Chapter 5. Cosets, Normal Subgroups, and Quotient Groups

5.1 Definition: Let G be a group with operation %, let H < GG and let a € G. The left
coset of H in G containing a is the set

ax H = {ax|:cEH}.
Similarly the right coset of H in GG containing a is the set H xa = {:I;a‘x eH } Usually,
unless the operation is addition, we write a x H as aH and we write H x a as Ha. We
denote the set of left cosets of H in G by G/H so we have
G/H = {aH|a € G} .
The index of H in G, denoted by [G : H] is the cardinality of the set of cosets, that is
[G:H]=|G/H]|.

When G is abelian there is no difference between left and right cosets so we simply call

them cosets.

5.2 Example: In the group Zis, the cosets of H = (4) = {0,4, 8} are
0+H=44+H=8+4+H ={0,4,8} =H
1+H=5+H=9+H =1{1,5,9}
2+ H=6+H =10+ H ={2,6,10}
3+H=7+H=11+4+H ={3,7,11}

5.3 Example: In the group Z, for n € Z*, the cosets of (n) = nZ are
k+nZ = {~~~,k—2n,k—n,k,k+n,k—l—2n,--~} where k € 7.
These are exactly the elements of Z,,, so we have Z/(n) = Z,.

5.4 Theorem: Let G be a group, let H < G, and let a,b € G. Then

(1)beaH < a'be H < aH =bH,
(2) either aH = bH or aH NbH = (), and
(3) laH| = [H].

Analogous results hold for right cosets.

Proof: If b € aH, say b = ah with h € H, then a='b = h € H. Conversely if a='b € H
then b = ah € aH. Thus we have b € aH <= a~'b € H. Now suppose that b € aH, say
b= ah with h € H. Let x € aH, say * = ak with k € H. Then z = ak = bh™'k € bH.
Thus aH C bH. Let y € bH, say y = bl with [ € H. Then y = bl = ahl € aH. Thus
bH C aH. Conversely, suppose that aH = bH. Then b = be € bH = aH. This completes
the proof of (1).

To prove (2), suppose that aH NbH # (). Choose x € aH NbH, say x = ah = bl with
h,l € H. Then a~'b=hl"! € H so aH = bH by (1).

To prove (3), define ¢ : H — aH by ¢(h) = ah. Then ¢ is clearly surjective, and ¢ is
injective since if ¢(h) = ¢(k) then ah = ak and so h = k by cancellation.



5.5 Corollary: (Lagrange’s Theorem) Let G be a group and let H < G. Then
G| = |G/HI|H].

Proof: The above theorem shows that the group G is partitioned into left cosets and that
these cosets all have the same cardinality.

5.6 Corollary: Let G be a finite group, let H < G and let a € G. Then |H| divides |G|
and |a| divides |G].

5.7 Corollary: (The Euler-Fermat Theorem) For a € U,, we have a®(™ = 1.

5.8 Corollary: (The Classification of Groups of Order p) Let p be prime. Let G be a
group with |G| = p. Then G = Z,,.

Proof: Let a € Z, with a # e. Since |a| divides |G| = p we have |a| =1 or |a| = p. Since
a#e, la] # 1 so |a| = p. Since (a) = |a] = p = |G| and (a) C G we have (a) = G and so
G = (a) = Zy.

5.9 Theorem: Let G be a group and let H < G. The following are equivalent.

(1) we can define a binary operation x on G/H by (aH) x (bH) = (ab)H,
(2) aha™' € H for alla € G, h € H, and

(3) aH = Ha for all a € G.

(4) aHa™' = H for all a € G.

In this case, G/H is a group under the above operation x with identity eH = H.

Proof: Suppose that we can define an operation * on G/H by (aH) * (bH) = (ab)H. The
fact that this operation is well-defined means that for all ay,as,b1,b2 € G, if a1H = asH
and by H = boH then (a1b1)H = (agbe)H, or equivalently if al_lag € Hand by 'y € H
then (albl)_l(agbg) € H, that is bl_lal_lagbg € H. For al_lag =h € H and bl_lbg =
ke H, we have b1 Ya1 Yasbs = by " hby = by tboby 'k by = kby ' h by, and this lies in H
if and only if by "'hby € H. This proves that (1) <= (2).

Suppose that (2) holds and let @ € G. Let € aH, say * = ah with h € H. Then
x = ah = aha"'a € Ha since aha™! € H. Thus aH C Ha. Now let y € Ha, say y = ka
with k € H. Then y = ka = aa"'ka € aH since a~'ka € H by (2). Thus Ha C Ha. This
proves that (2) = (3).

Conversely, suppose that (3) holds. Let a € G and h € H. Then ah € aH = Ha so
we can choose k € H so that ah = ka. Then we have aha™! = kaa™' = k € H. This
proves that (3) = (2).

The proof that (3) <= (4) is left as an exercise.

Now suppose that (1) holds and let % be the above operation. We claim that G/H is
a group. Indeed, the operation * is associative since

((aH)*(bH))*(cH) = ((ab)H) *(cH) = (abc)H = (aH)x ((be)H)) = (aH)*((bH)*(cH)),
the coset eH = H is the identity for G/H since for a € G we have

(aH) * (eH) = (ae)H = aH and (eH)x* (aH) = (ea)H = aH
and for a € G, the inverse of the coset aH is the coset a~'H since

(aH)* (a™'H) = (aa ™ )H =eH and (a 'H)* (aH) = (a"'a)H = eH .
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5.10 Definition: Let GG be a group and let H < G. If H satisfies the equivalent conditions
of the above theorem, then we say that H is a normal subgroup of G and we write H I G.
When H <G, the group G/H is called the quotient group of G by H.

5.11 Theorem: (The First Isomorphism Theorem)

(1)if¢ : G — H is a group homomorphism and K = Ker(¢) then K G and G/K = ¢(G),
indeed the map ® : G/K — ¢(G) given by ®(aK) = ¢(a) is a group isomorphism.

(2) if K G then the map ¢ : G — G/K given by ¢(a) = aK is a group homomorphism
with Ker(¢) = K.

Proof: To prove (1), let ¢ : G — H be a group homomorphism and let K = Ker(¢).
Let a € G let k € K so ¢(k) = e. Then ¢p(aka™t) = ¢(a)p(k)p(a™t) = ¢(a)p(a) ™t = e
and so aka™! € Ker(¢) = K. This shows that K <G. Define ® : G/H — ¢(G) by
P(aK) = ¢(a). Note that @ is well-defined since if a K = bK then a='b € K so we have
#(a)"1p(b) = ¢(a~1b) = e and hence ¢(a) = ¢(b). Note that ® is a group homomorphism
since ®((aK)(bK)) = ®((ab)K) = ¢(ab)p(a)¢(b) = ®(aK)®(bK). Finally note that @ is
clearly onto, and @ is 1:1 since if ®(aK) = e then ¢(a) = e so a € K and hence aK = K,
which is the identity element of G/ K.

To prove (2) let K IG. Define ¢ : G — G/K by ¢(a) = aK. Then ¢ is a group
homomorphism since ¢(ab) = (ab)K = (aK)(bK) = ¢(a)¢p(b), and Ker(¢) = K since for
a € G we have a € Ker(¢) <= ¢(a) =eK <= aK =eK <= aceK =K.

5.12 Theorem: (The Second Isomorphism Theorem) Let G be a group, let H < G and
let KAG. Then KNH<UH, KH = (K UH), andH/(KﬂH) %KH/K.

Proof: The proof is left as an exercise.

5.13 Theorem: (The Third Isomorphism Theorem) Let G be a group and let H, K 1 G
with K < H. Then H/K 1G/K and (G/K)/(H/K) >~ G/H.

Proof: The proof is left as an exercise.

5.14 Example: The map ¢ : Z — Z,, given by ¢(k) = k is a group homomorphism with
Image(¢) = (n) and Ker(¢) = (n), so we have Z/(n) = Z,, (in fact Z/(n) = Z,).

5.15 Example: The map ¢ : R — S! given by ¢(t) = €'?™ is a group homomorphism,
since e 2m(s+t) = 12756127 | with Image(¢) = S* and Ker(¢) = Z so we have R/Z = S!.

5.16 Example: The map ¢ : C* — R™T given by ¢(z) = ||z|| is a group homomoprphism,
since |[zw|| = ||2|| ||w]|, with Image(¢) = RT and Ker(¢) = S so we have C* /S' =~ R™T.
5.17 Example: The map ¢ : C* — St given by ¢(z) = II_zll’ is a group homomorphism,
since =0 = 57 o, with Image(¢) = St and Ker(¢) = Rt and so C*/R* = S*.

5.18 Example: When R is a commutative ring with 1, the map ¢ : GL,,(R) — R* given
by ¢(A) = det(A) is a group homomorphism, since det(AB) = det(A)det(B), and it is
surjective since for a € R* we have A = diag(a,1,---,1) € GL,(R) and det(A) = a, and
we have Ker(¢) = {4 € GL,(R)|det(A) =1} = SL,(R), and so SL,(R) I GL,(R) with
GL,(R)/SL,(R) = R*.

5.19 Example: For n > 2, the map ¢ : S,, — Z* = {£1} given by ¢(a) = (—1)“ is a
group homomorphism since (—1)*% = (=1)%(—1)?, and it is surjective since (—1)¢ = 1
and (—1)*? = —1, and we have Ker(¢) = {a € Sn|(=1)* =1} = A,, and so A, S,
with S, /A, = Z* = {+1}.



5.20 Example: Let H = ((6,2),(3,6)) < Z?. As an exercise, show that |Z?/H| = 30
and that Z2/H is cyclic, then find a surjective group homomorphism ¢ : Z? — Z3, with
Ker(¢) = H.

5.21 Example: The map ¢ : G — Aut(G) given by ¢(a) = C, (where C, is conjugation
by a, given by C,(z) = ara™?) is a group homomorphism since Cy, = C,C}, and we have
Image(¢) = {C,|a € G} = Inn(G) and
Ker(¢) = {a € G‘C’a =I}={ac G|a:m_1 =z for all z € G}
={a € Glaxz = za for all z € G} = Z(G)

and so Z(G) 4 G with G/Z(G) = Inn(G).
5.22 Definition: Let H < . The centralizer of H in G is the set

C(H) =Cg(H) = {a € Glax = za for all z € H}
and the normalizer of H in G is the set

N(H)=Ng(H)={a € G|aH = Ha} .

5.23 Theorem: (The Normalizer/Centralizer Theorem) Let H < G. Then C(H) <\ N(H)
and N(H)/C(H) is isomorphic to a subgroup of Aut(H).
Proof: The proof is left as an exercise.

5.24 Theorem: (The Characterization of Internal Direct Products) Let G be a group. Let
H <G and K 4 G. Suppose that H N K = {e} and that G = HK = {hk|h € H ke K}
Then G = H x K.

Proof: Define ¢ : H x K — G by ¢(h,k) = hk. The map ¢ is a group homomorphism
since for hi,ho € H and kq, ko € K we have

¢((h1,k1)(ha, k2)) = ¢(hiha, kiks) = hihokiks = hikiki ™ "hakiha ™ hoks
= hlklehgk’g = ¢(h1, kl)qzﬁ(hg, k?Q),

where we used the fact that the element k1~ *hok; h2_1 lies in both H and K (it lies in H
since H <1 G so that k; ‘hoky € H, and it lies in K since K < G so that hokihs ' € K),
and we have H N K = {e}. The map ¢ is surjective since G = HK so that every element
in G is of the form hk = ¢(h, k) for some h € H, k € K, and the map ¢ is injective since
for h € H and k € K we have ¢(h,k) =e=hk=e=h=k"'=hke HNK —
h=Fk=e,since HN K = {e}.



5.25 Theorem: (The Classification of Groups of Order 2p) Let p be prime. Then (up to
isomorphism) the distinct groups of order 2p are Zs, and D).

Proof: Let G be a group with |G| = 2p. Suppose that G ¥ Zg,, so G is not cyclic. By
Lagrange’s Theorem, each element a € G has order |a|] = 1,2,p or 2p. Since G is not
cyclic, no element has order 2p so every non-identity element in G has order 2 or p.

Suppose first that every non-identity element has order 2. Note that G must be abelian
since for all a,b € G we have a? = b*> = (ba)? = e and so ab = b%aba® = b(ba)?a = ba. Fix
two distinct non-identity elements a,b € G and consider the set H = {e,a,b,ab}. Note
that H is closed under the operation and under inversion (since a? = b? = e and ab = ba)
and so H = (a,b) < G. By Lagrange’s Theorem, we have |H|||G|, that is 4|2p, and so we
must have p = 2 and so |G| =4 = |H|, and so G = H = Zy* = Ds.

Now suppose that some non-identity element has order p with p # 2. Choose a € G
with |a] = p. Choose b ¢ (a). Note that since (a) = p and |G| = 2p, there are exactly
two cosets of (a) in G, namely (a) and b(a), and G is the disjoint union G = (a) U b{a).
Note that b?(a) # b(a) since b = b~'b? ¢ (a), and so we must have b*(a) = (a) and hence
b? € (a). Note that |b| # p, since if we had b” = e then (since p + 1 is even) we would
have b = bP*! € (b?) C (a), and so |b| = 2. Similarly, we have |z| = 2 for every z ¢ (a).
Consider the element ab. Note that ab ¢ (a) = a{a) since b = a~tab ¢ (a), and so we have
lab| = 2. Thus abab = e and so ab = (ab)™! = b~ta=! = baP~!

We have shown that G is the disjoint union G = (a) U b(a), so we have

G = {e,a,a2, oo aP™L b ba, ba?, - - - ,bap_l}

with the listed elements distinct. Since ab = ba~', we have a?b = aba™! = ba~? and
a3b = aba=2 = ba~3 and so on so that a*b = ba~*. This determines the operation on G
completely. Indeed we have

a¥al =d" ) aF obal = ba'TF | ba® ol = baFt ) baF - bat = al TP
Compare this to the operation in D, = {I, Ry,---,Ry,_1, Fo, F1,- - ,Fp_l} given by
Ry -Ri=Rpy, R - Fy=F_q_py, FuRi=F_p1y, FxFy=F_(_p.
We see that the map ¢ : G — D, given by ¢(a*) = Ry and ¢(ba') = F_, is an isomorphism.



5.26 Theorem: (The Classification of Groups of Order p?) Let p be prime. Then (up to
isomorphism) the distinct groups of order p* are L2 and Ly, X ZLy.

Proof: Let G be a group with |G| = p?. Suppose that G % Z,2 so that G is not cyclic.
Each a € G has order |a| = 1,p or p?. Since G is not cyclic, every non-identity element
has order p.

Let a be a non-identity element in G. We claim that (a) < G. Suppose, for a contra-
diction, that (a) 4 G. Choose x € G and a” € (a) so that za*z~" ¢ (a). This implies that
zaz~! ¢ (a) since za*z~ = (zaz~)*. Since zaz~' # e we have |zaz ™| = p. Note that
(a) N (waz™') = {e} because (a) N (wax~!) is a proper subgroup of (a) = Z,. It follows
that the cosets

e{zax™"), a(xax™t), a*(zax™1), -, a?" (zaz™')

are distinct since if a*(raz~!) = a'(zar™!) then a'~* € (zaz~!) so a'=* € (a) N (zaz~1)
and hence a!~* = e. Thus G is the disjoint union of these p cosets. In particular, the
element ! lies in some coset. But this is not possible since if 271 € a¥( zaz ') with say
r7! =a*xralz™!, then we would have a*z a' = e and hence x = a=*~! € (a). This proves
the claim.

Fix a non-identity element a € G and choose an element b € G with b ¢ (a). Then we
have (a) I G and (b) I G. As above, we have (a) N (b) = {e} (since (a) N (b) is a proper
subgroup of (a) = Z,), and as above this implies that the cosets

€<b>7 a<b>7 a2<b>a T ap_1<b>

are distinct (since if a®(b) = a'(b) then a!=* € (b) hence a'=* € (a) N (b) = {e}). Thus
every element of G is of the form a’b’/, that is G = (a)(b). By the Characterization of
Internal Direct Products, we have G = (a) x (b) = Zj, X Z,,.

5.27 Definition: A group G is simple when its only normal subgroups are {e} and G.

5.28 Theorem: For n > 5, the alternating group A,, is simple.

Proof: Let H <1 A,,. We shall show that H = A,,. We consider 5 cases. Case 1: sup-
pose first that H contains a 3-cycle, say (abc) € H. Then for any k # a,b,c we have
(abk) = (ab)(ck) (abc)?(ck)(ab) € H It follows that A, = H because A, is generated by
the 3-cycles of the form (abk) with k # a,b (as shown in Example 3.25). Case 2: suppose
that H contains an element o which, when written in cycle notation, has a cycle of length
r > 4, say a = (ajasaz---a.)3 € H. Then (ajaza,) = a '(ajaza3)a(aiazas)™t € H
and so H = A,, by Case 1. Case 3: suppose that H contains an element o which, when
written in cycle notation, has at least two 3-cycles, say a = (aiaq2a3)(asasa6)5 € H.
Then we have (aja4az2a6a3) = a~(ajazas)a(aiasay)™t € H and so H = A,, by Case 2.
Case 4: suppose that H contains an element « which, when written in cycle nota-
tion, is a product of one 3-cycle and some 2-cycles, say o = (ajasas)f € H where
B is a product of disjoint 2-cycles so that 82 = e. Then (ajazaz) = o®> € H and
so H = A, by Case 1. Case 5: suppose that H contains an element « which, when
written in cycle notation, is a product of 2-cycles, say o = (ajaz)(asaq)8 € H. Then
(a1a3)(azas) = = (ajasaz)alaiasaz) ™ € H. Let v = (a1a3)(azas) and choose b distinct
from ay, as,as,as. Then (ajazh) = y(ajazb)y(aiasb)™! € H and so H = A,, by Case 1.



