Chapter 7. Group Actions and the Sylov Theorems

7.1 Definition: Let G be a group. A representation of G is a group homomorphism
p: G — Perm(X) for some set X. A representation p : G — Perm(X) is called faithful
when it is injective.

7.2 Remark: Given a faithful representation p : G — Perm(X), we sometimes identify
the group G with its isomorphic image p(G), which is a group of permutations of X.

7.3 Definition: Let G be a group and let X be a set. A group action of G on X is a
map * : G Xx X — X, where for a € G and x € X we write *(a, z) as a*z or simply as az,
such that

(1) ex =z for all x € X, and
(2) (ab)x = a(bx) for all a,b € G and all z € S.

7.4 Note: Given a group GG and a set X, here is a natural bijective correspondence between
representations p : G — Perm(X) and group actions * : G x X — X. The representation
p and its corresponding group action * determine one another by the formula

axx =p(a)(z) foralla e G,x € X.

As an exercise, verify that given a representation p, this formula defines a group action x,
and conversely that given a group action *, the formula defines a representation p.

7.5 Definition: Suppose that a group G acts on a set X. The group action is called
faithful when the corresponding representation is faithful.

7.6 Example: When a group G acts on itself by its own operation, so a*x = ax = {,(x),
the corresponding representation p : G — Perm(G) is given by p(a) = £,. This map is used
in the proof of Cayley’s Theorem: the representation is faithful, so it gives an isomorphism
from G to its image p(G) < Perm(G).

7.7 Example: When a group G acts on itself by conjugation, so a * x = aza™! = c,(x),

the corresponding representation p : G — Perm(G) is given by p(a) = ¢,. This map is used
to show that G/Z(G) = Inn(G): indeed we have Ker(p) = Z(G) and Image(p) = Inn(G)
giving the isomorphism G/Z(G) = Inn(G).

7.8 Example: When F is a field (or a commutative ring with 1) and the group GL,,(F)
acts on F™ by matrix multiplication, so that A x x = Ax = La(x), the corresponding
representation p : GL,(F) — Perm(F™) is given by p(A) = La (so p sends the matrix A
to the linear map L4 given by L 4(x) = Ax). The representation is faithful, so its gives an
isomorphism from GL, (F') (which is a set of invertible matrices) to its image (which is a
set of invertible linear maps).



7.9 Definition: Let GG be a group which acts on a set X. For a € G we define the fixed
set of a in X to be the set

Fix(a {x€X|aac—a:}CX
For x € X we define the orbit of z under G to be the set
Orb(x {ax‘aeG} C X.

Verify that for z,y € S we have y € Orb(m) <= Orb(x) = Orb(y) so, for the equivalence
relation on X given by z ~ y <= Orb(z) = Orb(y), the equivalence class of x is equal
to the orbit of z, and X is equal to the disjoint union of the orbits.

The set of distinct orbits is denoted by X/G so we have

X/G = {Orb(z ‘IL‘ €X}.
For x € X we define the stabilizer of  in G to be the subgroup
Stab(x {aEG‘ax—a:} <G.

Note that Stab(x) < G because ex = z, if ax = x and bz = x then (ab)z = a(bx) = ax = =z,
and if az = x then z = ex = (¢ ta)z = a1 (az) = a .

7.10 Theorem: (The Orbit-Stabilizer Theorem) Let G be a group which acts on a set
X. Then for all xt € X
|G| = |Orb(x)||Stab(z)]| .

Proof: Let o € X. We shall show that ’Orb ‘ ’G/Stab ‘ Write H = Stab().
Define a map ® : G/H — Orb(z) by ®(aH) = axz. Then ® is well-defined because for
a,b € G we have aH = bH = b la €¢ H = b lax = 2 = ax = bx, ® is injective
because for a,b € G we have ar = bx = b lax = = b la € H = aH = bH, and
the map & is clearly surjective.

7.11 Exercise: Consider Dg as a subgroup of Sg. Find Orb(1) and Stab(1).

7.12 Exercise: Let G be the rotation group of a cube (). Label the vertices of the cube
by elements of S = {1,2,---,6}, think of the elements of G as permutations of S and hence
identify G with a subgroup of Sg. Find |Orb(1)| and |Stab(1)| and hence find |G|.

7.13 Theorem: (The Class Equation) Let G be a finite group. Choose a1, az,---,a, € G
with one element a; selected from each conjugacy class containing more than one element.
Then

Gl = |2(G)| + i G/C(ar)|.

Proof: For a € G we have ‘Cl | =1 < bab ! =aforallbe G < ac Z(G).
Say Z(G) = {an+1,an+2,-- am} so that G has exactly m distinct conjugacy classes
and the elements aq,---,a,,ap+1, -, a, make up exactly one element from each class.
Let G act on itself by conjugation so that b x a = bab~!. Note that for a € G, we
have Orb = {waz~ 1|x € G} = a) (the conjugacy class of a in G) and we have
Stab(a) = {93 € G‘xam = a} = (the centralizer of a in G). Also, by the Orbit-

Stablhzer Theorem, we have |Orb( az) = \CJ((c;Ll»N =|G/C(a;)|. Since G is the disjoint union

of the orbits,

G| = ZIOrb a; }—Z\G/C ai)| + > 1—ZIG/C(az)!+\Z( )l

1=n+1 1=



7.14 Example: Let X be the set of all subgroups of a group G. Let G act on X by
conjugation, so a x H = c,(H) = aHa™ !, where a € G and H < G. For H € X, that is
H < G, we have

Stab(H) = {a € GlaHa " = H} = {a € G|aH = Ha} = Ng(H),
Orb(H) = {aHa '|a € G} = CI(H),

where Ng(H) is the normalizer of H in G and Cl(H) is the conjugacy class of H in G,
that is the set of all subgroups conjugate to H in G.

7.15 Theorem: (Cauchy’s Theorem) Let G be a finite group. Let p be a prime divisor
of |G|. Then G contains an element of order p. Indeed

‘{aGG‘|a| :p}‘ =p—1mod p(p—1).

Proof: Let n be the number of elements of order p in GG, that is n = Ha € GHa! = p}‘
Recall that n = 0 mod (p — 1) (indeed n is equal to (p — 1) times the number of cyclic
subgroups of order p in G because each of these subgroups has ¢(p) = p — 1 generators).
Let X = {(21,32, +,3,) € GP|z1my-- 3, = e}. Note that |X| = |G|P~! since to get
(x1,22, -+, xp) € X we can choose 1,2, -, Tp—1 arbitrarily and then z, must be given
by x, = (129 x,—1)" . Note that Z, acts on X by cyclic permutation, that is by

k (xlwrZ?' : 'axp) - ($1+k,$2+k," yLpy L1,y 7':6]6)
since if 1@+ 1, = e then x1wa -+ T = (Tpy1 - Tp) ' SO T14pTog -+ TpT1 - T = €.
For « = (z1,22,--+,%,) € S, by the Orbit/Stabilizer Theorem |Orb(z)| divides |Z,| = p
so that |Orb(z)| € {1, p}, so we have

‘Orb(q:)’ = {1 ) if z = (a7a7"'7a) for Somea€G7 and

p , otherwise.

Since X is the disjoint union of the orbits, we have |X| = k + pl where k is the number
of orbits of size 1 and [ is the number of orbits of size p. Note that k is equal to the
number of elements a € G with a? =1, and so k = 1 + n. Since | X| = |G[P"' =0 mod p
we have n = k —1 = |S| —pl —1 = —1 mod p. Since n = —1 = p — 1 mod p and
n=0=p—1mod (p—1), we have n = p—1 mod p(p — 1) by the Chinese Remainder
Theorem.

7.16 Theorem: Let G be a finite group and let H < G. Suppose that |G/H| = p, where
p is the smallest prime divisor of |G|. Then H 1 G.

Proof: Let X = G/H = {aH|a € G}. Since |X| = p we have Perm(X) = S,. Let G act
on X by left multiplication, so we have a* (bH) = abH for a,b € G. Let p: G — Perm(X)
be the associated representation, so p(a)(bH) = abH. Let

K =Ker(p) = {a € G|labH = bH for allbe G} 4G.

Note that K < H because a € K = aeH = eH —> a € H. Since K G (it is the
kernel of a homomorphism) and K < H, we also have K < H. By the First Isomorphism
Theorem, we have G/K = p(G) < Perm(X) = S,,. By Lagrange’s Theorem |G/K| divides
|Sp| = p!. By another application of Lagrange’s Theorem, |G/K| also divides |G|. Since
|G/K|||G| and p is the smallest prime factor of |G|, |G/K| has no prime factors less than
p. Since |G/K]||p!, we must have |G/K| =1 or p. Since |G/K|=|G/H||H/K| = p|H/K|
we have |G/K| =pand |H/K|=1. Thus in fact H = K 4 G.
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The Sylow Theorems

7.17 Definition: Let G be a group with |G| = p™¢ where p is prime and ged(p, ) = 1.
A p-subgroup of G is a subgroup of order p* for some k, and a Sylow p-subgroup of G
is a subgroup of order p™.

7.18 Exercise: Find the Sylow p-subgroups of S3 and A4 for p = 2, 3.

7.19 Theorem: (The Sylow Theorems) Let G be a group with |G| = p™{ where p is
prime and ged(p, £) = 1.

(1) For every 0 < k < m, G has a subgroup of order p*, and when k < n, each subgroup of
order p* is normal in a subgroup of order p**1. In particular, G has a Sylow p-subgroup,
and every p-subgroup of G is contained in a Sylow p-subgroup.

(2) If P is a p-subgroup of G and S is a Sylow p-subgroup of G, then there exists a € G
such that aPa~! < S. In particular, any two Sylow p-subgroups of G are conjugate.

(3) The number of distinct Sylow p-subgroups of G divides |G| and is equal to 1 mod p.

Proof: To prove Part 1, note that the trivial subgroup of G is a p-subgroup of order p°.
By induction, it suffices to show that for every p-subgroup P < G with |P| = p* for
0 < k < m we have P<I H for some H < G with |H| = p**!. Let 0 < k < m and let
P < G with |P| = p*. Consider the action of P on the set of left cosets G/P given by
x * (aP) = xaP. Note that G/P is the disjoint union of the orbits, and the size of each
orbit divides |P| = p*. Some of the orbits have size 1 and the size of all other orbits is a
multiple of p, and so |G/ P)| is equal to the number of orbits of size 1, modulo p. For a € G,

|Orb(aP)| =1 <= xaP =aP forallz € P < a 'za€ Pforallz c P
<= a 'Pa=P <= Pa=aP < ac N(P)= Ng(P),

so the number of orbits of size 1 is equal to the number of cosets aP with a € N(P), which
is equal to N(P)/P. Thus we have |[N(P)/P| = |G/P| =0 mod p. By Cauchy’s Theorem,
since p divides | N(P)/P| it follows that the group N(P)/P contains an element of order p,
hence a subgroup of order p. This subgroup is of the form H/P where P < H < N(P) < G.
Since P <1 N(P) we also have P < H. Since |H/P| = p and |P| = p* we have |H| = pk*1.

To prove Part 2, let P be a p-subgroup of G with |P| = p*, and let S be a Sylow
p-subgroup of G. Consider the action of P on the G/S given by x(aS) = xzaS. Since G/S is
equal to the disjoint union of the orbits, and the size of each orbit divides |P| = p¥, it follows
that |G/S| is equal to the number of orbits of size 1, modulo p. Since |G/S| # 0 mod p,
there is at least one orbit of size 1, so we can choose a € G such that xaS = aS for all
x € P. Then we have a~'za € S for all z € P, so that a='Pa < S, and hence P < aSa~!.
Finally, note that aSa~! is a Sylow p-subgroup of G.

To prove Part 3, let X be the set of all Sylow p-subgroups of G, and choose S € X.
By Part 2, G acts on X by conjugation, that is by a*T = aTa~! wherea € G, T € X, and
the number of Sylow p-subgroups is [X| = |Orb(S)|, which divides G. Likewise, we can
consider the action of S on X by conjugation. Since X is the disjoint union of the orbits,
and the size of each orbit divides |S| = p™, it follows that |X| is equal to the number of
orbits of size 1, modulo p. For T' € X, we have

|Orb(T)| =1 <= aTa ' =T forallac S +— S < N(T) = Ng(T).

Since S and T are Sylow p-subgroups of G, they are also Sylow p-subgroups of N(T'), and
so they are conjugate in N (7T') by Part 2, and since T'<d N(T') it follows that S = T'. Thus
there is only one orbit of size 1, namely {S}, so we have |X| =1 mod p, as required.
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