Chapter 7. Group Actions and the Sylov Theorems

7.1 Definition: Let G be a group. A representation of G is a group homomorphism $\rho: G \rightarrow \operatorname{Perm}(X)$ for some set X. A representation $\rho: G \rightarrow \operatorname{Perm}(X)$ is called faithful when it is injective.
7.2 Remark: Given a faithful representation $\rho: G \rightarrow \operatorname{Perm}(X)$, we sometimes identify the group G with its isomorphic image $\rho(G)$, which is a group of permutations of X.
7.3 Definition: Let G be a group and let X be a set. A group action of G on X is a map $*: G \times X \rightarrow X$, where for $a \in G$ and $x \in X$ we write $*(a, x)$ as $a * x$ or simply as $a x$, such that
(1) $e x=x$ for all $x \in X$, and
(2) $(a b) x=a(b x)$ for all $a, b \in G$ and all $x \in S$.
7.4 Note: Given a group G and a set X, here is a natural bijective correspondence between representations $\rho: G \rightarrow \operatorname{Perm}(X)$ and group actions $*: G \times X \rightarrow X$. The representation ρ and its corresponding group action $*$ determine one another by the formula

$$
a * x=\rho(a)(x) \text { for all } a \in G, x \in X
$$

As an exercise, verify that given a representation ρ, this formula defines a group action $*$, and conversely that given a group action $*$, the formula defines a representation ρ.
7.5 Definition: Suppose that a group G acts on a set X. The group action is called faithful when the corresponding representation is faithful.
7.6 Example: When a group G acts on itself by its own operation, so $a * x=a x=\ell_{a}(x)$, the corresponding representation $\rho: G \rightarrow \operatorname{Perm}(G)$ is given by $\rho(a)=\ell_{a}$. This map is used in the proof of Cayley's Theorem: the representation is faithful, so it gives an isomorphism from G to its image $\rho(G) \leq \operatorname{Perm}(G)$.
7.7 Example: When a group G acts on itself by conjugation, so $a * x=a x a^{-1}=c_{a}(x)$, the corresponding representation $\rho: G \rightarrow \operatorname{Perm}(G)$ is given by $\rho(a)=c_{a}$. This map is used to show that $G / Z(G) \cong \operatorname{Inn}(G)$: indeed we have $\operatorname{Ker}(\rho)=Z(G)$ and Image $(\rho)=\operatorname{Inn}(G)$ giving the isomorphism $G / Z(G) \cong \operatorname{Inn}(G)$.
7.8 Example: When F is a field (or a commutative ring with 1) and the group $G L_{n}(F)$ acts on F^{n} by matrix multiplication, so that $A * x=A x=L_{A}(x)$, the corresponding representation $\rho: G L_{n}(F) \rightarrow \operatorname{Perm}\left(F^{n}\right)$ is given by $\rho(A)=L_{A}$ (so ρ sends the matrix A to the linear map L_{A} given by $\left.L_{A}(x)=A x\right)$. The representation is faithful, so its gives an isomorphism from $G L_{n}(F)$ (which is a set of invertible matrices) to its image (which is a set of invertible linear maps).
7.9 Definition: Let G be a group which acts on a set X. For $a \in G$ we define the fixed set of a in X to be the set

$$
\operatorname{Fix}(a)=\{x \in X \mid a x=x\} \subseteq X
$$

For $x \in X$ we define the orbit of x under G to be the set

$$
\operatorname{Orb}(x)=\{a x \mid a \in G\} \subseteq X
$$

Verify that for $x, y \in S$ we have $y \in \operatorname{Orb}(x) \Longleftrightarrow \operatorname{Orb}(x)=\operatorname{Orb}(y)$ so, for the equivalence relation on X given by $x \sim y \Longleftrightarrow \operatorname{Orb}(x)=\operatorname{Orb}(y)$, the equivalence class of x is equal to the orbit of x, and X is equal to the disjoint union of the orbits.
The set of distinct orbits is denoted by X / G so we have

$$
X / G=\{\operatorname{Orb}(x) \mid x \in X\} .
$$

For $x \in X$ we define the stabilizer of x in G to be the subgroup

$$
\operatorname{Stab}(x)=\{a \in G \mid a x=x\} \leq G .
$$

Note that $\operatorname{Stab}(\mathrm{x}) \leq G$ because $e x=x$, if $a x=x$ and $b x=x$ then $(a b) x=a(b x)=a x=x$, and if $a x=x$ then $x=e x=\left(a^{-1} a\right) x=a^{-1}(a x)=a^{-1} x$.
7.10 Theorem: (The Orbit-Stabilizer Theorem) Let G be a group which acts on a set X. Then for all $x \in X$

$$
|G|=|\operatorname{Orb}(x)||\operatorname{Stab}(x)|
$$

Proof: Let $x \in X$. We shall show that $|\operatorname{Orb}(x)|=|G / \operatorname{Stab}(x)|$. Write $H=\operatorname{Stab}(x)$. Define a $\operatorname{map} \Phi: G / H \rightarrow \operatorname{Orb}(x)$ by $\Phi(a H)=a x$. Then Φ is well-defined because for $a, b \in G$ we have $a H=b H \Longrightarrow b^{-1} a \in H \Longrightarrow b^{-1} a x=x \Longrightarrow a x=b x$, Φ is injective because for $a, b \in G$ we have $a x=b x \Longrightarrow b^{-1} a x=x \Longrightarrow b^{-1} a \in H \Longrightarrow a H=b H$, and the map Φ is clearly surjective.
7.11 Exercise: Consider D_{6} as a subgroup of S_{6}. Find $\operatorname{Orb}(1)$ and $\operatorname{Stab}(1)$.
7.12 Exercise: Let G be the rotation group of a cube Q. Label the vertices of the cube by elements of $S=\{1,2, \cdots, 6\}$, think of the elements of G as permutations of S and hence identify G with a subgroup of S_{6}. Find $|\operatorname{Orb}(1)|$ and $|\operatorname{Stab}(1)|$ and hence find $|G|$.
7.13 Theorem: (The Class Equation) Let G be a finite group. Choose $a_{1}, a_{2}, \cdots, a_{n} \in G$ with one element a_{i} selected from each conjugacy class containing more than one element. Then

$$
|G|=|Z(G)|+\sum_{i=1}^{n}\left|G / C\left(a_{i}\right)\right| .
$$

Proof: For $a \in G$ we have $|\mathrm{Cl}(a)|=1 \Longleftrightarrow b a b^{-1}=a$ for all $b \in G \Longleftrightarrow a \in Z(G)$. Say $Z(G)=\left\{a_{n+1}, a_{n+2}, \cdots, a_{m}\right\}$ so that G has exactly m distinct conjugacy classes and the elements $a_{1}, \cdots, a_{n}, a_{n+1}, \cdots, a_{m}$ make up exactly one element from each class. Let G act on itself by conjugation, so that $b * a=b a b^{-1}$. Note that for $a \in G$, we have $\operatorname{Orb}(a)=\left\{x^{-1} \mid x \in G\right\}=\mathrm{Cl}(a)$ (the conjugacy class of a in G) and we have $\operatorname{Stab}(a)=\left\{x \in G \mid x a x^{-1}=a\right\}=C(a)$ (the centralizer of a in $\left.G\right)$. Also, by the OrbitStabilizer Theorem, we have $\left|\operatorname{Orb}\left(a_{i}\right)\right|=\frac{|G|}{\left|C\left(a_{i}\right)\right|}=\left|G / C\left(a_{i}\right)\right|$. Since G is the disjoint union of the orbits,

$$
|G|=\sum_{i=1}^{m}\left|\operatorname{Orb}\left(a_{i}\right)\right|=\sum_{i=1}^{n}\left|G / C\left(a_{i}\right)\right|+\sum_{i=n+1}^{m} 1=\sum_{i=1}^{n}\left|G / C\left(a_{i}\right)\right|+|Z(G)| .
$$

7.14 Example: Let X be the set of all subgroups of a group G. Let G act on X by conjugation, so $a * H=c_{a}(H)=a H a^{-1}$, where $a \in G$ and $H \leq G$. For $H \in X$, that is $H \leq G$, we have

$$
\begin{aligned}
\operatorname{Stab}(H) & =\left\{a \in G \mid a H a^{-1}=H\right\}=\{a \in G \mid a H=H a\}=N_{G}(H) \\
\operatorname{Orb}(H) & =\left\{a H a^{-1} \mid a \in G\right\}=\operatorname{Cl}(H)
\end{aligned}
$$

where $N_{G}(H)$ is the normalizer of H in G and $\mathrm{Cl}(H)$ is the conjugacy class of H in G, that is the set of all subgroups conjugate to H in G.
7.15 Theorem: (Cauchy's Theorem) Let G be a finite group. Let p be a prime divisor of $|G|$. Then G contains an element of order p. Indeed

$$
|\{a \in G||a|=p\} \mid=p-1 \bmod p(p-1)
$$

Proof: Let n be the number of elements of order p in G, that is $n=|\{a \in G| | a \mid=p\}|$. Recall that $n=0 \bmod (p-1)$ (indeed n is equal to $(p-1)$ times the number of cyclic subgroups of order p in G because each of these subgroups has $\phi(p)=p-1$ generators). Let $X=\left\{\left(x_{1}, x_{2}, \cdots, x_{p}\right) \in G^{p} \mid x_{1} x_{2} \cdots x_{p}=e\right\}$. Note that $|X|=|G|^{p-1}$ since to get $\left(x_{1}, x_{2}, \cdots, x_{p}\right) \in X$ we can choose $x_{1}, x_{2}, \cdots, x_{p-1}$ arbitrarily and then x_{p} must be given by $x_{p}=\left(x_{1} x_{2} \cdots x_{p-1}\right)^{-1}$. Note that \mathbb{Z}_{p} acts on X by cyclic permutation, that is by

$$
k *\left(x_{1}, x_{2}, \cdots, x_{p}\right)=\left(x_{1+k}, x_{2+k}, \cdots, x_{p}, x_{1}, \cdots, x_{k}\right)
$$

since if $x_{1} x_{2} \cdots x_{p}=e$ then $x_{1} x_{2} \cdots x_{k}=\left(x_{k+1} \cdots x_{p}\right)^{-1}$ so $x_{1+k} x_{2+k} \cdots x_{p} x_{1} \cdots x_{k}=e$. For $x=\left(x_{1}, x_{2}, \cdots, x_{p}\right) \in S$, by the Orbit/Stabilizer Theorem $|\operatorname{Orb}(x)|$ divides $\left|\mathbb{Z}_{p}\right|=p$ so that $|\operatorname{Orb}(x)| \in\{1, p\}$, so we have

$$
|\operatorname{Orb}(x)|=\left\{\begin{array}{l}
1, \text { if } x=(a, a, \cdots, a) \text { for some } a \in G, \text { and } \\
p, \text { otherwise }
\end{array}\right.
$$

Since X is the disjoint union of the orbits, we have $|X|=k+p l$ where k is the number of orbits of size 1 and l is the number of orbits of size p. Note that k is equal to the number of elements $a \in G$ with $a^{p}=1$, and so $k=1+n$. Since $|X|=|G|^{p-1}=0 \bmod p$ we have $n=k-1=|S|-p l-1=-1 \bmod p$. Since $n=-1=p-1 \bmod p$ and $n=0=p-1 \bmod (p-1)$, we have $n=p-1 \bmod p(p-1)$ by the Chinese Remainder Theorem.
7.16 Theorem: Let G be a finite group and let $H \leq G$. Suppose that $|G / H|=p$, where p is the smallest prime divisor of $|G|$. Then $H \unlhd G$.
Proof: Let $X=G / H=\{a H \mid a \in G\}$. Since $|X|=p$ we have $\operatorname{Perm}(X) \cong S_{p}$. Let G act on X by left multiplication, so we have $a *(b H)=a b H$ for $a, b \in G$. Let $\rho: G \rightarrow \operatorname{Perm}(X)$ be the associated representation, so $\rho(a)(b H)=a b H$. Let

$$
K=\operatorname{Ker}(\rho)=\{a \in G \mid a b H=b H \text { for all } b \in G\} \unlhd G
$$

Note that $K \leq H$ because $a \in K \Longrightarrow a e H=e H \Longrightarrow a \in H$. Since $K \unlhd G$ (it is the kernel of a homomorphism) and $K \leq H$, we also have $K \unlhd H$. By the First Isomorphism Theorem, we have $G / K \cong \rho(G) \leq \operatorname{Perm}(X) \cong S_{p}$. By Lagrange's Theorem $|G / K|$ divides $\left|S_{p}\right|=p!$. By another application of Lagrange's Theorem, $|G / K|$ also divides $|G|$. Since $|G / K|||G|$ and p is the smallest prime factor of $| G|,|G / K|$ has no prime factors less than p. Since $|G / K| \mid p$!, we must have $|G / K|=1$ or p. Since $|G / K|=|G / H||H / K|=p|H / K|$ we have $|G / K|=p$ and $|H / K|=1$. Thus in fact $H=K \unlhd G$.

The Sylow Theorems

7.17 Definition: Let G be a group with $|G|=p^{m} \ell$ where p is prime and $\operatorname{gcd}(p, \ell)=1$. A p-subgroup of G is a subgroup of order p^{k} for some k, and a Sylow p-subgroup of G is a subgroup of order p^{m}.
7.18 Exercise: Find the Sylow p-subgroups of S_{3} and A_{4} for $p=2,3$.
7.19 Theorem: (The Sylow Theorems) Let G be a group with $|G|=p^{m} \ell$ where p is prime and $\operatorname{gcd}(p, \ell)=1$.
(1) For every $0 \leq k \leq m$, G has a subgroup of order p^{k}, and when $k<n$, each subgroup of order p^{k} is normal in a subgroup of order p^{k+1}. In particular, G has a Sylow p-subgroup, and every p-subgroup of G is contained in a Sylow p-subgroup.
(2) If P is a p-subgroup of G and S is a Sylow p-subgroup of G, then there exists $a \in G$ such that $a \mathrm{~Pa}^{-1} \leq S$. In particular, any two Sylow p-subgroups of G are conjugate.
(3) The number of distinct Sylow p-subgroups of G divides $|G|$ and is equal to $1 \bmod p$.

Proof: To prove Part 1, note that the trivial subgroup of G is a p-subgroup of order p^{0}. By induction, it suffices to show that for every p-subgroup $P \leq G$ with $|P|=p^{k}$ for $0 \leq k<m$ we have $P \unlhd H$ for some $H \leq G$ with $|H|=p^{k+1}$. Let $0 \leq k<m$ and let $P \leq G$ with $|P|=p^{k}$. Consider the action of P on the set of left cosets G / P given by $x *(a P)=x a P$. Note that G / P is the disjoint union of the orbits, and the size of each orbit divides $|P|=p^{k}$. Some of the orbits have size 1 and the size of all other orbits is a multiple of p, and so $|G / P|$ is equal to the number of orbits of size 1 , modulo p. For $a \in G$,

$$
\begin{aligned}
|\operatorname{Orb}(a P)|=1 & \Longleftrightarrow x a P=a P \text { for all } x \in P \Longleftrightarrow a^{-1} x a \in P \text { for all } x \in P \\
& \Longleftrightarrow a^{-1} P a=P \Longleftrightarrow P a=a P \Longleftrightarrow a \in N(P)=N_{G}(P),
\end{aligned}
$$

so the number of orbits of size 1 is equal to the number of cosets $a P$ with $a \in N(P)$, which is equal to $N(P) / P$. Thus we have $|N(P) / P| \equiv|G / P| \equiv 0 \bmod p$. By Cauchy's Theorem, since p divides $|N(P) / P|$ it follows that the group $N(P) / P$ contains an element of order p, hence a subgroup of order p. This subgroup is of the form H / P where $P \leq H \leq N(P) \leq G$. Since $P \unlhd N(P)$ we also have $P \unlhd H$. Since $|H / P|=p$ and $|P|=p^{k}$ we have $|H|=p^{\bar{k}+1}$.

To prove Part 2, let P be a p-subgroup of G with $|P|=p^{k}$, and let S be a Sylow p-subgroup of G. Consider the action of P on the G / S given by $x(a S)=x a S$. Since G / S is equal to the disjoint union of the orbits, and the size of each orbit divides $|P|=p^{k}$, it follows that $|G / S|$ is equal to the number of orbits of size 1 , modulo p. Since $|G / S| \neq 0 \bmod p$, there is at least one orbit of size 1 , so we can choose $a \in G$ such that $x a S=a S$ for all $x \in P$. Then we have $a^{-1} x a \in S$ for all $x \in P$, so that $a^{-1} P a \leq S$, and hence $P \leq a S a^{-1}$. Finally, note that $a S a^{-1}$ is a Sylow p-subgroup of G.

To prove Part 3, let X be the set of all Sylow p-subgroups of G, and choose $S \in X$. By Part 2, G acts on X by conjugation, that is by $a * T=a T a^{-1}$ where $a \in G, T \in X$, and the number of Sylow p-subgroups is $|X|=|\operatorname{Orb}(S)|$, which divides G. Likewise, we can consider the action of S on X by conjugation. Since X is the disjoint union of the orbits, and the size of each orbit divides $|S|=p^{m}$, it follows that $|X|$ is equal to the number of orbits of size 1 , modulo p. For $T \in X$, we have

$$
|\operatorname{Orb}(T)|=1 \Longleftrightarrow a T a^{-1}=T \text { for all } a \in S \Longleftrightarrow S \leq N(T)=N_{G}(T)
$$

Since S and T are Sylow p-subgroups of G, they are also Sylow p-subgroups of $N(T)$, and so they are conjugate in $N(T)$ by Part 2 , and since $T \unlhd N(T)$ it follows that $S=T$. Thus there is only one orbit of size 1 , namely $\{S\}$, so we have $|X| \equiv 1 \bmod p$, as required.

