
Chapter 7. Group Actions and the Sylov Theorems

7.1 Definition: Let G be a group. A representation of G is a group homomorphism
ρ : G → Perm(X) for some set X. A representation ρ : G → Perm(X) is called faithful
when it is injective.

7.2 Remark: Given a faithful representation ρ : G → Perm(X), we sometimes identify
the group G with its isomorphic image ρ(G), which is a group of permutations of X.

7.3 Definition: Let G be a group and let X be a set. A group action of G on X is a
map ∗ : G×X → X, where for a ∈ G and x ∈ X we write ∗(a, x) as a ∗ x or simply as ax,
such that

(1) ex = x for all x ∈ X, and
(2) (ab)x = a(bx) for all a, b ∈ G and all x ∈ S.

7.4 Note: Given a group G and a set X, here is a natural bijective correspondence between
representations ρ : G→ Perm(X) and group actions ∗ : G×X → X. The representation
ρ and its corresponding group action ∗ determine one another by the formula

a ∗ x = ρ(a)(x) for all a ∈ G, x ∈ X .

As an exercise, verify that given a representation ρ, this formula defines a group action ∗,
and conversely that given a group action ∗, the formula defines a representation ρ.

7.5 Definition: Suppose that a group G acts on a set X. The group action is called
faithful when the corresponding representation is faithful.

7.6 Example: When a group G acts on itself by its own operation, so a∗x = ax = `a(x),
the corresponding representation ρ : G→ Perm(G) is given by ρ(a) = `a. This map is used
in the proof of Cayley’s Theorem: the representation is faithful, so it gives an isomorphism
from G to its image ρ(G) ≤ Perm(G).

7.7 Example: When a group G acts on itself by conjugation, so a ∗ x = axa−1 = ca(x),
the corresponding representation ρ : G→ Perm(G) is given by ρ(a) = ca. This map is used
to show that G

/
Z(G) ∼= Inn(G): indeed we have Ker(ρ) = Z(G) and Image(ρ) = Inn(G)

giving the isomorphism G
/
Z(G) ∼= Inn(G).

7.8 Example: When F is a field (or a commutative ring with 1) and the group GLn(F )
acts on Fn by matrix multiplication, so that A ∗ x = Ax = LA(x), the corresponding
representation ρ : GLn(F ) → Perm(Fn) is given by ρ(A) = LA (so ρ sends the matrix A
to the linear map LA given by LA(x) = Ax). The representation is faithful, so its gives an
isomorphism from GLn(F ) (which is a set of invertible matrices) to its image (which is a
set of invertible linear maps).
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7.9 Definition: Let G be a group which acts on a set X. For a ∈ G we define the fixed
set of a in X to be the set

Fix(a) =
{
x ∈ X

∣∣ax = x
}
⊆ X .

For x ∈ X we define the orbit of x under G to be the set

Orb(x) =
{
ax
∣∣a ∈ G} ⊆ X .

Verify that for x, y ∈ S we have y ∈ Orb(x) ⇐⇒ Orb(x) = Orb(y) so, for the equivalence
relation on X given by x ∼ y ⇐⇒ Orb(x) = Orb(y), the equivalence class of x is equal
to the orbit of x, and X is equal to the disjoint union of the orbits.
The set of distinct orbits is denoted by X/G so we have

X/G =
{

Orb(x)
∣∣x ∈ X} .

For x ∈ X we define the stabilizer of x in G to be the subgroup

Stab(x) =
{
a ∈ G

∣∣ax = x
}
≤ G .

Note that Stab(x) ≤ G because ex = x, if ax = x and bx = x then (ab)x = a(bx) = ax = x,
and if ax = x then x = ex = (a−1a)x = a−1(ax) = a−1x.

7.10 Theorem: (The Orbit-Stabilizer Theorem) Let G be a group which acts on a set
X. Then for all x ∈ X

|G| =
∣∣Orb(x)

∣∣∣∣Stab(x)
∣∣ .

Proof: Let x ∈ X. We shall show that
∣∣∣Orb(x)

∣∣∣ =
∣∣∣G/Stab(x)

∣∣∣. Write H = Stab(x).

Define a map Φ : G/H → Orb(x) by Φ(aH) = ax. Then Φ is well-defined because for
a, b ∈ G we have aH = bH =⇒ b−1a ∈ H =⇒ b−1a x = x =⇒ ax = bx, Φ is injective
because for a, b ∈ G we have ax = bx =⇒ b−1a x = x =⇒ b−1a ∈ H =⇒ aH = bH, and
the map Φ is clearly surjective.

7.11 Exercise: Consider D6 as a subgroup of S6. Find Orb(1) and Stab(1).

7.12 Exercise: Let G be the rotation group of a cube Q. Label the vertices of the cube
by elements of S = {1, 2, · · · , 6}, think of the elements of G as permutations of S and hence
identify G with a subgroup of S6. Find

∣∣Orb(1)
∣∣ and

∣∣Stab(1)
∣∣ and hence find |G|.

7.13 Theorem: (The Class Equation) Let G be a finite group. Choose a1, a2, · · · , an ∈ G
with one element ai selected from each conjugacy class containing more than one element.
Then

|G| =
∣∣Z(G)

∣∣+
n∑

i=1

∣∣G/C(ai)
∣∣.

Proof: For a ∈ G we have
∣∣Cl(a)

∣∣ = 1 ⇐⇒ bab−1 = a for all b ∈ G ⇐⇒ a ∈ Z(G).

Say Z(G) =
{
an+1, an+2, · · · , am

}
so that G has exactly m distinct conjugacy classes

and the elements a1, · · · , an, an+1, · · · , am make up exactly one element from each class.
Let G act on itself by conjugation, so that b ∗ a = bab−1. Note that for a ∈ G, we
have Orb(a) =

{
xax−1

∣∣x ∈ G} = Cl(a) (the conjugacy class of a in G) and we have

Stab(a) =
{
x ∈ G

∣∣xax−1 = a
}

= C(a) (the centralizer of a in G). Also, by the Orbit-

Stabilizer Theorem, we have
∣∣Orb(ai)

∣∣ = |G|
|C(ai)| =

∣∣G/C(ai)
∣∣. Since G is the disjoint union

of the orbits,

|G| =
m∑
i=1

|Orb(ai)
∣∣ =

n∑
i=1

∣∣G/C(ai)
∣∣+

m∑
i=n+1

1 =
n∑

i=1

|G/C(ai)|+ |Z(G)|.
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7.14 Example: Let X be the set of all subgroups of a group G. Let G act on X by
conjugation, so a ∗H = ca(H) = aHa−1, where a ∈ G and H ≤ G. For H ∈ X, that is
H ≤ G, we have

Stab(H) =
{
a ∈ G

∣∣aHa−1 = H
}

=
{
a ∈ G

∣∣aH = Ha
}

= NG(H),

Orb(H) =
{
aHa−1

∣∣a ∈ G} = Cl(H),

where NG(H) is the normalizer of H in G and Cl(H) is the conjugacy class of H in G,
that is the set of all subgroups conjugate to H in G.

7.15 Theorem: (Cauchy’s Theorem) Let G be a finite group. Let p be a prime divisor
of |G|. Then G contains an element of order p. Indeed∣∣∣{a ∈ G∣∣|a| = p

}∣∣∣ = p− 1 mod p(p− 1) .

Proof: Let n be the number of elements of order p in G, that is n =
∣∣{a ∈ G∣∣|a| = p

}∣∣.
Recall that n = 0 mod (p − 1) (indeed n is equal to (p − 1) times the number of cyclic
subgroups of order p in G because each of these subgroups has φ(p) = p − 1 generators).
Let X =

{
(x1, x2, · · · , xp) ∈ Gp

∣∣x1x2 · · ·xp = e
}

. Note that |X| = |G|p−1 since to get
(x1, x2, · · · , xp) ∈ X we can choose x1, x2, · · · , xp−1 arbitrarily and then xp must be given
by xp = (x1x2 · · ·xp−1)−1. Note that Zp acts on X by cyclic permutation, that is by

k ∗ (x1, x2, · · · , xp) = (x1+k, x2+k, · · · , xp, x1, · · · , xk)

since if x1x2 · · ·xp = e then x1x2 · · ·xk = (xk+1 · · ·xp)−1 so x1+kx2+k · · ·xpx1 · · ·xk = e.
For x = (x1, x2, · · · , xp) ∈ S, by the Orbit/Stabilizer Theorem

∣∣Orb(x)
∣∣ divides |Zp| = p

so that
∣∣Orb(x)

∣∣ ∈ {1, p}, so we have∣∣∣Orb(x)
∣∣∣ =

{
1 , if x = (a, a, · · · , a) for some a ∈ G, and

p , otherwise.

Since X is the disjoint union of the orbits, we have |X| = k + pl where k is the number
of orbits of size 1 and l is the number of orbits of size p. Note that k is equal to the
number of elements a ∈ G with ap = 1, and so k = 1 + n. Since |X| = |G|p−1 = 0 mod p
we have n = k − 1 = |S| − pl − 1 = −1 mod p . Since n = −1 = p − 1 mod p and
n = 0 = p − 1 mod (p − 1), we have n = p − 1 mod p(p − 1) by the Chinese Remainder
Theorem.

7.16 Theorem: Let G be a finite group and let H ≤ G. Suppose that |G/H| = p, where
p is the smallest prime divisor of |G|. Then H ≤ G.

Proof: Let X = G/H =
{
aH
∣∣a ∈ G}. Since |X| = p we have Perm(X) ∼= Sp. Let G act

on X by left multiplication, so we have a∗ (bH) = abH for a, b ∈ G. Let ρ : G→ Perm(X)
be the associated representation, so ρ(a)(bH) = abH. Let

K = Ker(ρ) =
{
a ∈ G

∣∣abH = bH for all b ∈ G
}
≤ G .

Note that K ≤ H because a ∈ K =⇒ aeH = eH =⇒ a ∈ H. Since K ≤ G (it is the
kernel of a homomorphism) and K ≤ H, we also have K ≤ H. By the First Isomorphism
Theorem, we have G/K ∼= ρ(G) ≤ Perm(X) ∼= Sp. By Lagrange’s Theorem |G/K| divides
|Sp| = p!. By another application of Lagrange’s Theorem, |G/K| also divides |G|. Since
|G/K|

∣∣ |G| and p is the smallest prime factor of |G|, |G/K| has no prime factors less than

p. Since |G/K|
∣∣ p!, we must have |G/K| = 1 or p. Since |G/K| = |G/H| |H/K| = p|H/K|

we have |G/K| = p and |H/K| = 1. Thus in fact H = K ≤ G.

3



The Sylow Theorems

7.17 Definition: Let G be a group with |G| = pm` where p is prime and gcd(p, `) = 1.
A p-subgroup of G is a subgroup of order pk for some k, and a Sylow p-subgroup of G
is a subgroup of order pm.

7.18 Exercise: Find the Sylow p-subgroups of S3 and A4 for p = 2, 3.

7.19 Theorem: (The Sylow Theorems) Let G be a group with |G| = pm` where p is
prime and gcd(p, `) = 1.

(1) For every 0 ≤ k ≤ m, G has a subgroup of order pk, and when k < n, each subgroup of
order pk is normal in a subgroup of order pk+1. In particular, G has a Sylow p-subgroup,
and every p-subgroup of G is contained in a Sylow p-subgroup.
(2) If P is a p-subgroup of G and S is a Sylow p-subgroup of G, then there exists a ∈ G
such that aPa−1 ≤ S. In particular, any two Sylow p-subgroups of G are conjugate.
(3) The number of distinct Sylow p-subgroups of G divides |G| and is equal to 1 mod p.

Proof: To prove Part 1, note that the trivial subgroup of G is a p-subgroup of order p0.
By induction, it suffices to show that for every p-subgroup P ≤ G with |P | = pk for
0 ≤ k < m we have P ≤ H for some H ≤ G with |H| = pk+1. Let 0 ≤ k < m and let
P ≤ G with |P | = pk. Consider the action of P on the set of left cosets G/P given by
x ∗ (aP ) = xaP . Note that G/P is the disjoint union of the orbits, and the size of each
orbit divides |P | = pk. Some of the orbits have size 1 and the size of all other orbits is a
multiple of p, and so |G/P | is equal to the number of orbits of size 1, modulo p. For a ∈ G,

|Orb(aP )| = 1 ⇐⇒ xaP = aP for all x ∈ P ⇐⇒ a−1xa ∈ P for all x ∈ P
⇐⇒ a−1Pa = P ⇐⇒ Pa = aP ⇐⇒ a ∈ N(P ) = NG(P ),

so the number of orbits of size 1 is equal to the number of cosets aP with a ∈ N(P ), which
is equal to N(P )/P . Thus we have |N(P )/P | ≡ |G/P | ≡ 0 mod p. By Cauchy’s Theorem,
since p divides |N(P )/P | it follows that the group N(P )/P contains an element of order p,
hence a subgroup of order p. This subgroup is of the form H/P where P ≤ H ≤ N(P ) ≤ G.
Since P ≤ N(P ) we also have P ≤ H. Since |H/P | = p and |P | = pk we have |H| = pk+1.

To prove Part 2, let P be a p-subgroup of G with |P | = pk, and let S be a Sylow
p-subgroup of G. Consider the action of P on the G/S given by x(aS) = xaS. Since G/S is
equal to the disjoint union of the orbits, and the size of each orbit divides |P | = pk, it follows
that |G/S| is equal to the number of orbits of size 1, modulo p. Since |G/S| 6= 0 mod p,
there is at least one orbit of size 1, so we can choose a ∈ G such that xaS = aS for all
x ∈ P . Then we have a−1xa ∈ S for all x ∈ P , so that a−1Pa ≤ S, and hence P ≤ aSa−1.
Finally, note that aSa−1 is a Sylow p-subgroup of G.

To prove Part 3, let X be the set of all Sylow p-subgroups of G, and choose S ∈ X.
By Part 2, G acts on X by conjugation, that is by a∗T = aTa−1 where a ∈ G, T ∈ X, and
the number of Sylow p-subgroups is |X| =

∣∣Orb(S)
∣∣, which divides G. Likewise, we can

consider the action of S on X by conjugation. Since X is the disjoint union of the orbits,
and the size of each orbit divides |S| = pm, it follows that |X| is equal to the number of
orbits of size 1, modulo p. For T ∈ X, we have

|Orb(T )| = 1 ⇐⇒ aTa−1 = T for all a ∈ S ⇐⇒ S ≤ N(T ) = NG(T ).

Since S and T are Sylow p-subgroups of G, they are also Sylow p-subgroups of N(T ), and
so they are conjugate in N(T ) by Part 2, and since T ≤ N(T ) it follows that S = T . Thus
there is only one orbit of size 1, namely {S}, so we have |X| ≡ 1 mod p, as required.
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