Chapter 4. Group Homomorphisms and Isomorphisms

4.1 Note: We recall the following terminology. Let X and Y be sets. When we say that
f is a function or a map from X to Y, written f : X — Y, we mean that for every
x € X there exists a unique corresponding element y = f(x) € Y. The set X is called the
domain of f and the range or image of f is the set Image(f) = f(X) = {f(x)‘ac € X}.
For a set A C X, the image of A under f is the set f(A) = {f(a)‘a € A} and for a set
B CY, the inverse image of B under f is the set f~1(B) = {z € X’f(ac) € B}.

For a function f: X — Y, we say f is one-to-one (written 1: 1) or injective when
for every y € Y there exists at most one = € X such that y = f(z), we say f is onto or
surjective when for every y € Y there exists at least one = € X such that y = f(x), and
we say f is invertible or bijective when f is 1:1 and onto, that is for every y € Y there
exists a unique x € X such that y = f(x). When f is invertible, the inverse of f is the
function f~1:Y — X defined by f~1(y) =2 < y = f(2).

For f: X - Y and g : Y — Z, the composite go f : X — Z is given by
(go f)(z) = g(f(z)). Note that it f and g are both injective then so is the composite
go f,and if f and g are both surjective then so is g o f.

4.2 Definition: Let G and H be groups. A group homomorphism from G to H is a
function ¢ : G — H such that

¢(ab) = ¢(a)p(b)

for all a,b € G, or to be more precise, such that ¢(a * b) = ¢(a) x ¢(b) for all a,b € G,
where * is the operation on G and X is the operation on H. The kernel of ¢ is the set

Ker(¢) = ¢~ (e) = {a € G|¢(a) = e}

where e = ey is the identity in H, and the image (or range) of ¢ is

Image(9) = ¢(G) = {d(a)|a € G} .

A group isomorphism from G to H is a bijective group homomorphism ¢ : G — H.
For two groups G and H, we say that G and H are isomorphic and we write G & H
when there exists an isomorphism ¢ : G — H. An endomorphism of a group G is a
homomorphism from G to itself. An automorphism of a group G is an isomorphism from
G to itself. The set of all homomorphisms from G to H, the set of all isomorphisms from
G to H, the set of all endomorphisms of G, and the set of all automorphisms of G will be
denoted by
Hom(G, H) , Iso(G,H) , End(G) , Aut(G).

4.3 Remark: In algebra, we consider isomorphic groups to be (essentially) equivalent.
The classification problem for finite groups is to determine, given any n € Z*, the
complete list of all groups, up to isomorphism, of order n.



4.4 Example: The groups Uy, and Zs? are isomorphic. One way to see this is to compare
their operation tables.

1 5 7 11 (0,0) (0,1) (1,0) (1,1)
1 1 5 7 11 (0,0)  (0,0) (0,1) (1,0) (1,1)
5 5 1 11 7 (0,1)  (0,1) (0,0) (1,1) (1,0)
7 7 11 1 5 (1,0) (1,0) (1,1) (0,0) (0,1)
11 11 7 5 1 (1,1) (1,1) (1,0) (0,1) (0,0)

We see that all the entries in these tables correspond under the map ¢ : Ui — Zo? given
by ¢(1) = (0,0), ¢(5) = (0,1), ¢(7) = (1,0) and ¢(1,1) = (1,1), so ¢ is an isomorphism.

4.5 Example Let G be a group and let a € G. Then the map qﬁa 7Z — G given by
#q(k) = a* is a group homomorphism since ¢, (k + £) = a**¢ = a*a® = ¢, (k)pa(f). The
image of ¢, is

Image(¢,) = {ak‘k € Z}

and the kernel of ¢, is

(n) =nZ ,if |a|] =n,

(0) ={0} , if |a| =

4.6 Example: Let G be a group and let a € G. If |a| = oo then the map ¢, : Z — (a)
given by ¢(k) = a* is an isomorphism, and if |a| = n then the map ¢, : Z,, — (a) given by
#4(k) = a” is an isomorphism (note that ¢, is well-defined because if ¥ = ¢ mod n then

a* = a* by Theorem 2.3). In each case, ¢ is a homomorphism since a*+¢ = a*a’ and ¢ is
bijective by Theorem 2.3.

Ker(¢q) = {kEZ’a —e} {

4.7 Example: When R is a commutative ring with 1, the map ¢ : GL,(R) — R* given
by ¢(A) = det(A) is a group homomorphism since det(AB) = det(A) det(B). The kernel
is

Ker(¢) = {A € GL,(R)|det(4) =1} = SL,(R)
and the image is

Image(¢) = { det(A)|A € GL,(R)} = R*

since for a € R* we have det (diag(a, 1,1,---, 1)) =a.
4.8 Example: The map ¢ : R — R given by ¢(z) = e” is a group isomorphism since it
is bijective and ¢(z +y) = e* T = e%e¥ = ¢ ()9 (y).

4.9 Example: The map ¢ : SO5(R) — S* given by ¢(Ry) = €'? is a group isomorphism.



4.10 Theorem: Let G and H be groups and let ¢ : G — H be a group homomorphism.
Then

(1) ¢(6G) )
(2) p(a™1) = ¢(a)~! for all a € G,

(3) p(a*) = ¢p(a)* for all a € G and all k € Z, and

(4) for a € G, if |a| is finite then |¢(a)| divides |al.

Proof: To prove (1), note that ¢(eq) = d(eqeq) = Pleg)p(eq) so peg) = ey by cancel-
lation. To prove (2) note that ¢(a)p(a™t) = ¢laa™!) = P(eg) = ey, so ¢(a)™! = p(a™?)
by cancellation. For part (3), note first that ¢(a’) = ¢(a)? by part (1), and then note
that when k € ZT we have ¢(a*) = ¢(aa---a) = ¢(a)p(a) - - ¢p(a) = ¢(a)* and hence also

p(a™") = ¢((a™H)F) = ¢pla )k = (qﬁ(a)_l)k = ¢(a)~%. For part (4) note that if |a| = n
then we have ¢(a)™ = ¢(a™) = ¢(eg) = ey and so |p(a)| divides n by Theorem 2.3.

4.11 Theorem: Let G, H and K be groups. Let ¢ : G — H and v : H — K be group
homomorphisms. Then

€n

(1) the identity I : G — G given by I(x) = x for all x € G, is an isomorphism,
(2) the composite ¥ o ¢ : G — K is a group homomorphism, and
(3) if  : G — H is an isomorphism then so is its inverse ¢~ : H — G.

Proof: We prove part (3) and leave the proofs of (1) and (2) as an exercise. Suppose that
¢ : G — H is an isomorphism. Let ¢y = ¢~! : H — G. We know that 1) is bijective, so we
just need to show that 1 is a homomorphism. Let ¢,d € H. Let a = ¢(c) and b = (d).
Since ¢ is a homomorphism we have ¢(ab) = ¢(a)p(b), and so

Y(ed) = b(o(a)g(b)) = ¥ (d(ab)) = ab = P(c)i(d).

4.12 Corollary: Isomorphism is an equivalence relation on the class of groups. This
means that for all groups GG, H and K we have

(1)G=a,
(2) if G = H and H = K then G = K, and
(3) if G =2 H then H = G.

4.13 Corollary: For a group G, Aut(G) is a group under composition.

4.14 Theorem: Let ¢ : G — H be a homomorphism of groups. Then

(1) if K < G then ¢(K) < H, in particular Image(¢) < H,
(2) if L < H then ¢~ '(L) < G, in particular Ker(¢) < G.

Proof: The proof is left as an exercise.

4.15 Theorem: Let ¢ : G — H be a homomorphism of groups. Then

(1) ¢ is injective if and only if Ker(¢) = {e}, and
(2) ¢ is surjective if and only if Image(¢) = H.

Proof: The proof is left as an exercise.



4.16 Theorem: Let ¢ : G — H be an isomorphism of groups. Then

(1) G is abelian if and only if H is abelian,
(2) for a € G we have |¢(a)| = |al,
(3) G is cyclic with G = (a) if and only if H is cyclic with H = (¢(a)),

(4) for n € Z" we have ‘{a € Glla| = n}‘ = ‘{b € H|[b| = n}|,
(5) for K < G the restriction ¢ : K — ¢(K) is an isomorphism of groups, and
(6) for any group C' we have ‘{K <G|K = C}) = ){L < H|L = C}‘

Proof: The proof is left as an exercise.

4.17 Example: Note that Q* 22 R* since |Q*| # |R*|. Similarly, GL3(Z2) % S5 because
|GL3(Zs)| = 168 but |Ss| = 120.

4.18 Example: C* 2 GLy(R) since C* is abelian but GL, (R) is not. Similarly, Sy % Uss
because Uss is abelian but Sy is not.

4.19 Example: R* 2 C* since C* has elements of order n > 3, for example |i| = 4 in C*,
but R* has no elements of order n > 3, indeed in R*, |1| =1 and | — 1| = 2 and for = # +1
we have |z| = co.

4.20 Example: Determine whether Uss =2 Zoy4.

Solution: In Uss we have

Ek 0123 4 5 6 7 8 9 10 11 12
2 1 2 4 8 16 32 29 23 11 22 9 18 1

We notice that Uss has at least two elements of order 2, namely 29 and 34, but Zs, has
only one element of order 2, namely 12. Thus Uss 2 Zoy.

4.21 Theorem: Let a,b € Zt with ged(a,b) = 1. Then

(1) Zab = Za X Zb and
(2) Uab = Ua X Ub.

Proof: We prove part (2) (the proof of part (1) is similar). Define ¢ : Uy, — U, x Uy by
¢(k) = (k,k). This map ¢ is well-defined because if k = { mod ab then k = ¢ mod a and
k = ¢ mod b and because if gcd(k,ab) = 1 so that k € Uy, then ged(k,a) = ged(k,b) = 1.
Also, ¢ is a group homomorphism since ¢(kl) = (kl,kl) = (k,k)(¢,¢) = ¢(k)p(¢). Finally
note that ¢ is bijective by the Chinese Remainder Theorem, indeed ¢ is onto because given
k € U, and ¢ € U, there exists x € 7Z with x = k mod a and x = ¢ mod b and we then
have ged(x,a) = ged(k,a) = 1 and ged(x,b) = ged(4,b) = 1 so that ged(z, ab) = 1, that is
x € Uy, and ¢ is 1:1 because this solution x is unique modulo ab.

¢
4.22 Corollary: If n = [] p;** where the p; are distinct primes and each k; € Z* then
i=1



4.23 Definition: Let G be a group. For a € G, we define left multiplication by a to
be the map L, : G — G given by

Ly(z) = ax for x € G.

Note that L, = I (since L¢(x) = ex = x = I(x) for all z € G) and L,Ly = La
since Lo (Ly(x)) = Lq(bz) = abz = Lg(z) for all z € G. Similarly, we define right-
multiplication by a to be the map R, : G — G given by R,(x) = ax for z € G. Also, we
define conjugation by a to be the map C, : G — G by

Coy(x)=azxa ' forzeq.

The map L, : G — G is not necessarily a group homomorphism since L,(zy) = axy while
L.(z)L.(y) = azay. On the other hand, the map C, : G — G is a group homomorphism
because Cy(zy) = axya™! = ara laya™' = Cu(x)C,(y). Indeed C, is an automorphism
of G because it is invertible with C, ™' = C,-1. An automorphism of G of the form C, is
called an inner automorphism of G. The set of all inner automorphisms of G is denoted
by Inn(G), so we have

(@) = {C,|a € G} .

Note that Inn(G) < Aut(G) because I = C,, C,Cp = Cy, and C, ' = C,-1. Note that
when H < G, the restriction of the conjugation map C, gives an isomorphism from H to
the group

Co(H)=aHa ' = {aha 'lhe H} ¥ H.

The isomorphic groups H and C,(H) = aHa™! are called conjugate subgroups of G.
4.24 Example: As an exercise, find Inn(Dy4) and show that Inn(Dy4) # Aut(Dy).

4.25 Example: Let G be a finite set with |G| = n. Let S = {1,2,---,n} and let
f : G — S be a bijection. The map Cy : Perm(G) — S, given by Ct¢(g9) = fgf*
is a group isomorphism. Indeed, Cy is well-defined since when g € Perm(G) the map
fgf~! is invertible with (fgf=')~! = fg='f~!, and Cy is a group homomorphism
since1 Ct(gh) = fghf=' = fgf~'fhf=' = C¢(g9)Ct(h), and Cy is bijective with inverse
Cf_ = C’f—l.

4.26 Theorem: (Cayley’s Theorem) Let G be a group.

(1) G is isomorphic to a subgroup of Perm(G).
(2) If |G| = n then G is isomorphic to a subgroup of S,,.

Proof: Define ¢ : G — Perm(G) by ¢(a) = L,. Note that L, € Perm(G) because
L, is invertible with inverse L, ' = L,-1. Also, ¢ is a group homomorphism because
¢(ab) = Loy = LoLp and ¢ is injective because L, = [ = a = e (indeed if L, = I then
a = ae = Ly(e) = I(e) = e). Thus ¢ is an isomorphism from G to ¢(G), which is a
subgroup of Perm(G).

Now suppose that |G| = n, say f : G — {1,2,---,n} is a bijection. Then the map
C} o ¢ is an injective group homomorphism (where Ct(g) = fgf~!, as above), and so G is
isomorphic to Cy ((b(G)) which is a subgroup of S,,.



4.27 Example: Show that Hom(Z, G) = {¢,|a € G}, where ¢4(k) = a”.

Solution: Let ¢ € Hom(Z, @). Let a = ¢(1). Then for all k € Z we have ¢(k) = ¢p(k-1) =
#(1)* = a*, and so ¢ = ¢,. On the other hand, note that for @ € G the map ¢, given by
¢4 (k) = a” is a group homomorphism because ¢, (k + 1) = a* T = aka! = ¢, (k)pa(l).

4.28 Example: Show that Hom(Z,,G) = {¢a|a € G,a™ = e}, where ¢, (k) = a*.

Solution: Let ¢ € Hom(Z,,,G). Let a = ¢(1). Then for all k € Z we have ¢(k) = ¢(k-1) =
#(1)* = a* so that ¢ = ¢,, and we have a” = ¢(n) = ¢(0) = e. On the other hand, note
that for a € G with a™ = e, the map ¢, is well-defined because if £ = [ mod n the a* = o

and it is a homomorphism because a**! = a*al.

4.29 Example: As an exercise, describe Hom (Zn X Loy, G).
4.30 Example: As an exercise, describe Hom(D,,, G).



