Chapter 7. Group Actions and the Sylov Theorems

7.1 Definition: Let G be a group. A **representation** of G is a group homomorphism $\rho: G \to \operatorname{Perm}(X)$ for some set X. A representation $\rho: G \to \operatorname{Perm}(X)$ is called **faithful** when it is injective.

7.2 Remark: Given a faithful representation $\rho : G \to \text{Perm}(X)$, we sometimes identify the group G with its isomorphic image $\rho(G)$, which is a group of permutations of X.

7.3 Definition: Let G be a group and let X be a set. A **group action** of G on X is a map $*: G \times X \to X$, where for $a \in G$ and $x \in X$ we write *(a, x) as a * x or simply as ax, such that

(1) ex = x for all $x \in X$, and

(2) (ab)x = a(bx) for all $a, b \in G$ and all $x \in S$.

7.4 Note: Given a group G and a set X, here is a natural bijective correspondence between representations $\rho: G \to \operatorname{Perm}(X)$ and group actions $*: G \times X \to X$. The representation ρ and its corresponding group action * determine one another by the formula

$$a * x = \rho(a)(x)$$
 for all $a \in G, x \in X$.

As an exercise, verify that given a representation ρ , this formula defines a group action *, and conversely that given a group action *, the formula defines a representation ρ .

7.5 Definition: Suppose that a group G acts on a set X. The group action is called **faithful** when the corresponding representation is faithful.

7.6 Example: When a group G acts on itself by its own operation, so $a * x = ax = \ell_a(x)$, the corresponding representation $\rho: G \to \operatorname{Perm}(G)$ is given by $\rho(a) = \ell_a$. This map is used in the proof of Cayley's Theorem: the representation is faithful, so it gives an isomorphism from G to its image $\rho(G) \leq \operatorname{Perm}(G)$.

7.7 Example: When a group G acts on itself by conjugation, so $a * x = axa^{-1} = c_a(x)$, the corresponding representation $\rho : G \to \operatorname{Perm}(G)$ is given by $\rho(a) = c_a$. This map is used to show that $G/Z(G) \cong \operatorname{Inn}(G)$: indeed we have $\operatorname{Ker}(\rho) = Z(G)$ and $\operatorname{Image}(\rho) = \operatorname{Inn}(G)$ giving the isomorphism $G/Z(G) \cong \operatorname{Inn}(G)$.

7.8 Example: When F is a field (or a commutative ring with 1) and the group $GL_n(F)$ acts on F^n by matrix multiplication, so that $A * x = Ax = L_A(x)$, the corresponding representation $\rho : GL_n(F) \to \operatorname{Perm}(F^n)$ is given by $\rho(A) = L_A$ (so ρ sends the matrix A to the linear map L_A given by $L_A(x) = Ax$). The representation is faithful, so its gives an isomorphism from $GL_n(F)$ (which is a set of invertible matrices) to its image (which is a set of invertible linear maps).

7.9 Definition: Let G be a group which acts on a set X. For $a \in G$ we define the **fixed** set of a in X to be the set

$$\operatorname{Fix}(a) = \left\{ x \in X | ax = x \right\} \subseteq X.$$

For $x \in X$ we define the **orbit** of x under G to be the set

$$\operatorname{Orb}(x) = \left\{ ax \middle| a \in G \right\} \subseteq X$$

Verify that for $x, y \in S$ we have $y \in Orb(x) \iff Orb(x) = Orb(y)$ so, for the equivalence relation on X given by $x \sim y \iff \operatorname{Orb}(x) = \operatorname{Orb}(y)$, the equivalence class of x is equal to the orbit of x, and X is equal to the disjoint union of the orbits. Tł е

The set of distinct orbits is denoted by
$$X/G$$
 so we have

$$X/G = \left\{ \operatorname{Orb}(x) \middle| x \in X \right\}.$$

For $x \in X$ we define the **stabilizer** of x in G to be the subgroup

$$Stab(x) = \left\{ a \in G \middle| ax = x \right\} \le G$$

Note that $Stab(x) \leq G$ because ex = x, if ax = x and bx = x then (ab)x = a(bx) = ax = x, and if ax = x then $x = ex = (a^{-1}a)x = a^{-1}(ax) = a^{-1}x$.

7.10 Theorem: (The Orbit-Stabilizer Theorem) Let G be a group which acts on a set X. Then for all $x \in X$

$$|G| = |\operatorname{Orb}(x)| |\operatorname{Stab}(x)|.$$

Proof: Let $x \in X$. We shall show that $|\operatorname{Orb}(x)| = |G/\operatorname{Stab}(x)|$. Write $H = \operatorname{Stab}(x)$. Define a map $\Phi: G/H \to \operatorname{Orb}(x)$ by $\Phi(aH) = ax$. Then Φ is well-defined because for $a, b \in G$ we have $aH = bH \Longrightarrow b^{-1}a \in H \Longrightarrow b^{-1}a x = x \Longrightarrow ax = bx, \Phi$ is injective because for $a, b \in G$ we have $ax = bx \Longrightarrow b^{-1}a x = x \Longrightarrow b^{-1}a \in H \Longrightarrow aH = bH$, and the map Φ is clearly surjective.

7.11 Exercise: Consider D_6 as a subgroup of S_6 . Find Orb(1) and Stab(1).

7.12 Exercise: Let G be the rotation group of a cube Q. Label the vertices of the cube by elements of $S = \{1, 2, \dots, 6\}$, think of the elements of G as permutations of S and hence identify G with a subgroup of S_6 . Find |Orb(1)| and |Stab(1)| and hence find |G|.

7.13 Theorem: (The Class Equation) Let G be a finite group. Choose $a_1, a_2, \dots, a_n \in G$ with one element a_i selected from each conjugacy class containing more than one element. Then

$$|G| = |Z(G)| + \sum_{i=1}^{n} |G/C(a_i)|.$$

Proof: For $a \in G$ we have $|\operatorname{Cl}(a)| = 1 \iff bab^{-1} = a$ for all $b \in G \iff a \in Z(G)$. Say $Z(G) = \{a_{n+1}, a_{n+2}, \cdots, a_m\}$ so that G has exactly m distinct conjugacy classes and the elements $a_1, \dots, a_n, a_{n+1}, \dots, a_m$ make up exactly one element from each class. Let G act on itself by conjugation, so that $b * a = bab^{-1}$. Note that for $a \in G$, we have $\operatorname{Orb}(a) = \{xax^{-1} | x \in G\} = \operatorname{Cl}(a)$ (the conjugacy class of a in G) and we have $\operatorname{Stab}(a) = \{x \in G | xax^{-1} = a\} = C(a)$ (the centralizer of a in G). Also, by the Orbit-Stabilizer Theorem, we have $|Orb(a_i)| = \frac{|G|}{|C(a_i)|} = |G/C(a_i)|$. Since G is the disjoint union of the orbits,

$$|G| = \sum_{i=1}^{m} |\operatorname{Orb}(a_i)| = \sum_{i=1}^{n} |G/C(a_i)| + \sum_{i=n+1}^{m} 1 = \sum_{i=1}^{n} |G/C(a_i)| + |Z(G)|.$$

7.14 Example: Let X be the set of all subgroups of a group G. Let G act on X by conjugation, so $a * H = c_a(H) = aHa^{-1}$, where $a \in G$ and $H \leq G$. For $H \in X$, that is $H \leq G$, we have

Stab(H) =
$$\{a \in G | aHa^{-1} = H\} = \{a \in G | aH = Ha\} = N_G(H),$$

Orb(H) = $\{aHa^{-1} | a \in G\} = Cl(H),$

where $N_G(H)$ is the normalizer of H in G and Cl(H) is the conjugacy class of H in G, that is the set of all subgroups conjugate to H in G.

7.15 Theorem: (Cauchy's Theorem) Let G be a finite group. Let p be a prime divisor of |G|. Then G contains an element of order p. Indeed

$$|\{a \in G | |a| = p\}| = p - 1 \mod p(p - 1).$$

Proof: Let n be the number of elements of order p in G, that is $n = |\{a \in G | |a| = p\}|$. Recall that $n = 0 \mod (p-1)$ (indeed n is equal to (p-1) times the number of cyclic subgroups of order p in G because each of these subgroups has $\phi(p) = p - 1$ generators). Let $X = \{(x_1, x_2, \dots, x_p) \in G^p | x_1 x_2 \dots x_p = e\}$. Note that $|X| = |G|^{p-1}$ since to get $(x_1, x_2, \dots, x_p) \in X$ we can choose x_1, x_2, \dots, x_{p-1} arbitrarily and then x_p must be given by $x_p = (x_1 x_2 \dots x_{p-1})^{-1}$. Note that \mathbb{Z}_p acts on X by cyclic permutation, that is by

$$k * (x_1, x_2, \cdots, x_p) = (x_{1+k}, x_{2+k}, \cdots, x_p, x_1, \cdots, x_k)$$

since if $x_1x_2\cdots x_p = e$ then $x_1x_2\cdots x_k = (x_{k+1}\cdots x_p)^{-1}$ so $x_{1+k}x_{2+k}\cdots x_px_1\cdots x_k = e$. For $x = (x_1, x_2, \cdots, x_p) \in S$, by the Orbit/Stabilizer Theorem $|\operatorname{Orb}(x)|$ divides $|\mathbb{Z}_p| = p$ so that $|\operatorname{Orb}(x)| \in \{1, p\}$, so we have

$$\left| \operatorname{Orb}(x) \right| = \begin{cases} 1 \text{, if } x = (a, a, \dots, a) \text{ for some } a \in G, \text{ and} \\ p \text{, otherwise.} \end{cases}$$

Since X is the disjoint union of the orbits, we have |X| = k + pl where k is the number of orbits of size 1 and l is the number of orbits of size p. Note that k is equal to the number of elements $a \in G$ with $a^p = 1$, and so k = 1 + n. Since $|X| = |G|^{p-1} = 0 \mod p$ we have $n = k - 1 = |S| - pl - 1 = -1 \mod p$. Since $n = -1 = p - 1 \mod p$ and $n = 0 = p - 1 \mod (p - 1)$, we have $n = p - 1 \mod p(p - 1)$ by the Chinese Remainder Theorem.

7.16 Theorem: Let G be a finite group and let $H \leq G$. Suppose that |G/H| = p, where p is the smallest prime divisor of |G|. Then $H \leq G$.

Proof: Let $X = G/H = \{aH | a \in G\}$. Since |X| = p we have $Perm(X) \cong S_p$. Let G act on X by left multiplication, so we have a * (bH) = abH for $a, b \in G$. Let $\rho : G \to Perm(X)$ be the associated representation, so $\rho(a)(bH) = abH$. Let

$$K = \operatorname{Ker}(\rho) = \left\{ a \in G \middle| abH = bH \text{ for all } b \in G \right\} \trianglelefteq G.$$

Note that $K \leq H$ because $a \in K \Longrightarrow aeH = eH \Longrightarrow a \in H$. Since $K \leq G$ (it is the kernel of a homomorphism) and $K \leq H$, we also have $K \leq H$. By the First Isomorphism Theorem, we have $G/K \cong \rho(G) \leq \operatorname{Perm}(X) \cong S_p$. By Lagrange's Theorem |G/K| divides $|S_p| = p!$. By another application of Lagrange's Theorem, |G/K| also divides |G|. Since |G/K| ||G| and p is the smallest prime factor of |G|, |G/K| has no prime factors less than p. Since |G/K| |p!, we must have |G/K| = 1 or p. Since |G/K| = |G/H| |H/K| = p|H/K| we have |G/K| = p and |H/K| = 1. Thus in fact $H = K \leq G$.

The Sylow Theorems

7.17 Definition: Let G be a group with $|G| = p^m \ell$ where p is prime and $gcd(p, \ell) = 1$. A p-subgroup of G is a subgroup of order p^k for some k, and a Sylow p-subgroup of G is a subgroup of order p^m .

7.18 Exercise: Find the Sylow *p*-subgroups of S_3 and A_4 for p = 2, 3.

7.19 Theorem: (The Sylow Theorems) Let G be a group with $|G| = p^m \ell$ where p is prime and $gcd(p, \ell) = 1$.

(1) For every $0 \le k \le m$, G has a subgroup of order p^k , and when k < n, each subgroup of order p^k is normal in a subgroup of order p^{k+1} . In particular, G has a Sylow p-subgroup, and every p-subgroup of G is contained in a Sylow p-subgroup.

(2) If P is a p-subgroup of G and S is a Sylow p-subgroup of G, then there exists $a \in G$ such that $aPa^{-1} \leq S$. In particular, any two Sylow p-subgroups of G are conjugate.

(3) The number of distinct Sylow p-subgroups of G divides |G| and is equal to 1 mod p.

Proof: To prove Part 1, note that the trivial subgroup of G is a p-subgroup of order p^0 . By induction, it suffices to show that for every p-subgroup $P \leq G$ with $|P| = p^k$ for $0 \leq k < m$ we have $P \leq H$ for some $H \leq G$ with $|H| = p^{k+1}$. Let $0 \leq k < m$ and let $P \leq G$ with $|P| = p^k$. Consider the action of P on the set of left cosets G/P given by x * (aP) = xaP. Note that G/P is the disjoint union of the orbits, and the size of each orbit divides $|P| = p^k$. Some of the orbits have size 1 and the size of all other orbits is a multiple of p, and so |G/P| is equal to the number of orbits of size 1, modulo p. For $a \in G$,

$$|\operatorname{Orb}(aP)| = 1 \iff xaP = aP \text{ for all } x \in P \iff a^{-1}xa \in P \text{ for all } x \in P$$
$$\iff a^{-1}Pa = P \iff Pa = aP \iff a \in N(P) = N_G(P),$$

so the number of orbits of size 1 is equal to the number of cosets aP with $a \in N(P)$, which is equal to N(P)/P. Thus we have $|N(P)/P| \equiv |G/P| \equiv 0 \mod p$. By Cauchy's Theorem, since p divides |N(P)/P| it follows that the group N(P)/P contains an element of order p, hence a subgroup of order p. This subgroup is of the form H/P where $P \leq H \leq N(P) \leq G$. Since $P \leq N(P)$ we also have $P \leq H$. Since |H/P| = p and $|P| = p^k$ we have $|H| = p^{k+1}$.

To prove Part 2, let P be a p-subgroup of G with $|P| = p^k$, and let S be a Sylow p-subgroup of G. Consider the action of P on the G/S given by x(aS) = xaS. Since G/S is equal to the disjoint union of the orbits, and the size of each orbit divides $|P| = p^k$, it follows that |G/S| is equal to the number of orbits of size 1, modulo p. Since $|G/S| \neq 0 \mod p$, there is at least one orbit of size 1, so we can choose $a \in G$ such that xaS = aS for all $x \in P$. Then we have $a^{-1}xa \in S$ for all $x \in P$, so that $a^{-1}Pa \leq S$, and hence $P \leq aSa^{-1}$. Finally, note that aSa^{-1} is a Sylow p-subgroup of G.

To prove Part 3, let X be the set of all Sylow p-subgroups of G, and choose $S \in X$. By Part 2, G acts on X by conjugation, that is by $a * T = aTa^{-1}$ where $a \in G, T \in X$, and the number of Sylow p-subgroups is $|X| = |\operatorname{Orb}(S)|$, which divides G. Likewise, we can consider the action of S on X by conjugation. Since X is the disjoint union of the orbits, and the size of each orbit divides $|S| = p^m$, it follows that |X| is equal to the number of orbits of size 1, modulo p. For $T \in X$, we have

$$|\operatorname{Orb}(T)| = 1 \iff aTa^{-1} = T \text{ for all } a \in S \iff S \leq N(T) = N_G(T).$$

Since S and T are Sylow p-subgroups of G, they are also Sylow p-subgroups of N(T), and so they are conjugate in N(T) by Part 2, and since $T \leq N(T)$ it follows that S = T. Thus there is only one orbit of size 1, namely $\{S\}$, so we have $|X| \equiv 1 \mod p$, as required.