phi_{a}: \mathbb{Z}_{n} \rightarrow\langle a\rangle$ given by $\phi_{a}(k)=a^{k}$ is an isomorphism (note that $\phi_{a}$ is well-defined because if $k=\ell \bmod n$ then $a^{k}=a^{\ell}$ by Theorem 2.3). In each case, $\phi$ is a homomorphism since $a^{k+\ell}=a^{k} a^{\ell}$ and $\phi$ is bijective by Theorem 2.3.
4.7 Example: When $R$ is a commutative ring with 1 , the map $\phi: G L_{n}(R) \rightarrow R^{*}$ given by $\phi(A)=\operatorname{det}(A)$ is a group homomorphism since $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. The kernel is

$$
\operatorname{Ker}(\phi)=\left\{A \in G L_{n}(R) \mid \operatorname{det}(A)=1\right\}=S L_{n}(R)
$$

and the image is

$$
\operatorname{Image}(\phi)=\left\{\operatorname{det}(A) \mid A \in G L_{n}(R)\right\}=R^{*}
$$

since for $a \in R^{*}$ we have $\operatorname{det}(\operatorname{diag}(a, 1,1, \cdots, 1))=a$.
4.8 Example: The map $\phi: \mathbb{R} \rightarrow \mathbb{R}^{+}$given by $\phi(x)=e^{x}$ is a group isomorphism since it is bijective and $\phi(x+y)=e^{x+y}=e^{x} e^{y}=\phi(x) \phi(y)$.
4.9 Example: The map $\phi: S O_{2}(\mathbb{R}) \rightarrow \mathbb{S}^{1}$ given by $\phi\left(R_{\theta}\right)=e^{i \theta}$ is a group isomorphism.
4.10 Theorem: Let $G$ and $H$ be groups and let $\phi: G \rightarrow H$ be a group homomorphism. Then
(1) $\phi\left(e_{\mathrm{G}}\right)=e_{\mathrm{H}}$,
(2) $\phi\left(a^{-1}\right)=\phi(a)^{-1}$ for all $a \in G$,
(3) $\phi\left(a^{k}\right)=\phi(a)^{k}$ for all $a \in G$ and all $k \in \mathbb{Z}$, and
(4) for $a \in G$, if $|a|$ is finite then $|\phi(a)|$ divides $|a|$.

Proof: To prove (1), note that $\phi\left(e_{\mathrm{G}}\right)=\phi\left(e_{\mathrm{G}} e_{\mathrm{G}}\right)=\phi\left(e_{\mathrm{G}}\right) \phi\left(e_{\mathrm{G}}\right)$ so $\phi\left(e_{\mathrm{G}}\right)=e_{\mathrm{H}}$ by cancellation. To prove (2) note that $\phi(a) \phi\left(a^{-1}\right)=\phi\left(a a^{-1}\right)=\phi\left(e_{\mathrm{G}}\right)=e_{\mathrm{H}}$, so $\phi(a)^{-1}=\phi\left(a^{-1}\right)$ by cancellation. For part (3), note first that $\phi\left(a^{0}\right)=\phi(a)^{0}$ by part (1), and then note that when $k \in \mathbb{Z}^{+}$we have $\phi\left(a^{k}\right)=\phi(a a \cdots a)=\phi(a) \phi(a) \cdots \phi(a)=\phi(a)^{k}$ and hence also $\phi\left(a^{-k}\right)=\phi\left(\left(a^{-1}\right)^{k}\right)=\phi\left(a^{-1}\right)^{k}=\left(\phi(a)^{-1}\right)^{k}=\phi(a)^{-k}$. For part (4) note that if $|a|=n$ then we have $\phi(a)^{n}=\phi\left(a^{n}\right)=\phi\left(e_{\mathrm{G}}\right)=e_{\mathrm{H}}$ and so $|\phi(a)|$ divides $n$ by Theorem 2.3.
4.11 Theorem: Let $G, H$ and $K$ be groups. Let $\phi: G \rightarrow H$ and $\psi: H \rightarrow K$ be group homomorphisms. Then
(1) the identity $I: G \rightarrow G$ given by $I(x)=x$ for all $x \in G$, is an isomorphism,
(2) the composite $\psi \circ \phi: G \rightarrow K$ is a group homomorphism, and
(3) if $\phi: G \rightarrow H$ is an isomorphism then so is its inverse $\phi^{-1}: H \rightarrow G$.

Proof: We prove part (3) and leave the proofs of (1) and (2) as an exercise. Suppose that $\phi: G \rightarrow H$ is an isomorphism. Let $\psi=\phi^{-1}: H \rightarrow G$. We know that $\psi$ is bijective, so we just need to show that $\psi$ is a homomorphism. Let $c, d \in H$. Let $a=\phi(c)$ and $b=\psi(d)$. Since $\phi$ is a homomorphism we have $\phi(a b)=\phi(a) \phi(b)$, and so

$$
\psi(c d)=\psi(\phi(a) \phi(b))=\psi(\phi(a b))=a b=\psi(c) \psi(d)
$$

4.12 Corollary: Isomorphism is an equivalence relation on the class of groups. This means that for all groups $G, H$ and $K$ we have
(1) $G \cong G$,
(2) if $G \cong H$ and $H \cong K$ then $G \cong K$, and
(3) if $G \cong H$ then $H \cong G$.
4.13 Corollary: For a group $G, \operatorname{Aut}(G)$ is a group under composition.
4.14 Theorem: Let $\phi: G \rightarrow H$ be a homomorphism of groups. Then
(1) if $K \leq G$ then $\phi(K) \leq H$, in particular Image $(\phi) \leq H$,
(2) if $L \leq H$ then $\phi^{-1}(L) \leq G$, in particular $\operatorname{Ker}(\phi) \leq G$.

Proof: The proof is left as an exercise.
4.15 Theorem: Let $\phi: G \rightarrow H$ be a homomorphism of groups. Then
(1) $\phi$ is injective if and only if $\operatorname{Ker}(\phi)=\{e\}$, and
(2) $\phi$ is surjective if and only if Image $(\phi)=H$.

Proof: The proof is left as an exercise.
4.16 Theorem: Let $\phi: G \rightarrow H$ be an isomorphism of groups. Then
(1) $G$ is abelian if and only if $H$ is abelian,
(2) for $a \in G$ we have $|\phi(a)|=|a|$,
(3) $G$ is cyclic with $G=\langle a\rangle$ if and only if $H$ is cyclic with $H=\langle\phi(a)\rangle$,
(4) for $n \in \mathbb{Z}^{+}$we have $|\{a \in G||a|=n\}|=|\{b \in H| | b \mid=n\}|$,
(5) for $K \leq G$ the restriction $\phi: K \rightarrow \phi(K)$ is an isomorphism of groups, and
(6) for any group $C$ we have $|\{K \leq G \mid K \cong C\}|=|\{L \leq H \mid L \cong C\}|$.

Proof: The proof is left as an exercise.
4.17 Example: Note that $\mathbb{Q}^{*} \not \not \mathbb{R}^{*}$ since $\left|\mathbb{Q}^{*}\right| \neq\left|\mathbb{R}^{*}\right|$. Similarly, $G L_{3}\left(\mathbb{Z}_{2}\right) \not \neq S_{5}$ because $\left|G L_{3}\left(\mathbb{Z}_{2}\right)\right|=168$ but $\left|S_{5}\right|=120$.
4.18 Example: $\mathbb{C}^{*} \not \neq G L_{2}(\mathbb{R})$ since $\mathbb{C}^{*}$ is abelian but $G L_{n}(\mathbb{R})$ is not. Similarly, $S_{4} \not \neq U_{35}$ because $U_{35}$ is abelian but $S_{4}$ is not.
4.19 Example: $\mathbb{R}^{*} \not \not \mathbb{C}^{*}$ since $\mathbb{C}^{*}$ has elements of order $n \geq 3$, for example $|i|=4$ in $\mathbb{C}^{*}$, but $\mathbb{R}^{*}$ has no elements of order $n \geq 3$, indeed in $\mathbb{R}^{*},|1|=1$ and $|-1|=2$ and for $x \neq \pm 1$ we have $|x|=\infty$.
4.20 Example: Determine whether $U_{35} \cong \mathbb{Z}_{24}$.

Solution: In $U_{35}$ we have

$$
\begin{array}{cccccccccccccc}
k & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
2^{k} & 1 & 2 & 4 & 8 & 16 & 32 & 29 & 23 & 11 & 22 & 9 & 18 & 1
\end{array}
$$

We notice that $U_{35}$ has at least two elements of order 2 , namely 29 and 34 , but $\mathbb{Z}_{24}$ has only one element of order 2 , namely 12 . Thus $U_{35} \not \not \mathbb{Z}_{24}$.
4.21 Theorem: Let $a, b \in \mathbb{Z}^{+}$with $\operatorname{gcd}(a, b)=1$. Then
(1) $\mathbb{Z}_{a b} \cong \mathbb{Z}_{a} \times \mathbb{Z}_{b}$ and
(2) $U_{a b} \cong U_{a} \times U_{b}$.

Proof: We prove part (2) (the proof of part (1) is similar). Define $\phi: U_{a b} \rightarrow U_{a} \times U_{b}$ by $\phi(k)=(k, k)$. This map $\phi$ is well-defined because if $k=\ell \bmod a b$ then $k=\ell \bmod a$ and $k=\ell \bmod b$ and because if $\operatorname{gcd}(k, a b)=1$ so that $k \in U_{a b}$ then $\operatorname{gcd}(k, a)=\operatorname{gcd}(k, b)=1$. Also, $\phi$ is a group homomorphism since $\phi(k \ell)=(k \ell, k \ell)=(k, k)(\ell, \ell)=\phi(k) \phi(\ell)$. Finally note that $\phi$ is bijective by the Chinese Remainder Theorem, indeed $\phi$ is onto because given $k \in U_{a}$ and $\ell \in U_{b}$ there exists $x \in \mathbb{Z}$ with $x=k \bmod a$ and $x=\ell \bmod b$ and we then have $\operatorname{gcd}(x, a)=\operatorname{gcd}(k, a)=1$ and $\operatorname{gcd}(x, b)=\operatorname{gcd}(\ell, b)=1$ so that $\operatorname{gcd}(x, a b)=1$, that is $x \in U_{a b}$, and $\phi$ is 1:1 because this solution $x$ is unique modulo $a b$.
4.22 Corollary: If $n=\prod_{i=1}^{\ell} p_{i}{ }^{k_{i}}$ where the $p_{i}$ are distinct primes and each $k_{i} \in \mathbb{Z}^{+}$then

$$
\phi(n)=\prod_{i=1}^{\ell}\left(p_{i}^{k_{i}}-p_{i}^{k_{i}-1}\right)=n \cdot \prod_{i=1}^{\ell}\left(1-\frac{1}{p_{i}}\right) .
$$

4.23 Definition: Let $G$ be a group. For $a \in G$, we define left multiplication by $a$ to be the map $L_{a}: G \rightarrow G$ given by

$$
L_{a}(x)=a x \text { for } x \in G .
$$

Note that $L_{e}=I$ (since $L_{e}(x)=e x=x=I(x)$ for all $\left.x \in G\right)$ and $L_{a} L_{b}=L_{a b}$ since $L_{a}\left(L_{b}(x)\right)=L_{a}(b x)=a b x=L_{a b}(x)$ for all $x \in G$. Similarly, we define rightmultiplication by $a$ to be the map $R_{a}: G \rightarrow G$ given by $R_{a}(x)=a x$ for $x \in G$. Also, we define conjugation by $a$ to be the map $C_{a}: G \rightarrow G$ by

$$
C_{a}(x)=a x a^{-1} \text { for } x \in G
$$

The map $L_{a}: G \rightarrow G$ is not necessarily a group homomorphism since $L_{a}(x y)=a x y$ while $L_{a}(x) L_{a}(y)=$ axay. On the other hand, the map $C_{a}: G \rightarrow G$ is a group homomorphism because $C_{a}(x y)=a x y a^{-1}=a x a^{-1} a y a^{-1}=C_{a}(x) C_{a}(y)$. Indeed $C_{a}$ is an automorphism of $G$ because it is invertible with $C_{a}^{-1}=C_{a^{-1}}$. An automorphism of $G$ of the form $C_{a}$ is called an inner automorphism of $G$. The set of all inner automorphisms of $G$ is denoted by $\operatorname{Inn}(G)$, so we have

$$
\operatorname{Inn}(G)=\left\{C_{a} \mid a \in G\right\}
$$

Note that $\operatorname{Inn}(G) \leq \operatorname{Aut}(G)$ because $I=C_{e}, C_{a} C_{b}=C_{a b}$ and $C_{a}^{-1}=C_{a^{-1}}$. Note that when $H \leq G$, the restriction of the conjugation map $C_{a}$ gives an isomorphism from $H$ to the group

$$
C_{a}(H)=a H a^{-1}=\left\{a h a^{-1} \mid h \in H\right\} \cong H
$$

The isomorphic groups $H$ and $C_{a}(H)=a H a^{-1}$ are called conjugate subgroups of $G$.
4.24 Example: As an exercise, find $\operatorname{Inn}\left(D_{4}\right)$ and show that $\operatorname{Inn}\left(D_{4}\right) \neq \operatorname{Aut}\left(D_{4}\right)$.
4.25 Example: Let $G$ be a finite set with $|G|=n$. Let $S=\{1,2, \cdots, n\}$ and let $f: G \rightarrow S$ be a bijection. The map $C_{f}: \operatorname{Perm}(G) \rightarrow S_{n}$ given by $C_{f}(g)=f g f^{-1}$ is a group isomorphism. Indeed, $C_{f}$ is well-defined since when $g \in \operatorname{Perm}(G)$ the map $f g f^{-1}$ is invertible with $\left(f g f^{-1}\right)^{-1}=f g^{-1} f^{-1}$, and $C_{f}$ is a group homomorphism since $C_{f}(g h)=f g h f^{-1}=f g f^{-1} f h f^{-1}=C_{f}(g) C_{f}(h)$, and $C_{f}$ is bijective with inverse $C_{f}^{-1}=C_{f^{-1}}$.
4.26 Theorem: (Cayley's Theorem) Let $G$ be a group.
(1) $G$ is isomorphic to a subgroup of $\operatorname{Perm}(G)$.
(2) If $|G|=n$ then $G$ is isomorphic to a subgroup of $S_{n}$.

Proof: Define $\phi: G \rightarrow \operatorname{Perm}(G)$ by $\phi(a)=L_{a}$. Note that $L_{a} \in \operatorname{Perm}(G)$ because $L_{a}$ is invertible with inverse $L_{a}{ }^{-1}=L_{a^{-1}}$. Also, $\phi$ is a group homomorphism because $\phi(a b)=L_{a b}=L_{a} L_{b}$ and $\phi$ is injective because $L_{a}=I \Longrightarrow a=e$ (indeed if $L_{a}=I$ then $\left.a=a e=L_{a}(e)=I(e)=e\right)$. Thus $\phi$ is an isomorphism from $G$ to $\phi(G)$, which is a subgroup of $\operatorname{Perm}(G)$.

Now suppose that $|G|=n$, say $f: G \rightarrow\{1,2, \cdots, n\}$ is a bijection. Then the map $C_{f} \circ \phi$ is an injective group homomorphism (where $C_{f}(g)=f g f^{-1}$, as above), and so $G$ is isomorphic to $C_{f}(\phi(G))$ which is a subgroup of $S_{n}$.
4.27 Example: Show that $\operatorname{Hom}(\mathbb{Z}, G)=\left\{\phi_{a} \mid a \in G\right\}$, where $\phi_{a}(k)=a^{k}$.

Solution: Let $\phi \in \operatorname{Hom}(\mathbb{Z}, G)$. Let $a=\phi(1)$. Then for all $k \in \mathbb{Z}$ we have $\phi(k)=\phi(k \cdot 1)=$ $\phi(1)^{k}=a^{k}$, and so $\phi=\phi_{a}$. On the other hand, note that for $a \in G$ the map $\phi_{a}$ given by $\phi_{a}(k)=a^{k}$ is a group homomorphism because $\phi_{a}(k+l)=a^{k+l}=a^{k} a^{l}=\phi_{a}(k) \phi_{a}(l)$.
4.28 Example: Show that $\operatorname{Hom}\left(\mathbb{Z}_{n}, G\right)=\left\{\phi_{a} \mid a \in G, a^{n}=e\right\}$, where $\phi_{a}(k)=a^{k}$.

Solution: Let $\phi \in \operatorname{Hom}\left(\mathbb{Z}_{n}, G\right)$. Let $a=\phi(1)$. Then for all $k \in \mathbb{Z}$ we have $\phi(k)=\phi(k \cdot 1)=$ $\phi(1)^{k}=a^{k}$ so that $\phi=\phi_{a}$, and we have $a^{n}=\phi(n)=\phi(0)=e$. On the other hand, note that for $a \in G$ with $a^{n}=e$, the map $\phi_{a}$ is well-defined because if $k=l \bmod n$ the $a^{k}=a^{l}$ and it is a homomorphism because $a^{k+l}=a^{k} a^{l}$.
4.29 Example: As an exercise, describe $\operatorname{Hom}\left(\mathbb{Z}_{n} \times \mathbb{Z}_{m}, G\right)$.
4.30 Example: As an exercise, describe $\operatorname{Hom}\left(D_{n}, G\right)$.

