Chapter 8. The Classification of Groups of Small Order

8.1 Theorem: (Some Classification Theorems) Let G be a finite group and let p and q be prime numbers with p > q.

(1) If |G| = p then $G \cong \mathbb{Z}_p$.

(2) If $|G| = p^2$ then either $G \cong \mathbb{Z}_{p^2}$ or $G \cong \mathbb{Z}_p \times \mathbb{Z}_p$.

(3) If |G| = 2p then either $G \cong \mathbb{Z}_{2p}$ or $G \cong D_p$.

(4) If |G| = pq and q/p-1 then $G \cong \mathbb{Z}_{pq}$. If |G| = pq and q/p-1 then $G \cong \mathbb{Z}_{pq}$ or $G \cong T$ where T is a group whose elements are uniquely of the form $\alpha^i \beta^j$ with $i \in \mathbb{Z}_p$ and $j \in \mathbb{Z}_q$, with $|\alpha| = p$, $|\beta| = q$ and $\beta \alpha \beta^{-1} = \alpha^s$, where $s \neq 1$ and $s^q = 1 \mod p$.

Proof: To prove Part 1, suppose that |G| = p and choose $a \in G$ with $a \neq e$. By Lagrange's Theorem, we have |a| = p, so that $G = \langle a \rangle \cong \mathbb{Z}_p$.

To prove Part 2, suppose that $|G| = p^2$. Consider the action of G on itself given by conjugation, that is by $x*a = xax^{-1}$. Note that G is the disjoint union of the orbits, and the size of each orbit divides $|G| = p^2$. Some of the orbits have size 1 and the size of each of the other orbits is a multiple of p. It follows that |G| is equal to the number of orbits of size 1, modulo p. For $a \in G$ we have $|\operatorname{Orb}(a)| = 1 \iff xax^{-1} = a$ for all $x \in G \iff a \in Z(G)$, and hence $|Z(G)| \equiv |G| = p^2 \equiv 0 \mod p$. Thus $|Z(G)| \neq 1$ so, by Lagrange's Theorem, either |Z(G)| = p or $|Z(G)| = p^2$. If we had |Z(G)| = p then we could choose $a \in G$ with $a \notin Z(G)$, but then we would have proper subgroups Z(G) < C(a) and C(a) < G which is not possible by Lagrange's Theorem, since |Z(G)| = p and $|G| = p^2$. Thus we must have $|Z(G)| = p^2$, and hence Z(G) = G so that G is abelian. By the classification of finite abelian groups, either $G \cong \mathbb{Z}_{p^2}$ or $G \cong \mathbb{Z}_p \times \mathbb{Z}_p$, as required.

Part 3 follows as a special case of Part 4, but we provide a proof anyway. If p = 2and |G| = 2p = 4 then, by Part 2, either $G \cong \mathbb{Z}_4$ or $G \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \cong D_2$. Suppose that p > 2 and |G| = 2p, and suppose that $G \not\cong \mathbb{Z}_{2p}$. Each non-identity element of G has order 2 or p. By Cauchy's Theorem, we can choose $a \in G$ with |a| = p, then we choose $b \notin \langle a \rangle$, so that G is the disjoint union of two cosets $G = \langle a \rangle \cup b \langle a \rangle$. Note that $b^2 \langle a \rangle \neq b \langle a \rangle$ since $b = b^{-1}b^2 \notin \langle a \rangle$, and so we must have $b^2 \langle a \rangle = \langle a \rangle$ and hence $b^2 \in \langle a \rangle$. Note that $|b| \neq p$, since if we had $b^p = e$ then (since p + 1 is even) we would have $b = b^{p+1} \in \langle b^2 \rangle \subseteq \langle a \rangle$, and so |b| = 2. The same argument shows that |x| = 2 for every $x \notin \langle a \rangle$. Consider the element ab. Note that $ab \notin \langle a \rangle = a \langle a \rangle$ since $b = a^{-1}ab \notin \langle a \rangle$, and so we have |ab| = 2. Thus abab = e and so $ab = (ab)^{-1} = b^{-1}a^{-1} = ba^{p-1}$ Since G is the disjoint union $G = \langle a \rangle \cup b \langle a \rangle$, we have $G = \{e, a, a^2, \dots, a^{p-1}, b, ba, ba^2, \dots, ba^{p-1}\}$ with the listed elements distinct. Since $ab = ba^{-1}$, we have $a^2b = aba^{-1} = ba^{-2}$ and $a^3b = aba^{-2} = ba^{-3}$ and so on so that $a^k b = ba^{-k}$. This determines the operation on G completely: indeed we have $a^k \cdot a^l = a^{k+l}$, $a^k \cdot ba^l = ba^{l-k}$, $ba^k \cdot a^l = ba^{k+l}$ and $ba^k \cdot ba^l = a^{l-k}$, and hence $G \cong D_p$, as required.

To prove Part 4, suppose that |G| = pq. By Cauchy's Theorem, we can choose $a, b \in G$ with |a| = p and |b| = q. Let $H = \langle a \rangle$ and $K = \langle b \rangle$. Since |G/H| = q, which is the smallest prime divisor of |G|, if follows from Theorem 1.16 that $H \leq G$. Since |G/H| = q, which is prime, G/H is cyclic, and G is the disjoint union of the cosets $b^j H = Hb^j$. Thus each element in G can be written uniquely in the form $a^i b^j$ with $0 \leq i < p$ and $0 \leq j < q$. In particular, we have $G = \langle a, b \rangle = HK$ and $H \cap K = \{e\}$.

Note that K is a Sylow q-subgroup of G. By the third Sylow Theorem, the number of Sylow q-subgroups divides |G|, so it must be equal to 1, p, q or pq, and it is also equal to 1 modulo q (so it cannot be equal to q or pq). Thus if q/p-1 (so that $p \neq 1 \mod q$) then K is the only Sylow p-subgroup, while if q/p-1 (so that $p = 1 \mod q$) then either K is the only Sylow q-subgroup or there are exactly p distinct Sylow q-subgroups.

If K is the only Sylow q-subgroup, then by the second Sylow Theorem we must have $bKb^{-1} = K$ for all $b \in G$, so that $K \trianglelefteq G$. Recall (or verify) that since $H \trianglelefteq G$, $K \trianglelefteq G$, G = HK and $H \cap K = \{e\}$, it follows that $G \cong H \times K \cong \mathbb{Z}_p \times \mathbb{Z}_q \cong \mathbb{Z}_{pq}$.

Suppose that K is not the only Sylow q-subgroup. Note that G cannot be abelian (if G was abelian we would have $G \cong Z_{pq}$ which has a unique Sylow q-subgroup). Since $H \trianglelefteq G$ we have $bab^{-1} = a^r$ for some $r \in \mathbb{Z}_p$. Note that $r \neq 0$ since $a \neq e$ and $r \neq 1$ since G is not abelian. The fact that $bab^{-1} = a^r$ determines the operation on G completely: We have $b^2ab^{-2} = b(bab^{-1})b^{-1} = ba^rb^{-1} = (bab^{-1})^r = (a^r)^r = a^{r^2}$ and similarly we have $b^3ab^{-3} = ba^{r^2}b^{-1} = (bab^{-1})r^2 = a^{r^3}$ and so on, so that by induction $b^jab^{-j} = a^{r^j}$, that is $b^ja = a^{r^j}b^j$, for all $j \in \mathbb{Z}^+$. Also, we have $b^ja^2 = a^{r^j}b^ja = a^{r^j}a^{r^j}b^j = a^{2r^j}b^j$ and similarly $b^ja^3 = a^{2r^j}b^ja = a^{3r^j}b^j$ and so on, so that in general $b^ja^k = a^{kr^j}b^j$ for all $j, k \in \mathbb{Z}^+$. Thus the elements in G are of the form a^ib^j with $i \in \mathbb{Z}_p$ and $j \in \mathbb{Z}_q$, and the operation is given by

$$(a^{i}b^{j})(a^{k}b^{\ell}) = a^{i}(b^{j}a^{k})b^{\ell} = a^{i}(a^{kr^{j}}b^{j})b^{\ell} = a^{i+kr^{j}}b^{j+\ell}.$$

The same calculation shows that in the group T, the fact that $\beta \alpha \beta^{-1} = \alpha^s$ determines the operation, and it is given by

$$(\alpha^i \beta^j)(\alpha^k \beta^\ell) = \alpha^{i+ks^j} \beta^{j+\ell}$$

We claim that $G \cong T$. Since $b^q = e$ we have $a = b^q a b^{-q} = a^{r^q}$. Since |a| = p and $a^{r^q} = a$ we have $r^q = 1 \mod p$. Recall (or verify) that the group of units $U_p = (\mathbb{Z}_p)^*$ is a cyclic group of order p-1. Since $r \neq 1$ and $r^q = 1 \mod p$, we see that r is a generator of the (unique) q-element subgroup of U_p . Likewise, since $s \neq 1$ and $s^q = 1 \mod p$, we have $\langle s \rangle = \langle r \rangle = \{1, r, r^2, \cdots, r^{q-1}\} \leq U_p$ and so we can choose $t \in \mathbb{Z}_{q-1}$ so that $r^t = s \mod p$. Verify that the map $\phi: T \to G$ given by $\phi(\alpha^i \beta^j) = a^i b^{tj}$ is a group isomorphism.

There is one last subtle detail which remains, and that is to prove that the group T actually exists, that is to show that there exists $s \in \mathbb{Z}_p$ with $s \neq 1$ and $s^q = 1 \mod p$, and there exists a group T whose elements are uniquely of the form $\alpha^i \beta^j$ with $i \in \mathbb{Z}_p$ and $j \in \mathbb{Z}_q$ such that $|\alpha| = p$, $|\beta| = q$ and $\beta \alpha \beta^{-1} = \alpha^s$. We leave this part of the proof as an exercise.

8.2 Remark: The above theorem fully classifies, up to isomorphism, all groups of order $n \leq 20$ except for $n \in \{8, 12, 16, 18, 20\}$.

8.3 Exercise: Show that every group of order 8 is isomorphic to one of the groups $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, $\mathbb{Z}_2 \times \mathbb{Z}_4$, \mathbb{Z}_8 , D_4 or Q_8 , where Q_8 is the quaternionic group.

8.4 Exercise: Show that every group of order 12 is isomorphic to one of the groups $\mathbb{Z}_2 \times \mathbb{Z}_6$, \mathbb{Z}_{12} , D_6 , A_4 or T, where $T = \langle \alpha, \beta \rangle$ with $|\alpha| = 6$, $|\beta| = 4$, $\beta^2 = \alpha^3$ and $\alpha\beta\alpha = \beta$.

8.5 Exercise: Classify (up to isomorphism) all groups of order 18 and 20.

Simple Groups and Composition Series

8.6 Definition: A group G is called **simple** when it has no nontrivial proper normal subgroup.

8.7 Definition: Let G be a group. A subnormal series for G is a sequence of subgroups

$$\{e\} = N_0 \le N_1 \le \dots \le N_\ell = G$$

with $N_{k-1} \triangleleft N_k$ for $1 \leq k \leq \ell$. A **composition series** for G is a subnormal series $\{e\} = N_0 \leq N_1 \leq \cdots \leq N_\ell = G$ such that $N_{k-1} \triangleleft N_k$ with N_k/N_{k-1} simple for $1 \leq k \leq \ell$.

8.8 Example: In the group $D_4 = \langle \sigma, \tau \rangle$ with $|\sigma| = 4$, $|\tau| = 2$ and $\sigma \tau \sigma = \tau$, we have the two composition series

$$\{e\} \le \langle r^2 \rangle \le \langle r \rangle \le D_4$$
 and $\{e\} \le \langle \tau \rangle \le \langle \sigma^2, \tau \rangle \le D_4$.

8.9 Theorem: (The Jordan-Hölder Theorem) Let G be a finite group. Then

(1) G has a composition series and

(2) the composition factors are unique in the sense that if $\{e\} = N_0 \leq N_1 \leq \cdots \leq N_n = G$ and $\{e\} = M_0 \leq M_1 \leq \cdots \leq M_m = G$ are two composition series for G, then n = m and there is a permutation $\sigma \in S_n$ such that $M_{\sigma(k)}/M_{\sigma(k)-1} \cong N_k/N_{k-1}$ for $1 \leq k \leq n$.

Proof: The proof is left as a (fairly long) exercise.

8.10 Remark: The above theorem suggests a two-part program, known as the Hölder **program**, for classifying all finite groups, up to isomorphism. The first part of the program is to classify all finite simple groups, and the second part is two determine, given a list of simple groups, all the ways to form a group G with the given simple groups as the composition factors. The first part of this program is considered to have been completed: the simple groups include the cyclic groups of prime order, the alternating groups A_n with $n \geq 5$, 16 additional infinite families of finite simple groups which are said to be **of Lee type**, along with 27 specific finite simple groups, called the **sporadic groups**. The second part of the program is known as the **extension problem**, and it is considered to be an extremely difficult problem.

8.11 Example: Show that for $n \ge 3$, A_n is generated by the set of all 3-cycles, and for any $a \ne b \in \{1, 2, \dots, n\}$, A_n is generated by the 3-cycles of the form (abk) with $k \ne a, b$.

Solution: Recall that every permutation in A_n is equal to a product of an even number of 2-cycles. Every product of a pair of 2-cycles is of one of the forms (ab)(ab), (ab)(ac) or (ab)(cd), where a, b, c, d are distinct, and we have

$$(ab)(ab) = (abc)(acb)$$
, $(ab)(ac) = (acb)$, $(ab)(cd) = (adc)(abc)$,

and so A_n is generated by the set of all 3-cycles. Now fix $a, b \in \{1, 2, \dots, n\}$ with $a \neq b$. Note that every 3-cycle is of one of the forms (abk), (akb), (akl), (bkl) or (klm), where a, b, k, l, m are all distinct, and we have

8.12 Theorem: For $n \ge 5$, the alternating group A_n is simple.

Proof: Let $H \leq A_n$. We shall show that $H = A_n$. We consider 5 cases. Case 1: suppose first that H contains a 3-cycle, say $(abc) \in H$. Then for any $k \neq a, b, c$ we have $(abk) = (ab)(ck)(abc)^2(ck)(ab) \in H$ It follows that $A_n = H$ because A_n is generated by the 3-cycles of the form (abk) with $k \neq a, b$ (as shown in Example 1.30). Case 2: suppose that H contains an element α which, when written in cycle notation, has a cycle of length $r \geq 4$, say $\alpha = (a_1 a_2 a_3 \cdots a_r) \beta \in H$. Then $(a_1 a_3 a_r) = \alpha^{-1} (a_1 a_2 a_3) \alpha (a_1 a_2 a_3)^{-1} \in H$ and so $H = A_n$ by Case 1. Case 3: suppose that H contains an element α which, when written in cycle notation, has at least two 3-cycles, say $\alpha = (a_1 a_2 a_3)(a_4 a_5 a_6)\beta \in H$. Then we have $(a_1a_4a_2a_6a_3) = \alpha^{-1}(a_1a_2a_4)\alpha(a_1a_2a_4)^{-1} \in H$ and so $H = A_n$ by Case 2. Case 4: suppose that H contains an element α which, when written in cycle notation, is a product of one 3-cycle and some 2-cycles, say $\alpha = (a_1 a_2 a_3)\beta \in H$ where β is a product of disjoint 2-cycles so that $\beta^2 = e$. Then $(a_1a_3a_2) = \alpha^2 \in H$ and so $H = A_n$ by Case 1. Case 5: suppose that H contains an element α which, when written in cycle notation, is a product of 2-cycles, say $\alpha = (a_1 a_2)(a_3 a_4)\beta \in H$. Then $(a_1a_3)(a_2a_4) = \alpha^{-1}(a_1a_2a_3)\alpha(a_1a_2a_3)^{-1} \in H$. Let $\gamma = (a_1a_3)(a_2a_4)$ and choose b distinct from a_1, a_2, a_3, a_4 . Then $(a_1a_3b) = \gamma(a_1a_2b)\gamma(a_1a_3b)^{-1} \in H$ and so $H = A_n$ by Case 1.

8.13 Theorem: (The Sylow Test for Nonsimplicity) Let G be a finite group with |G| = n. Suppose that n is not prime and n has a prime divisor p such that 1 is the only divisor of n which is equal to 1 modulo p. Then G is not simple.

Proof: If $n = p^k$ with $k \ge 2$ then $Z(G) \ne \{e\}$ by the class equation, so either Z(G) = Gso that G is abelian, or Z(G) is a nontrivial proper subgroup of G, and in either case G is not simple. Suppose that n is not a power of p, and let H be a Sylow p-subgroup of G. Since the number of Sylow p-subgroups divides n = |G| and is equal to 1 modulo p, there is only one Sylow p-subgroup, by the hypothesis of the theorem. Since H is the only Sylow p-subgroup, we have $aHa^{-1} = H$ for all $a \in G$ so that H is normal. Thus H is a nontrivial normal subgroup of G so that G is not simple.

8.14 Exercise: Verify that the only composite numbers n with $1 \le n \le 100$ for which Theorem 1.32 does *not* rule out the possible existence of a simple group of order n are the numbers

 $n \in \{12, 24, 30, 36, 48, 56, 60, 72, 80, 90, 96\}.$

8.15 Remark: In fact, the Sylow Theorems can be used to show that the *only* composite number n with $1 \le n \le 100$ for which there exists a simple group of order n is the number n = 60 (and indeed A_5 is a simple group of order 60).

8.16 Exercise: Show that there is no simple group of order 30.

8.17 Exercise: Classify, up to isomorphism, all groups of order 30.