
Chapter 8. The Classification of Groups of Small Order

8.1 Theorem: (Some Classification Theorems) Let G be a finite group and let p and q
be prime numbers with p > q.

(1) If |G| = p then G ∼= Zp.
(2) If |G| = p2 then either G ∼= Zp2 or G ∼= Zp × Zp.
(3) If |G| = 2p then either G ∼= Z2p or G ∼= Dp.
(4) If |G| = pq and q6

∣∣p−1 then G ∼= Zpq. If |G| = pq and q
∣∣p−1 then G ∼= Zpq or G ∼= T

where T is a group whose elements are uniquely of the form αiβj with i ∈ Zp and j ∈ Zq,
with |α| = p, |β| = q and βαβ−1 = αs, where s 6= 1 and sq = 1 mod p.

Proof: To prove Part 1, suppose that |G| = p and choose a ∈ G with a 6= e. By Lagrange’s
Theorem, we have |a| = p, so that G = 〈a〉 ∼= Zp.

To prove Part 2, suppose that |G| = p2. Consider the action of G on itself given by
conjugation, that is by x∗a = xax−1. Note thatG is the disjoint union of the orbits, and the
size of each orbit divides |G| = p2. Some of the orbits have size 1 and the size of each of the
other orbits is a multiple of p. It follows that |G| is equal to the number of orbits of size 1,
modulo p. For a ∈ G we have

∣∣Orb(a)
∣∣ = 1 ⇐⇒ xax−1 = a for all x ∈ G ⇐⇒ a ∈ Z(G),

and hence |Z(G)| ≡ |G| = p2 ≡ 0 mod p. Thus |Z(G)| 6= 1 so, by Lagrange’s Theorem,
either |Z(G)| = p or |Z(G)| = p2. If we had |Z(G)| = p then we could choose a ∈ G with
a /∈ Z(G), but then we would have proper subgroups Z(G) < C(a) and C(a) < G which
is not possible by Lagrange’s Theorem, since |Z(G)| = p and |G| = p2. Thus we must
have |Z(G)| = p2, and hence Z(G) = G so that G is abelian. By the classification of finite
abelian groups, either G ∼= Zp2 or G ∼= Zp × Zp, as required.

Part 3 follows as a special case of Part 4, but we provide a proof anyway. If p = 2
and |G| = 2p = 4 then, by Part 2, either G ∼= Z4 or G ∼= Z2 × Z2

∼= D2. Suppose that
p > 2 and |G| = 2p, and suppose that G 6∼= Z2p. Each non-identity element of G has order
2 or p. By Cauchy’s Theorem, we can choose a ∈ G with |a| = p, then we choose b /∈ 〈a〉,
so that G is the disjoint union of two cosets G = 〈a〉 ∪ b〈a〉. Note that b2〈a〉 6= b〈a〉 since
b = b−1b2 /∈ 〈a〉, and so we must have b2〈a〉 = 〈a〉 and hence b2 ∈ 〈a〉. Note that |b| 6= p,
since if we had bp = e then (since p + 1 is even) we would have b = bp+1 ∈ 〈b2〉 ⊆ 〈a〉,
and so |b| = 2. The same argument shows that |x| = 2 for every x /∈ 〈a〉. Consider
the element ab. Note that ab /∈ 〈a〉 = a〈a〉 since b = a−1ab /∈ 〈a〉, and so we have
|ab| = 2. Thus abab = e and so ab = (ab)−1 = b−1a−1 = bap−1 Since G is the disjoint
union G = 〈a〉 ∪ b〈a〉, we have G =

{
e, a, a2, · · · , ap−1, b, ba, ba2, · · · , bap−1

}
with the listed

elements distinct. Since ab = ba−1, we have a2b = aba−1 = ba−2 and a3b = aba−2 = ba−3

and so on so that akb = ba−k. This determines the operation on G completely: indeed
we have ak · al = ak+l, ak · bal = bal−k, bak · al = bak+l and bak · bal = al−k, and hence
G ∼= Dp, as required.

To prove Part 4, suppose that |G| = pq. By Cauchy’s Theorem, we can choose a, b ∈ G
with |a| = p and |b| = q. Let H = 〈a〉 and K = 〈b〉. Since |G/H| = q, which is the smallest
prime divisor of |G|, if follows from Theorem 1.16 that H ≤ G. Since |G/H| = q, which
is prime, G/H is cyclic, and G is the disjoint union of the cosets bjH = Hbj . Thus each
element in G can be written uniquely in the form aibj with 0 ≤ i < p and 0 ≤ j < q. In
particular, we have G = 〈a, b〉 = HK and H ∩K = {e}.
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Note that K is a Sylow q-subgroup of G. By the third Sylow Theorem, the number
of Sylow q-subgroups divides |G|, so it must be equal to 1, p, q or pq, and it is also equal
to 1 modulo q (so it cannot be equal to q or pq). Thus if q6

∣∣p−1 (so that p 6= 1 mod q)

then K is the only Sylow p-subgroup, while if q
∣∣p−1 (so that p = 1 mod q) then either K

is the only Sylow q-subgroup or there are exactly p distinct Sylow q-subgroups.
If K is the only Sylow q-subgroup, then by the second Sylow Theorem we must have

bKb−1 = K for all b ∈ G, so that K ≤ G. Recall (or verify) that since H ≤ G, K ≤ G,
G = HK and H ∩K = {e}, it follows that G ∼= H ×K ∼= Zp × Zq ∼= Zpq.

Suppose that K is not the only Sylow q-subgroup. Note that G cannot be abelian
(if G was abelian we would have G ∼= Zpq which has a unique Sylow q-subgroup). Since
H ≤ G we have bab−1 = ar for some r ∈ Zp. Note that r 6= 0 since a 6= e and r 6= 1 since
G is not abelian. The fact that bab−1 = ar determines the operation on G completely:
We have b2ab−2 = b(bab−1)b−1 = barb−1 = (bab−1)r = (ar)r = ar

2

and similarly we have

b3ab−3 = bar
2

b−1 = (bab−1)r
2

= ar
3

and so on, so that by induction bjab−j = ar
j

, that is

bja = ar
j

bj , for all j ∈ Z+. Also, we have bja2 = ar
j

bja = ar
j

ar
j

bj = a2r
j

bj and similarly
bja3 = a2r

j

bja = a3r
j

bj and so on, so that in general bjak = akr
j

bj for all j, k ∈ Z+. Thus
the elements in G are of the form aibj with i ∈ Zp and j ∈ Zq, and the operation is given
by

(aibj)(akb`) = ai(bjak)b` = ai
(
akr

j

bj
)
b` = ai+kr

j

bj+`.

The same calculation shows that in the group T , the fact that βαβ−1 = αs determines the
operation, and it is given by

(αiβj)(αkβ`) = αi+ks
j

βj+`.

We claim that G ∼= T . Since bq = e we have a = bqab−q = ar
q

. Since |a| = p and ar
q

= a
we have rq = 1 mod p. Recall (or verify) that the group of units Up = (Zp)∗ is a cyclic
group of order p − 1. Since r 6= 1 and rq = 1 mod p, we see that r is a generator of the
(unique) q-element subgroup of Up. Likewise, since s 6= 1 and sq = 1 mod p, we have
〈s〉 = 〈r〉 =

{
1, r, r2, · · · , rq−1

}
≤ Up and so we can choose t ∈ Zq−1 so that rt = s mod p.

Verify that the map φ : T → G given by φ(αiβj) = aibtj is a group isomorphism.
There is one last subtle detail which remains, and that is to prove that the group T

actually exists, that is to show that there exists s ∈ Zp with s 6= 1 and sq = 1 mod p,
and there exists a group T whose elements are uniquely of the form αiβj with i ∈ Zp and
j ∈ Zq such that |α| = p, |β| = q and βαβ−1 = αs. We leave this part of the proof as an
exercise.

8.2 Remark: The above theorem fully classifies, up to isomorphism, all groups of order
n ≤ 20 except for n ∈ {8, 12, 16, 18, 20}.

8.3 Exercise: Show that every group of order 8 is isomorphic to one of the groups
Z2 × Z2 × Z2, Z2 × Z4, Z8, D4 or Q8, where Q8 is the quaternionic group.

8.4 Exercise: Show that every group of order 12 is isomorphic to one of the groups
Z2 ×Z6, Z12, D6, A4 or T , where T = 〈α, β〉 with |α| = 6, |β| = 4, β2 = α3 and αβα = β.

8.5 Exercise: Classify (up to isomorphism) all groups of order 18 and 20.

2



Simple Groups and Composition Series

8.6 Definition: A group G is called simple when it has no nontrivial proper normal
subgroup.

8.7 Definition: Let G be a group. A subnormal series for G is a sequence of subgroups

{e} = N0 ≤ N1 ≤ · · · ≤ N` = G

with Nk−1< Nk for 1 ≤ k ≤ `. A composition series for G is a subnormal series
{e} = N0 ≤ N1 ≤ · · ·N` = G such that Nk−1< Nk with Nk/Nk−1 simple for 1 ≤ k ≤ `.

8.8 Example: In the group D4 = 〈σ, τ〉 with |σ| = 4, |τ | = 2 and στσ = τ , we have the
two composition series

{e} ≤ 〈r2〉 ≤ 〈r〉 ≤ D4 and {e} ≤ 〈τ〉 ≤ 〈σ2, τ〉 ≤ D4.

8.9 Theorem: (The Jordan-Hölder Theorem) Let G be a finite group. Then

(1) G has a composition series and
(2) the composition factors are unique in the sense that if {e} = N0 ≤ N1 ≤ · · · ≤ Nn = G
and {e} = M0 ≤ M1 ≤ · · · ≤ Mm = G are two composition series for G, then n = m and
there is a permutation σ ∈ Sn such that Mσ(k)/Mσ(k)−1

∼= Nk/Nk−1 for 1 ≤ k ≤ n.

Proof: The proof is left as a (fairly long) exercise.

8.10 Remark: The above theorem suggests a two-part program, known as the Hölder
program, for classifying all finite groups, up to isomorphism. The first part of the program
is to classify all finite simple groups, and the second part is two determine, given a list
of simple groups, all the ways to form a group G with the given simple groups as the
composition factors. The first part of this program is considered to have been completed:
the simple groups include the cyclic groups of prime order, the alternating groups An with
n ≥ 5, 16 additional infinite families of finite simple groups which are said to be of Lee
type, along with 27 specific finite simple groups, called the sporadic groups. The second
part of the program is known as the extension problem, and it is considered to be an
extremely difficult problem.

8.11 Example: Show that for n ≥ 3, An is generated by the set of all 3-cycles, and for
any a 6= b ∈ {1, 2, · · · , n}, An is generated by the 3-cycles of the form (abk) with k 6= a, b.

Solution: Recall that every permutation in An is equal to a product of an even number
of 2-cycles. Every product of a pair of 2-cycles is of one of the forms (ab)(ab), (ab)(ac) or
(ab)(cd), where a, b, c, d are distinct, and we have

(ab)(ab) = (abc)(acb) , (ab)(ac) = (acb) , (ab)(cd) = (adc)(abc) ,

and so An is generated by the set of all 3-cycles. Now fix a, b ∈ {1, 2, · · · , n} with a 6= b.
Note that every 3-cycle is of one of the forms (abk), (akb), (akl), (bkl) or (klm), where
a, b, k, l,m are all distinct, and we have

(akb)=(abk)2 , (akl)=(abl)(abk)2 , (bkl)=(abl)2(abk) , (klm)=(abk)2(abm)(abl)2(abk) .
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8.12 Theorem: For n ≥ 5, the alternating group An is simple.

Proof: Let H ≤ An. We shall show that H = An. We consider 5 cases. Case 1: sup-
pose first that H contains a 3-cycle, say (abc) ∈ H. Then for any k 6= a, b, c we have
(abk) = (ab)(ck) (abc)2(ck)(ab) ∈ H It follows that An = H because An is generated by
the 3-cycles of the form (abk) with k 6= a, b (as shown in Example 1.30). Case 2: suppose
that H contains an element α which, when written in cycle notation, has a cycle of length
r ≥ 4, say α = (a1a2a3 · · · ar)β ∈ H. Then (a1a3ar) = α−1(a1a2a3)α(a1a2a3)−1 ∈ H
and so H = An by Case 1. Case 3: suppose that H contains an element α which, when
written in cycle notation, has at least two 3-cycles, say α = (a1a2a3)(a4a5a6)β ∈ H.
Then we have (a1a4a2a6a3) = α−1(a1a2a4)α(a1a2a4)−1 ∈ H and so H = An by Case 2.
Case 4: suppose that H contains an element α which, when written in cycle nota-
tion, is a product of one 3-cycle and some 2-cycles, say α = (a1a2a3)β ∈ H where
β is a product of disjoint 2-cycles so that β2 = e. Then (a1a3a2) = α2 ∈ H and
so H = An by Case 1. Case 5: suppose that H contains an element α which, when
written in cycle notation, is a product of 2-cycles, say α = (a1a2)(a3a4)β ∈ H. Then
(a1a3)(a2a4) = α−1(a1a2a3)α(a1a2a3)−1 ∈ H. Let γ = (a1a3)(a2a4) and choose b distinct
from a1, a2, a3, a4. Then (a1a3b) = γ(a1a2b)γ(a1a3b)

−1 ∈ H and so H = An by Case 1.

8.13 Theorem: (The Sylow Test for Nonsimplicity) Let G be a finite group with |G| = n.
Suppose that n is not prime and n has a prime divisor p such that 1 is the only divisor of
n which is equal to 1 modulo p. Then G is not simple.

Proof: If n = pk with k ≥ 2 then Z(G) 6= {e} by the class equation, so either Z(G) = G
so that G is abelian, or Z(G) is a nontrivial proper subgroup of G, and in either case G
is not simple. Suppose that n is not a power of p, and let H be a Sylow p-subgroup of
G. Since the number of Sylow p-subgroups divides n = |G| and is equal to 1 modulo p,
there is only one Sylow p-subgroup, by the hypothesis of the theorem. Since H is the only
Sylow p-subgroup, we have aHa−1 = H for all a ∈ G so that H is normal. Thus H is a
nontrivial normal subgroup of G so that G is not simple.

8.14 Exercise: Verify that the only composite numbers n with 1 ≤ n ≤ 100 for which
Theorem 1.32 does not rule out the possible existence of a simple group of order n are the
numbers

n ∈ {12, 24, 30, 36, 48, 56, 60, 72, 80, 90, 96}.

8.15 Remark: In fact, the Sylow Theorems can be used to show that the only composite
number n with 1 ≤ n ≤ 100 for which there exists a simple group of order n is the number
n = 60 (and indeed A5 is a simple group of order 60).

8.16 Exercise: Show that there is no simple group of order 30.

8.17 Exercise: Classify, up to isomorphism, all groups of order 30.
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