
Chapter 5. Cosets, Normal Subgroups, and Quotient Groups

5.1 Definition: Let G be a group with operation ∗, let H ≤ G and let a ∈ G. The left
coset of H in G containing a is the set

a ∗H =
{
ax

∣∣x ∈ H}
.

Similarly the right coset of H in G containing a is the set H ∗ a =
{
xa

∣∣x ∈ H}
. Usually,

unless the operation is addition, we write a ∗ H as aH and we write H ∗ a as Ha. We
denote the set of left cosets of H in G by G/H so we have

G/H =
{
aH

∣∣a ∈ G} .
The index of H in G, denoted by [G : H] is the cardinality of the set of cosets, that is

[G : H] =
∣∣G/H∣∣ .

When G is abelian there is no difference between left and right cosets so we simply call
them cosets.

5.2 Example: In the group Z12, the cosets of H = 〈4〉 = {0, 4, 8} are

0 +H = 4 +H = 8 +H = {0, 4, 8} = H

1 +H = 5 +H = 9 +H = {1, 5, 9}
2 +H = 6 +H = 10 +H = {2, 6, 10}
3 +H = 7 +H = 11 +H = {3, 7, 11}

5.3 Example: In the group Z, for n ∈ Z+, the cosets of 〈n〉 = nZ are

k + nZ =
{
· · · , k − 2n, k − n, k, k + n, k + 2n, · · ·

}
where k ∈ Z .

These are exactly the elements of Zn, so we have Z/〈n〉 = Zn.

5.4 Theorem: Let G be a group, let H ≤ G, and let a, b ∈ G. Then

(1) b ∈ aH ⇐⇒ a−1b ∈ H ⇐⇒ aH = bH,
(2) either aH = bH or aH ∩ bH = ∅, and
(3) |aH| = |H|.
Analogous results hold for right cosets.

Proof: If b ∈ aH, say b = ah with h ∈ H, then a−1b = h ∈ H. Conversely if a−1b ∈ H
then b = ah ∈ aH. Thus we have b ∈ aH ⇐⇒ a−1b ∈ H. Now suppose that b ∈ aH, say
b = ah with h ∈ H. Let x ∈ aH, say x = ak with k ∈ H. Then x = ak = bh−1k ∈ bH.
Thus aH ⊆ bH. Let y ∈ bH, say y = bl with l ∈ H. Then y = bl = ahl ∈ aH. Thus
bH ⊆ aH. Conversely, suppose that aH = bH. Then b = be ∈ bH = aH. This completes
the proof of (1).

To prove (2), suppose that aH ∩ bH 6= ∅. Choose x ∈ aH ∩ bH, say x = ah = bl with
h, l ∈ H. Then a−1b = hl−1 ∈ H so aH = bH by (1).

To prove (3), define φ : H → aH by φ(h) = ah. Then φ is clearly surjective, and φ is
injective since if φ(h) = φ(k) then ah = ak and so h = k by cancellation.
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5.5 Corollary: (Lagrange’s Theorem) Let G be a group and let H ≤ G. Then

|G| = |G/H| |H| .

Proof: The above theorem shows that the group G is partitioned into left cosets and that
these cosets all have the same cardinality.

5.6 Corollary: Let G be a finite group, let H ≤ G and let a ∈ G. Then |H| divides |G|
and |a| divides |G|.

5.7 Corollary: (The Euler-Fermat Theorem) For a ∈ Un we have aφ(n) = 1.

5.8 Corollary: (The Classification of Groups of Order p) Let p be prime. Let G be a
group with |G| = p. Then G ∼= Zp.

Proof: Let a ∈ Zp with a 6= e. Since |a| divides |G| = p we have |a| = 1 or |a| = p. Since
a 6= e, |a| 6= 1 so |a| = p. Since 〈a〉 = |a| = p = |G| and 〈a〉 ⊆ G we have 〈a〉 = G and so
G = 〈a〉 ∼= Zp.

5.9 Theorem: Let G be a group and let H ≤ G. The following are equivalent.

(1) we can define a binary operation ∗ on G/H by (aH) ∗ (bH) = (ab)H,
(2) aha−1 ∈ H for all a ∈ G, h ∈ H, and
(3) aH = Ha for all a ∈ G.
(4) aHa−1 = H for all a ∈ G.

In this case, G/H is a group under the above operation ∗ with identity eH = H.

Proof: Suppose that we can define an operation ∗ on G/H by (aH) ∗ (bH) = (ab)H. The
fact that this operation is well-defined means that for all a1, a2, b1, b2 ∈ G, if a1H = a2H
and b1H = b2H then (a1b1)H = (a2b2)H, or equivalently if a−11 a2 ∈ H and b1

−1b2 ∈ H
then (a1b1)−1(a2b2) ∈ H, that is b1

−1a1
−1a2b2 ∈ H. For a1

−1a2 = h ∈ H and b1
−1b2 =

k ∈ H, we have b1
−1a1

−1a2b2 = b1
−1h b2 = b1

−1b2b2
−1k b2 = kb2

−1h b2, and this lies in H
if and only if b2

−1h b2 ∈ H. This proves that (1) ⇐⇒ (2).
Suppose that (2) holds and let a ∈ G. Let x ∈ aH, say x = ah with h ∈ H. Then

x = ah = aha−1a ∈ Ha since aha−1 ∈ H. Thus aH ⊆ Ha. Now let y ∈ Ha, say y = ka
with k ∈ H. Then y = ka = aa−1ka ∈ aH since a−1ka ∈ H by (2). Thus Ha ⊆ Ha. This
proves that (2) =⇒ (3).

Conversely, suppose that (3) holds. Let a ∈ G and h ∈ H. Then ah ∈ aH = Ha so
we can choose k ∈ H so that ah = ka. Then we have aha−1 = kaa−1 = k ∈ H. This
proves that (3) =⇒ (2).

The proof that (3) ⇐⇒ (4) is left as an exercise.
Now suppose that (1) holds and let ∗ be the above operation. We claim that G/H is

a group. Indeed, the operation ∗ is associative since(
(aH)∗(bH)

)
∗(cH) =

(
(ab)H

)
∗(cH) = (abc)H = (aH)∗

(
(bc)H)

)
= (aH)∗

(
(bH)∗(cH)

)
,

the coset eH = H is the identity for G/H since for a ∈ G we have

(aH) ∗ (eH) = (ae)H = aH and (eH) ∗ (aH) = (ea)H = aH ,

and for a ∈ G, the inverse of the coset aH is the coset a−1H since

(aH) ∗ (a−1H) = (a a−1)H = eH and (a−1H) ∗ (aH) = (a−1a)H = eH .
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5.10 Definition: Let G be a group and let H ≤ G. If H satisfies the equivalent conditions
of the above theorem, then we say that H is a normal subgroup of G and we write H ≤ G.
When H ≤ G, the group G/H is called the quotient group of G by H.

5.11 Theorem: (The First Isomorphism Theorem)

(1) if φ : G→ H is a group homomorphism and K = Ker(φ) then K ≤ G and G/K ∼= φ(G),
indeed the map Φ : G/K → φ(G) given by Φ(aK) = φ(a) is a group isomorphism.
(2) if K ≤ G then the map φ : G → G/K given by φ(a) = aK is a group homomorphism
with Ker(φ) = K.

Proof: To prove (1), let φ : G → H be a group homomorphism and let K = Ker(φ).
Let a ∈ G let k ∈ K so φ(k) = e. Then φ(aka−1) = φ(a)φ(k)φ(a−1) = φ(a)φ(a)−1 = e
and so aka−1 ∈ Ker(φ) = K. This shows that K ≤ G. Define Φ : G/H → φ(G) by
Φ(aK) = φ(a). Note that Φ is well-defined since if aK = bK then a−1b ∈ K so we have
φ(a)−1φ(b) = φ(a−1b) = e and hence φ(a) = φ(b). Note that Φ is a group homomorphism
since Φ

(
(aK)(bK)

)
= Φ

(
(ab)K

)
= φ(ab)φ(a)φ(b) = Φ(aK)Φ(bK). Finally note that Φ is

clearly onto, and Φ is 1:1 since if Φ(aK) = e then φ(a) = e so a ∈ K and hence aK = K,
which is the identity element of G/K.

To prove (2) let K ≤ G. Define φ : G → G/K by φ(a) = aK. Then φ is a group
homomorphism since φ(ab) = (ab)K = (aK)(bK) = φ(a)φ(b), and Ker(φ) = K since for
a ∈ G we have a ∈ Ker(φ) ⇐⇒ φ(a) = eK ⇐⇒ aK = eK ⇐⇒ a ∈ eK = K.

5.12 Theorem: (The Second Isomorphism Theorem) Let G be a group, let H ≤ G and
let K ≤ G. Then K ∩H ≤ H, KH = 〈K ∪H〉, and H

/
(K ∩H) ∼= KH

/
K.

Proof: The proof is left as an exercise.

5.13 Theorem: (The Third Isomorphism Theorem) Let G be a group and let H,K ≤ G
with K ≤ H. Then H/K ≤ G/K and (G/K)

/
(H/K) ∼= G/H.

Proof: The proof is left as an exercise.

5.14 Example: The map φ : Z→ Zn given by φ(k) = k is a group homomorphism with
Image(φ) = 〈n〉 and Ker(φ) = 〈n〉, so we have Z

/
〈n〉 ∼= Zn (in fact Z

/
〈n〉 = Zn).

5.15 Example: The map φ : R → S1 given by φ(t) = ei 2πt is a group homomorphism,
since ei 2π(s+t) = ei 2πsei 2πt, with Image(φ) = S1 and Ker(φ) = Z so we have R

/
Z ∼= S1.

5.16 Example: The map φ : C∗ → R+ given by φ(z) = ||z|| is a group homomoprphism,
since ||zw|| = ||z|| ||w||, with Image(φ) = R+ and Ker(φ) = S1 so we have C∗

/
S1 ∼= R+.

5.17 Example: The map φ : C∗ → S1 given by φ(z) = z
||z|| , is a group homomorphism,

since zw
||zw|| = z

||z||
w
||w|| , with Image(φ) = S1 and Ker(φ) = R+ and so C∗

/
R+ ∼= S1.

5.18 Example: When R is a commutative ring with 1, the map φ : GLn(R)→ R∗ given
by φ(A) = det(A) is a group homomorphism, since det(AB) = det(A) det(B), and it is
surjective since for a ∈ R∗ we have A = diag(a, 1, · · · , 1) ∈ GLn(R) and det(A) = a, and
we have Ker(φ) =

{
A ∈ GLn(R)

∣∣det(A) = 1
}

= SLn(R), and so SLn(R)≤ GLn(R) with

GLn(R)
/
SLn(R) ∼= R∗.

5.19 Example: For n ≥ 2, the map φ : Sn → Z∗ = {±1} given by φ(α) = (−1)α is a
group homomorphism since (−1)αβ = (−1)α(−1)β , and it is surjective since (−1)e = 1
and (−1)(12) = −1, and we have Ker(φ) =

{
α ∈ Sn

∣∣(−1)α = 1
}

= An, and so An≤ Sn
with Sn

/
An ∼= Z∗ = {±1}.
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5.20 Example: Let H =
〈
(6, 2), (3, 6)

〉
≤ Z2. As an exercise, show that

∣∣Z2/H
∣∣ = 30

and that Z2/H is cyclic, then find a surjective group homomorphism φ : Z2 → Z30 with
Ker(φ) = H.

5.21 Example: The map φ : G→ Aut(G) given by φ(a) = Ca (where Ca is conjugation
by a, given by Ca(x) = axa−1) is a group homomorphism since Cab = CaCb, and we have
Image(φ) =

{
Ca

∣∣a ∈ G} = Inn(G) and

Ker(φ) =
{
a ∈ G

∣∣Ca = I
}

=
{
a ∈ G

∣∣axa−1 = x for all x ∈ G
}

=
{
a ∈ G

∣∣ax = xa for all x ∈ G
}

= Z(G)

and so Z(G)≤ G with G
/
Z(G) ∼= Inn(G).

5.22 Definition: Let H ≤ G. The centralizer of H in G is the set

C(H) = CG(H) =
{
a ∈ G

∣∣ax = xa for all x ∈ H
}

and the normalizer of H in G is the set

N(H) = NG(H) =
{
a ∈ G

∣∣aH = Ha
}
.

5.23 Theorem: (The Normalizer/Centralizer Theorem) Let H ≤ G. Then C(H)≤ N(H)
and N(H)

/
C(H) is isomorphic to a subgroup of Aut(H).

Proof: The proof is left as an exercise.

5.24 Theorem: (The Characterization of Internal Direct Products) Let G be a group. Let
H ≤ G and K ≤ G. Suppose that H ∩K = {e} and that G = HK =

{
hk

∣∣h ∈ H, k ∈ K}
.

Then G ∼= H ×K.

Proof: Define φ : H × K → G by φ(h, k) = hk. The map φ is a group homomorphism
since for h1, h2 ∈ H and k1, k2 ∈ K we have

φ
(
(h1, k1)(h2, k2)

)
= φ(h1h2, k1k2) = h1h2k1k2 = h1k1k1

−1h2k1h2
−1h2k2

= h1k1eh2k2 = φ(h1, k1)φ(h2, k2),

where we used the fact that the element k1
−1h2k1h2

−1 lies in both H and K (it lies in H
since H ≤ G so that k1

−1h2k1 ∈ H, and it lies in K since K ≤ G so that h2k1h2
−1 ∈ K),

and we have H ∩K = {e}. The map φ is surjective since G = HK so that every element
in G is of the form hk = φ(h, k) for some h ∈ H, k ∈ K, and the map φ is injective since
for h ∈ H and k ∈ K we have φ(h, k) = e =⇒ hk = e =⇒ h = k−1 =⇒ h, k ∈ H ∩K =⇒
h = k = e, since H ∩K = {e}.
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5.25 Theorem: (The Classification of Groups of Order 2p) Let p be prime. Then (up to
isomorphism) the distinct groups of order 2p are Z2p and Dp.

Proof: Let G be a group with |G| = 2p. Suppose that G 6∼= Z2p, so G is not cyclic. By
Lagrange’s Theorem, each element a ∈ G has order |a| = 1, 2, p or 2p. Since G is not
cyclic, no element has order 2p so every non-identity element in G has order 2 or p.

Suppose first that every non-identity element has order 2. Note that G must be abelian
since for all a, b ∈ G we have a2 = b2 = (ba)2 = e and so ab = b2aba2 = b(ba)2a = ba. Fix
two distinct non-identity elements a, b ∈ G and consider the set H = {e, a, b, ab}. Note
that H is closed under the operation and under inversion (since a2 = b2 = e and ab = ba)
and so H = 〈a, b〉 ≤ G. By Lagrange’s Theorem, we have |H|

∣∣|G|, that is 4
∣∣2p, and so we

must have p = 2 and so |G| = 4 = |H|, and so G = H ∼= Z2
2 ∼= D2.

Now suppose that some non-identity element has order p with p 6= 2. Choose a ∈ G
with |a| = p. Choose b /∈ 〈a〉. Note that since 〈a〉 = p and |G| = 2p, there are exactly
two cosets of 〈a〉 in G, namely 〈a〉 and b〈a〉, and G is the disjoint union G = 〈a〉 ∪ b〈a〉.
Note that b2〈a〉 6= b〈a〉 since b = b−1b2 /∈ 〈a〉, and so we must have b2〈a〉 = 〈a〉 and hence
b2 ∈ 〈a〉. Note that |b| 6= p, since if we had bp = e then (since p + 1 is even) we would
have b = bp+1 ∈ 〈b2〉 ⊆ 〈a〉, and so |b| = 2. Similarly, we have |x| = 2 for every x /∈ 〈a〉.
Consider the element ab. Note that ab /∈ 〈a〉 = a〈a〉 since b = a−1ab /∈ 〈a〉, and so we have
|ab| = 2. Thus abab = e and so ab = (ab)−1 = b−1a−1 = bap−1

We have shown that G is the disjoint union G = 〈a〉 ∪ b〈a〉, so we have

G =
{
e, a, a2, · · · , ap−1, b, ba, ba2, · · · , bap−1

}
with the listed elements distinct. Since ab = ba−1, we have a2b = aba−1 = ba−2 and
a3b = aba−2 = ba−3 and so on so that akb = ba−k. This determines the operation on G
completely. Indeed we have

ak · al = ak+l , ak · bal = bal−k , bak · al = bak+l , bak · bal = al−k .

Compare this to the operation in Dp =
{
I,R1, · · · , Rp−1, F0, F1, · · · , Fp−1

}
given by

Rk ·Rl = Rk+l , Rk · F−l = F−(l−k) , F−kRl = F−(k+l) , F−kF−l = F−(l−k) .

We see that the map φ : G→ Dp given by φ(ak) = Rk and φ(bal) = F−l is an isomorphism.
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5.26 Theorem: (The Classification of Groups of Order p2) Let p be prime. Then (up to
isomorphism) the distinct groups of order p2 are Zp2 and Zp × Zp.

Proof: Let G be a group with |G| = p2. Suppose that G 6∼= Zp2 so that G is not cyclic.
Each a ∈ G has order |a| = 1, p or p2. Since G is not cyclic, every non-identity element
has order p.

Let a be a non-identity element in G. We claim that 〈a〉≤ G. Suppose, for a contra-
diction, that 〈a〉

/
≤ G. Choose x ∈ G and ak ∈ 〈a〉 so that x akx−1 /∈ 〈a〉. This implies that

xax−1 /∈ 〈a〉 since x akx−1 = (xax−1)k. Since xax−1 6= e we have
∣∣xax−1∣∣ = p. Note that

〈a〉 ∩ 〈xax−1〉 = {e} because 〈a〉 ∩ 〈xax−1〉 is a proper subgroup of 〈a〉 ∼= Zp. It follows
that the cosets

e〈xax−1〉, a〈xax−1〉, a2〈xax−1〉, · · · , ap−1〈xax−1〉

are distinct since if ak〈xax−1〉 = al〈xax−1〉 then al−k ∈ 〈xax−1〉 so al−k ∈ 〈a〉 ∩ 〈xax−1〉
and hence al−k = e. Thus G is the disjoint union of these p cosets. In particular, the
element x−1 lies in some coset. But this is not possible since if x−1 ∈ ak〈xax−1〉 with say
x−1 = akx alx−1, then we would have akx al = e and hence x = a−k−l ∈ 〈a〉. This proves
the claim.

Fix a non-identity element a ∈ G and choose an element b ∈ G with b /∈ 〈a〉. Then we
have 〈a〉≤ G and 〈b〉≤ G. As above, we have 〈a〉 ∩ 〈b〉 = {e} (since 〈a〉 ∩ 〈b〉 is a proper
subgroup of 〈a〉 ∼= Zp), and as above this implies that the cosets

e〈b〉 , a〈b〉 , a2〈b〉 , · · · , ap−1〈b〉

are distinct (since if ak〈b〉 = al〈b〉 then al−k ∈ 〈b〉 hence al−k ∈ 〈a〉 ∩ 〈b〉 = {e}). Thus
every element of G is of the form aibj , that is G = 〈a〉〈b〉. By the Characterization of
Internal Direct Products, we have G ∼= 〈a〉 × 〈b〉 ∼= Zp × Zp.

5.27 Definition: A group G is simple when its only normal subgroups are {e} and G.

5.28 Theorem: For n ≥ 5, the alternating group An is simple.

Proof: Let H ≤ An. We shall show that H = An. We consider 5 cases. Case 1: sup-
pose first that H contains a 3-cycle, say (abc) ∈ H. Then for any k 6= a, b, c we have
(abk) = (ab)(ck) (abc)2(ck)(ab) ∈ H It follows that An = H because An is generated by
the 3-cycles of the form (abk) with k 6= a, b (as shown in Example 3.25). Case 2: suppose
that H contains an element α which, when written in cycle notation, has a cycle of length
r ≥ 4, say α = (a1a2a3 · · · ar)β ∈ H. Then (a1a3ar) = α−1(a1a2a3)α(a1a2a3)−1 ∈ H
and so H = An by Case 1. Case 3: suppose that H contains an element α which, when
written in cycle notation, has at least two 3-cycles, say α = (a1a2a3)(a4a5a6)β ∈ H.
Then we have (a1a4a2a6a3) = α−1(a1a2a4)α(a1a2a4)−1 ∈ H and so H = An by Case 2.
Case 4: suppose that H contains an element α which, when written in cycle nota-
tion, is a product of one 3-cycle and some 2-cycles, say α = (a1a2a3)β ∈ H where
β is a product of disjoint 2-cycles so that β2 = e. Then (a1a3a2) = α2 ∈ H and
so H = An by Case 1. Case 5: suppose that H contains an element α which, when
written in cycle notation, is a product of 2-cycles, say α = (a1a2)(a3a4)β ∈ H. Then
(a1a3)(a2a4) = α−1(a1a2a3)α(a1a2a3)−1 ∈ H. Let γ = (a1a3)(a2a4) and choose b distinct
from a1, a2, a3, a4. Then (a1a3b) = γ(a1a2b)γ(a1a3b)

−1 ∈ H and so H = An by Case 1.
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