
Chapter 4. Group Homomorphisms and Isomorphisms

4.1 Note: We recall the following terminology. Let X and Y be sets. When we say that
f is a function or a map from X to Y , written f : X → Y , we mean that for every
x ∈ X there exists a unique corresponding element y = f(x) ∈ Y . The set X is called the
domain of f and the range or image of f is the set Image(f) = f(X) =

{
f(x)

∣∣x ∈ X}.

For a set A ⊆ X, the image of A under f is the set f(A) =
{
f(a)

∣∣a ∈ A} and for a set

B ⊆ Y , the inverse image of B under f is the set f−1(B) =
{
x ∈ X

∣∣f(x) ∈ B
}

.
For a function f : X → Y , we say f is one-to-one (written 1 : 1) or injective when

for every y ∈ Y there exists at most one x ∈ X such that y = f(x), we say f is onto or
surjective when for every y ∈ Y there exists at least one x ∈ X such that y = f(x), and
we say f is invertible or bijective when f is 1:1 and onto, that is for every y ∈ Y there
exists a unique x ∈ X such that y = f(x). When f is invertible, the inverse of f is the
function f−1 : Y → X defined by f−1(y) = x ⇐⇒ y = f(x).

For f : X → Y and g : Y → Z, the composite g ◦ f : X → Z is given by
(g ◦ f)(x) = g(f(x)). Note that it f and g are both injective then so is the composite
g ◦ f , and if f and g are both surjective then so is g ◦ f .

4.2 Definition: Let G and H be groups. A group homomorphism from G to H is a
function φ : G→ H such that

φ(ab) = φ(a)φ(b)

for all a, b ∈ G, or to be more precise, such that φ(a ∗ b) = φ(a) × φ(b) for all a, b ∈ G,
where ∗ is the operation on G and × is the operation on H. The kernel of φ is the set

Ker(φ) = φ−1(e) =
{
a ∈ G

∣∣φ(a) = e
}

where e = eH is the identity in H, and the image (or range) of φ is

Image(φ) = φ(G) =
{
φ(a)

∣∣a ∈ G} .
A group isomorphism from G to H is a bijective group homomorphism φ : G → H.
For two groups G and H, we say that G and H are isomorphic and we write G ∼= H
when there exists an isomorphism φ : G → H. An endomorphism of a group G is a
homomorphism from G to itself. An automorphism of a group G is an isomorphism from
G to itself. The set of all homomorphisms from G to H, the set of all isomorphisms from
G to H, the set of all endomorphisms of G, and the set of all automorphisms of G will be
denoted by

Hom(G,H) , Iso(G,H) , End(G) , Aut(G) .

4.3 Remark: In algebra, we consider isomorphic groups to be (essentially) equivalent.
The classification problem for finite groups is to determine, given any n ∈ Z+, the
complete list of all groups, up to isomorphism, of order n.
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4.4 Example: The groups U12 and Z2
2 are isomorphic. One way to see this is to compare

their operation tables.

1 5 7 11

1 1 5 7 11
5 5 1 11 7
7 7 11 1 5
11 11 7 5 1

(0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)
(0, 1) (0, 1) (0, 0) (1, 1) (1, 0)
(1, 0) (1, 0) (1, 1) (0, 0) (0, 1)
(1, 1) (1, 1) (1, 0) (0, 1) (0, 0)

We see that all the entries in these tables correspond under the map φ : U12 → Z2
2 given

by φ(1) = (0, 0), φ(5) = (0, 1), φ(7) = (1, 0) and φ(1, 1) = (1, 1), so φ is an isomorphism.

4.5 Example: Let G be a group and let a ∈ G. Then the map φa : Z → G given by
φa(k) = ak is a group homomorphism since φa(k + `) = ak+` = aka` = φa(k)φa(`). The
image of φa is

Image(φa) =
{
ak
∣∣k ∈ Z

}
= 〈a〉

and the kernel of φa is

Ker(φa) =
{
k ∈ Z

∣∣ak = e
}

=

{
〈n〉 = nZ , if |a| = n,

〈0〉 = {0} , if |a| =∞.

4.6 Example: Let G be a group and let a ∈ G. If |a| = ∞ then the map φa : Z → 〈a〉
given by φ(k) = ak is an isomorphism, and if |a| = n then the map φa : Zn → 〈a〉 given by
φa(k) = ak is an isomorphism (note that φa is well-defined because if k = ` mod n then
ak = a` by Theorem 2.3). In each case, φ is a homomorphism since ak+` = aka` and φ is
bijective by Theorem 2.3.

4.7 Example: When R is a commutative ring with 1, the map φ : GLn(R) → R∗ given
by φ(A) = det(A) is a group homomorphism since det(AB) = det(A) det(B). The kernel
is

Ker(φ) =
{
A ∈ GLn(R)

∣∣ det(A) = 1
}

= SLn(R)

and the image is
Image(φ) =

{
det(A)

∣∣A ∈ GLn(R)
}

= R∗

since for a ∈ R∗ we have det
(
diag(a, 1, 1, · · · , 1)

)
= a.

4.8 Example: The map φ : R→ R+ given by φ(x) = ex is a group isomorphism since it
is bijective and φ(x+ y) = ex+y = exey = φ(x)φ(y).

4.9 Example: The map φ : SO2(R)→ S1 given by φ(Rθ) = ei θ is a group isomorphism.
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4.10 Theorem: Let G and H be groups and let φ : G→ H be a group homomorphism.
Then

(1) φ(eG) = eH,
(2) φ(a−1) = φ(a)−1 for all a ∈ G,
(3) φ(ak) = φ(a)k for all a ∈ G and all k ∈ Z, and
(4) for a ∈ G, if |a| is finite then |φ(a)| divides |a|.

Proof: To prove (1), note that φ(eG) = φ(eG eG) = φ(eG)φ(eG) so φ(eG) = eH by cancel-
lation. To prove (2) note that φ(a)φ(a−1) = φ(aa−1) = φ(eG) = eH, so φ(a)−1 = φ(a−1)
by cancellation. For part (3), note first that φ(a0) = φ(a)0 by part (1), and then note
that when k ∈ Z+ we have φ(ak) = φ(aa · · · a) = φ(a)φ(a) · · ·φ(a) = φ(a)k and hence also

φ(a−k) = φ
(
(a−1)k

)
= φ(a−1)k =

(
φ(a)−1

)k
= φ(a)−k. For part (4) note that if |a| = n

then we have φ(a)n = φ(an) = φ(eG) = eH and so |φ(a)| divides n by Theorem 2.3.

4.11 Theorem: Let G, H and K be groups. Let φ : G → H and ψ : H → K be group
homomorphisms. Then

(1) the identity I : G→ G given by I(x) = x for all x ∈ G, is an isomorphism,
(2) the composite ψ ◦ φ : G→ K is a group homomorphism, and
(3) if φ : G→ H is an isomorphism then so is its inverse φ−1 : H → G.

Proof: We prove part (3) and leave the proofs of (1) and (2) as an exercise. Suppose that
φ : G→ H is an isomorphism. Let ψ = φ−1 : H → G. We know that ψ is bijective, so we
just need to show that ψ is a homomorphism. Let c, d ∈ H. Let a = φ(c) and b = ψ(d).
Since φ is a homomorphism we have φ(ab) = φ(a)φ(b), and so

ψ(cd) = ψ
(
φ(a)φ(b)

)
= ψ

(
φ(ab)

)
= ab = ψ(c)ψ(d) .

4.12 Corollary: Isomorphism is an equivalence relation on the class of groups. This
means that for all groups G, H and K we have

(1) G ∼= G,
(2) if G ∼= H and H ∼= K then G ∼= K, and
(3) if G ∼= H then H ∼= G.

4.13 Corollary: For a group G, Aut(G) is a group under composition.

4.14 Theorem: Let φ : G→ H be a homomorphism of groups. Then

(1) if K ≤ G then φ(K) ≤ H, in particular Image(φ) ≤ H,
(2) if L ≤ H then φ−1(L) ≤ G, in particular Ker(φ) ≤ G.

Proof: The proof is left as an exercise.

4.15 Theorem: Let φ : G→ H be a homomorphism of groups. Then

(1) φ is injective if and only if Ker(φ) = {e}, and
(2) φ is surjective if and only if Image(φ) = H.

Proof: The proof is left as an exercise.
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4.16 Theorem: Let φ : G→ H be an isomorphism of groups. Then

(1) G is abelian if and only if H is abelian,
(2) for a ∈ G we have

∣∣φ(a)
∣∣ = |a|,

(3) G is cyclic with G = 〈a〉 if and only if H is cyclic with H = 〈φ(a)〉,
(4) for n ∈ Z+ we have

∣∣∣{a ∈ G∣∣|a| = n
}∣∣∣ =

∣∣∣{b ∈ H∣∣|b| = n
}∣∣∣,

(5) for K ≤ G the restriction φ : K → φ(K) is an isomorphism of groups, and

(6) for any group C we have
∣∣∣{K ≤ G∣∣K ∼= C

}∣∣∣ =
∣∣∣{L ≤ H∣∣L ∼= C

}∣∣∣.
Proof: The proof is left as an exercise.

4.17 Example: Note that Q∗ 6∼= R∗ since |Q∗| 6= |R∗|. Similarly, GL3(Z2) 6∼= S5 because∣∣GL3(Z2)
∣∣ = 168 but |S5| = 120.

4.18 Example: C∗ 6∼= GL2(R) since C∗ is abelian but GLn(R) is not. Similarly, S4 6∼= U35

because U35 is abelian but S4 is not.

4.19 Example: R∗ 6∼= C∗ since C∗ has elements of order n ≥ 3, for example |i| = 4 in C∗,
but R∗ has no elements of order n ≥ 3, indeed in R∗, |1| = 1 and |− 1| = 2 and for x 6= ±1
we have |x| =∞.

4.20 Example: Determine whether U35
∼= Z24.

Solution: In U35 we have

k 0 1 2 3 4 5 6 7 8 9 10 11 12
2k 1 2 4 8 16 32 29 23 11 22 9 18 1

We notice that U35 has at least two elements of order 2, namely 29 and 34, but Z24 has
only one element of order 2, namely 12. Thus U35 6∼= Z24.

4.21 Theorem: Let a, b ∈ Z+ with gcd(a, b) = 1. Then

(1) Zab ∼= Za × Zb and
(2) Uab ∼= Ua × Ub.

Proof: We prove part (2) (the proof of part (1) is similar). Define φ : Uab → Ua × Ub by
φ(k) = (k, k). This map φ is well-defined because if k = ` mod ab then k = ` mod a and
k = ` mod b and because if gcd(k, ab) = 1 so that k ∈ Uab then gcd(k, a) = gcd(k, b) = 1.
Also, φ is a group homomorphism since φ(k`) = (k`, k`) = (k, k)(`, `) = φ(k)φ(`). Finally
note that φ is bijective by the Chinese Remainder Theorem, indeed φ is onto because given
k ∈ Ua and ` ∈ Ub there exists x ∈ Z with x = k mod a and x = ` mod b and we then
have gcd(x, a) = gcd(k, a) = 1 and gcd(x, b) = gcd(`, b) = 1 so that gcd(x, ab) = 1, that is
x ∈ Uab, and φ is 1:1 because this solution x is unique modulo ab.

4.22 Corollary: If n =
∏̀
i=1

pi
ki where the pi are distinct primes and each ki ∈ Z+ then

φ(n) =
∏̀
i=1

(
pi
ki − piki−1

)
= n ·

∏̀
i=1

(
1− 1

pi

)
.
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4.23 Definition: Let G be a group. For a ∈ G, we define left multiplication by a to
be the map La : G→ G given by

La(x) = ax for x ∈ G .

Note that Le = I (since Le(x) = ex = x = I(x) for all x ∈ G) and LaLb = Lab
since La

(
Lb(x)

)
= La(bx) = abx = Lab(x) for all x ∈ G. Similarly, we define right-

multiplication by a to be the map Ra : G→ G given by Ra(x) = ax for x ∈ G. Also, we
define conjugation by a to be the map Ca : G→ G by

Ca(x) = a x a−1 for x ∈ G .

The map La : G→ G is not necessarily a group homomorphism since La(xy) = axy while
La(x)La(y) = axay. On the other hand, the map Ca : G → G is a group homomorphism
because Ca(xy) = axya−1 = axa−1aya−1 = Ca(x)Ca(y). Indeed Ca is an automorphism
of G because it is invertible with Ca

−1 = Ca−1 . An automorphism of G of the form Ca is
called an inner automorphism of G. The set of all inner automorphisms of G is denoted
by Inn(G), so we have

Inn(G) =
{
Ca
∣∣a ∈ G} .

Note that Inn(G) ≤ Aut(G) because I = Ce, CaCb = Cab and Ca
−1 = Ca−1 . Note that

when H ≤ G, the restriction of the conjugation map Ca gives an isomorphism from H to
the group

Ca(H) = aHa−1 =
{
aha−1

∣∣h ∈ H} ∼= H .

The isomorphic groups H and Ca(H) = aHa−1 are called conjugate subgroups of G.

4.24 Example: As an exercise, find Inn(D4) and show that Inn(D4) 6= Aut(D4).

4.25 Example: Let G be a finite set with |G| = n. Let S = {1, 2, · · · , n} and let
f : G → S be a bijection. The map Cf : Perm(G) → Sn given by Cf (g) = f g f−1

is a group isomorphism. Indeed, Cf is well-defined since when g ∈ Perm(G) the map
f g f−1 is invertible with (f g f−1)−1 = f g−1f−1, and Cf is a group homomorphism
since Cf (gh) = fghf−1 = fgf−1fhf−1 = Cf (g)Cf (h), and Cf is bijective with inverse
Cf

−1 = Cf−1 .

4.26 Theorem: (Cayley’s Theorem) Let G be a group.

(1) G is isomorphic to a subgroup of Perm(G).
(2) If |G| = n then G is isomorphic to a subgroup of Sn.

Proof: Define φ : G → Perm(G) by φ(a) = La. Note that La ∈ Perm(G) because
La is invertible with inverse La

−1 = La−1 . Also, φ is a group homomorphism because
φ(ab) = Lab = LaLb and φ is injective because La = I =⇒ a = e (indeed if La = I then
a = ae = La(e) = I(e) = e). Thus φ is an isomorphism from G to φ(G), which is a
subgroup of Perm(G).

Now suppose that |G| = n, say f : G → {1, 2, · · · , n} is a bijection. Then the map
Cf ◦φ is an injective group homomorphism (where Cf (g) = fgf−1, as above), and so G is
isomorphic to Cf

(
φ(G)

)
which is a subgroup of Sn.
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4.27 Example: Show that Hom(Z, G) =
{
φa
∣∣a ∈ G}, where φa(k) = ak.

Solution: Let φ ∈ Hom(Z, G). Let a = φ(1). Then for all k ∈ Z we have φ(k) = φ(k · 1) =
φ(1)k = ak, and so φ = φa. On the other hand, note that for a ∈ G the map φa given by
φa(k) = ak is a group homomorphism because φa(k + l) = ak+l = akal = φa(k)φa(l).

4.28 Example: Show that Hom(Zn, G) =
{
φa
∣∣a ∈ G, an = e

}
, where φa(k) = ak.

Solution: Let φ ∈ Hom(Zn, G). Let a = φ(1). Then for all k ∈ Z we have φ(k) = φ(k ·1) =
φ(1)k = ak so that φ = φa, and we have an = φ(n) = φ(0) = e. On the other hand, note
that for a ∈ G with an = e, the map φa is well-defined because if k = l mod n the ak = al

and it is a homomorphism because ak+l = akal.

4.29 Example: As an exercise, describe Hom
(
Zn × Zm, G

)
.

4.30 Example: As an exercise, describe Hom(Dn, G).
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