
Chapter 9. Definition and Examples of Rings and Subrings

9.1 Definition: A ring is a set R with two binary operations, addition denoted by + and
multiplication denoted by ×, by · or by concatenation, and an element 0 ∈ R such that

(1) + is associative: (a+ b) + c = a+ (b+ c) for all a, b, c ∈ R,
(2) + is commutative: a+ b = b+ a for all a, b, c ∈ R,
(3) 0 is an additive identity: a+ 0 = 0 + a = a for all a ∈ R,
(4) every a ∈ R has an additive inverse: there exists b ∈ R such that a+ b = b+ a = 0,
(5) × is associative: (ab)c = a(bc) for all a, b, c ∈ R, and
(6) × is distributive over +: a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for all a, b, c ∈ R.

We say that R is commutative when × is commutative, that is ab = ba for all a, b ∈ R.
We say that R has an identity (or that R has a 1) when it has a multiplicative identity,
that is when there is a non-zero element 1 ∈ R such that 1 · a = a · 1 = a for all a ∈ R.
When R has a 1, for a ∈ R we say that a is invertible (or that a is a unit) when there is
an element b ∈ R with ab = 1 = ba. A division ring is a ring R with identity such that
every non-zero element of R is invertible. A field is a commutative division ring.

9.2 Theorem: (Uniqueness of Identity and Inverse) Let R be a ring. Then

(1) the additive identity 0 is unique in the sense that if e ∈ R has the property that
a+ e = a = e+ a for all a ∈ R then e = 0,
(2) the additive inverse of a ∈ G is unique in the sense that for all a, b, c ∈ G if we have
a+ b = 0 = b+ a and a+ c = 0 = c+ a then b = c,
(3) if R has a 1, then it is unique in the sense that for all u ∈ R, if u has the property that
au = a = ua for all a ∈ G then u = 1, and
(4) if R has a 1 and a ∈ R has an inverse, then it is unique in the sense that for all a ∈ G
if there exist b, c ∈ G such that ab = ba = 1 and ac = ca = 1 then b = c.

9.3 Notation: Let R be a ring. For a ∈ R we denote the unique additive inverse of
a ∈ R by −a, and for a, b ∈ R we write b − a for b + (−a). If R has a 1 and a ∈ R has a
multiplicative inverse, we say that a is a unit in R, and we denote its inverse by a−1.

9.4 Theorem: (Cancellation Under Addition) Let R be a ring. Then for all a, b, c ∈ R,

(1) if a+ c = b+ c then a = c,
(2) if a+ b = a then b = 0, and
(3) if a+ b = 0 then b = −a.

9.5 Note: We do not, in general, have similar rules for cancellation under multiplication.
In general, for a, b, c in a ring R, ac = bc does not imply that a = b, ac = a does not imply
that c = 1, ac = 1 does not imply that ca = 1, and ac = 0 does not imply that a = 0 or
b = 0. When ac = 1 we say that a is a left inverse for c and that c is a right inverse
for a. When ac = 0 but a 6= 0 and b 6= 0, we say that a and b are zero divisors. A
commutative ring with 1 which has no zero divisors is called an integral domain.

9.6 Theorem: (Cancellation Under Multiplication) Let R be a ring. For all a, b, c ∈ R,
if ac = bc, or if ca = cb, then either a = b or c = 0 or c is a zero divisor.

Proof: Suppose ac = bc. Then ac− bc = 0 so (a− b)c = 0. Either (a− b) = 0 so a = b, or
c = 0 or (a− b) and c are zero divisors. The case that ca = cb is similar.
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9.7 Theorem: (Basic Properties of Rings) Let R be a ring. Then

(1) 0 · a = a · 0 = 0 for all a ∈ R,
(2) (−a)b = −(ab) = a(−b) for all a, b ∈ R,
(3) (−a)(−b) = ab for all a, b ∈ R,
(4) if R has a 1 then (−1)a = −a for all a ∈ R.

Proof: Let a ∈ R. Then 0 · a = (0 + 0) · a = 0 · a + 0 · a. Thus 0 · a = 0 by additive
cancellation. The proof that a ·0 = 0 is similar, and the other proofs are left as an exercise.

9.8 Notation: Let R be a ring. For k ∈ Z+ we write ka = a + a + · · · + a with k
terms in the sum, and we write (−k)a = k(−a), and we write ak = a · a · . . . · a with k
terms in the product. For 0 ∈ Z we write 0a = 0 and if R has a 1 we write a0 = 1. If
R has a 1 and a ∈ R is a unit, we write a−k = (a−1)k. For all k, l ∈ Z and all a ∈ R
we have (k + l)a = ka + la, (−k)a = −(ka) = k(−a), −(−a) = a, −(a + b) = −a − b,
(ka)(lb) = (kl)(ab). For a ∈ R and k, l ∈ Z+ we have ak+l = akal. When R has a 1 and
a and b are units, then for k, l ∈ Z we have ak+l = akal, a−k = (ak)−1, (a−1)−1 = a and
(ab)−1 = b−1a−1 .

9.9 Example: Z, Q, R, C and Zn are all commutative rings with 1. Of these, Q, R and
C, and also Zp when p is prime, are fields.

9.10 Example: The ring of real quaternions is the set H = R4 in which we write
1 = (1, 0, 0, 0), i = (0, 1, 0, 0), j = (0, 0, 1, 0), k = (0, 0, 0, 1) and for t ∈ R we write
t = (t, 0, 0, 0), ti = it = (0, t, 0, 0), tj = jt = (0, 0, t, 0) and tk = kt = (0, 0, 0, t). We define
addition as usual in H = R4. and we define multiplication by requiring that i2 = j2 =
k2 = −1, that ij = −ji = k, jk = −kj = i and ki = −ik = j, and that every real number
commutes with i, j and k. It can be verified that H is a division ring with

(a+ ib+ jc+ kd)−1 =
a− ib− jc− kd
a2 + b2 + c2 + d2

for all 0 6= a+ ib+ jc+ kd ∈ H.

9.11 Example: For a set A and a ring R, the set

Func(A,R) = RA =
{

fuctions f : A→ R
}

is a ring under the operations given by (f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x)
for all x ∈ A. If R is commutative then so is Func(A,R). If R has identity 1 then the
identity of Func(A,R) is the constant function 1 : A→ R given by 1(x) = 1 for all x ∈ A.

9.12 Example: For a group G, an endomorphism of G is a group homomorphism
φ : G→ G. If G is an additive abelian group then the set

End(G) =
{

endomorphisms φ : G→ G
}

is a ring under the operations given by (φ+ ψ)(x) = φ(x) + ψ(x) and (φψ)(x) = φ
(
ψ(x)

)
for all x ∈ G. The ring End(G) has an identity, namely the identity function I : G → G
given by I(x) = x for all x ∈ G.

9.13 Example: Let R be a ring with 1. Then the set

R∗ =
{
a ∈ R

∣∣ a is a unit
}

is a group under multiplication, called the group of units of R.
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9.14 Example: For a ring R and a variable symbol x, a formal power series in x over
R is a sequence (a0, a1, a2, · · ·) with each ai ∈ R, and we write this sequence as

f(x) =
∞∑
i=0

aix
i = a0 + a1x+ a2x

2 + · · · .

The elements ai are called the coefficients of f and a0 is called the constant coefficient.
A power series of the form f(x) = a with a ∈ R is called a constant series. The set

R[[x]] =
{

formal power series in x over R
}

is a ring, which we call the ring of formal power series in x over R, with the following

operations: for f(x) =
∞∑
i=0

aix
i and g(x) =

∞∑
j=0

bjx
j we have

(f + g)(x) =
∞∑
k=0

(ak + bk)xi , and (fg)(x) =
∞∑
k=0

ckx
k where ck =

k∑
i=0

aibk−i .

If R is commutative then so is R[[x]], and if R has identity 1 then the identity of R[[x]] is
the constant polynomial 1, that is the sequence 1 = (1, 0, 0, · · ·). A polynomial in x over
R is a formal power series with only finitely non-zero coefficients. When we have ai = 0

for all i > n we also write f(x) =
n∑
i=0

aix
i. When an 6= 0 and ai = 0 for all i > n we say

that an is the leading coefficient of f and that the degree of f is deg(f) = n. The set

R[x] =
{

polynomials in x over R
}

is a ring, which we call the ring of polynomials in x over R, using the same operations
as in R[[x]].

9.15 Example: For a ring R and variable symbols x1, · · · , xn, a formal power series
in x1, · · · , xn over R is a function a : Nn → R, and we write this function as

f(x1, · · · , xn) =
∑

(i1,···,in)∈Nn

ai1,···,inx1
i1 · · ·xnin where ai1,···,in = a(i1, · · · , in) .

The elements ai1,···,in ∈ R are called the coefficients of the power series. The set

R[[x1, · · · , xn]] =
{

formal power series in x1, · · · , xn over R
}

is a ring, called the ring of formal power series in x1, · · · , xn over R, under the following
operations: for f(x) =

∑
ai1,···,inx1

i1 · · ·xnin and g(x) =
∑
bj1,···,jnx1

j1 · · ·xnjn we define

(f + g)(x) =
∑

(ak1,···,kn + bk1,···,kn)x1
k1 · · ·xnkn

(fg)(x) =
∑

ck1,···,knx1
k1 · · ·xnkn

where ck1,···,kn is the sum of all terms ai1,···,inbj1,···,jn for which iα + jα = kα for all
α = 1, · · · , n. A polynomial in x1, · · · , xn over R is a formal power series with only
finitely many non-zero coefficients, and the set

R[x1, x2, · · · , xn] =
{

polynomials in x1, · · · , xn over R
}

is a ring using the same operations as in R[[x1, · · · , xn]].
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9.16 Example: For a ring R, the set

Mn(R) =
{
n× n matrices with entries in R

}
is a ring under matrix addition and matrix multiplication, which we call the ring of n×n
matrices over R. If R has identity 1 then the identity of Mn(R) is the n × n identity
matrix I.

9.17 Example: If R and S are rings then the cartesian product

R× S =
{

(a, b)
∣∣a ∈ R, b ∈ S}

is a ring, called the product ring of R and S, with operations

(a, b) + (c, d) = (a+ c, b+ d) and (a, b)(c, d) = (ac, bd) .

More generally, if R1, · · · , Rn are rings then so is the product

n∏
i=1

Ri = R1 × · · · ×Rn =
{

(a1, · · · , an)
∣∣each ai ∈ Ri

}
,

which we call the product ring of R1, · · · , Rn, under the operations

(a1, · · · , an) + (b1, · · · , bn) =
(
a1 + b1, · · · , an + bn

)
, and

(a1, · · · , an)(b1, · · · , bn) =
(
a1, b1, · · · , anbn

)
.

More generally still, if A is any set and Rα is a ring for each α ∈ A, then the product∏
α∈A

Rα =
{
f : A→

⋃
α∈A

Rα
∣∣f(α) ∈ Rα for all α ∈ A

}
is a ring, called the product ring of the rings Rα, α ∈ A, under the operations

(f + g)(α) = f(α) + g(α) and (fg)(α) = f(α)g(α).

9.18 Theorem: Let R be a finite ring. Then R is a field if and only if R is an integral
domain.

Proof: Suppose that R is a field. Let a, b ∈ R. Suppose that ab = 0 and a 6= 0. Then
b = 1 · b = (a−1a)b = a−1(ab) = a−1 · 0 = 0. Thus R has no zero divisors.

Conversely, suppose that R is an integral domain. We must show that every non-zero
element in R is a unit. Let 0 6= a ∈ R. Consider the left multiplication map La : R → R
given by La(x) = ax. For x, y ∈ R we have La(x) = La(y) =⇒ ax = ay =⇒ x = y by
cancellation, since a 6= 0 and a is not a zero divisor. Thus La is injective. Since R is finite,
this implies that La is bijective. In particular, we can choose b ∈ R so that La(b) = 1,
that is ab = 1. Similarly, right multiplication Ra is bijective, and so we can choose c ∈ R
so that ca = 1. Then we have c = c · 1 = c(ab) = (ca)b = 1 · b = b, and so a is a unit with
a−1 = b = c.

9.19 Definition: Let R be a ring with 1. We define the characteristic of R, written as
char(R), to be the smallest n ∈ Z+ such that n · 1 = 0 if such an n exists, and if no such
n exists then the characteristic of R is 0. Note that when n · 1 = 0 we have n · a = 0 for
all a ∈ R because na = a+ a+ · · ·+ a = (1 + 1 + · · · 1)a = (n · 1) a.
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9.20 Theorem: Let R be a ring with 1 with no zero divisors. Then either char(R) = 0
or char(R) is prime.

Proof: Suppose char(R) = n ∈ Z+. Suppose, for a contradiction, that n is composite, say
n = kl with 1 < k, l < n. Then 0 = n · 1 = (kl) · 1 = (k · 1)(l · 1). Since R has no zero
divisors, either k · 1 = 0 or l · 1 = 0. This contradicts the definition of n = char(R).

9.21 Definition: A subring of a ring R is a subset S ⊆ R which is a ring using the same
operations used in R. Similarly, a subfield of a field F is a subset K ⊆ F which is also a
field using the same operations used in F .

9.22 Theorem: If S be a subset of a ring R, then S is a subring of R if and only if

(1) 0 ∈ S,
(2) S is closed under addition, that is a+ b ∈ S for all a, b ∈ S,
(3) S is closed under multiplication, that is ab ∈ S for all a, b ∈ S, and
(4) S is closed under additive inverse, that is −a ∈ S for all a ∈ S.

Similarly, if K is a subset of a field F then K is a subfield of F if and only if

(1) 0 ∈ K and 1 ∈ K,
(2) K is closed under addition, that is a+ b ∈ K for all a, b ∈ K,
(3) K is closed under multiplication, that is ab ∈ K for all a, b ∈ K,
(4) K is closed under additive inverse, that is −a ∈ S for all a ∈ K, and
(5) K s closed under multiplicative inverse, that is a−1 ∈ K for all 0 6= a ∈ F .

9.23 Example: Z is a subring of Q, Q is a subring of R, R is a subring of C, and C is a
subring of H. Also, Q is a subfield of R which is a subfield of C.

9.24 Example: In Z, the subgroups are of the form 〈n〉 =
{
kn
∣∣k ∈ Z

}
where 0 ≤ n ∈ Z.

Each of these subgroups is also a subring of Z. In Zn, the subgroups are of the form
〈d〉 = {kd|k ∈ Zn/d} where d|n, and each of these subgroups is also a subring.

9.25 Example: In Z12 we have the subring 〈3〉 = {0, 3, 6, 9}. Notice that 9 · 0 = 0,
9 · 3 = 3, 9 · 6 = 6 and 9 · 9 = 9, so 9 is the identity element in the group 〈3〉. This example
shows that the identity element in a subring of R does not need to be equal to the identity
element of R.

9.26 Example: Define

Z[
√

2] =
{
a+ b

√
2
∣∣a, b ∈ Z

}
, and

Q[
√

2] =
{
a+ b

√
2
∣∣a, b ∈ Q

}
.

Then Z[
√

2] is a subring of R and Q[
√

2] is a subring of R because

(a+ b
√

2)(c+ d
√

2) = (ac+ 2bd) + (ad+ bc)
√

2 .

In fact Q[
√

2] is a subfield of R because for a, b ∈ Q, if a+ b
√

2 6= 0 then a2 6= 2b2 and

(a+ b
√

2)

(
a

a2 − 2b2
− b

a2 − 2b2

√
2

)
= 1 .

5



9.27 Example: More generally, if R is a subring of S and A ⊆ S, then we write R[A] for
the smallest subring of S which contains R and A, or equivalently the intersection of all
subrings of S which contain R ∪A. Some particular cases of this include the subrings

Z[i] =
{
a+ bi

∣∣ a, b ∈ Z
}
⊆ C

Q[α] =
{
a+ bα+ cα2

∣∣ a, b, c ∈ Q
}
⊆ C , where α = ei 2π/3

Q[
√

2,
√

3] =
{
a+ b

√
2 + c

√
3 + d

√
6
∣∣ a, b, c, d ∈ Q

}
⊆ R.

As an exercise, check that these are all rings and that Q[α] and Q[
√

2,
√

3] are fields.

9.28 Example: We sometimes use notation, similar to the notation used in the above
example, for some other rings. For example, we write

Zn[i] =
{
a+ bi

∣∣ a, b ∈ Zn
}
.

This is a ring under the operations given by (a + bi) + (c + di) = (a + c) + (b + d)i and
(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i.

9.29 Example: For an interval A ⊆ R, let C0(A,R) denote the set of continuous functions
f : A→ R, for k ∈ Z+ let Ck(A,R) denote the set of functions f : A→ R such that the kth

derivative f (k) exists and is continuous in A, and let C∞(A,R) denote the set of infinitely
differentiable functions f : A → R. Then C∞(A,R) is a subring of Ck(A,R) which is a
subring of C0(A,R) which, in turn, is a subring of Func(A,R).

9.30 Example: For a ring R, the polynomial ring R[x] is a subring of the formal power
series ring R[[x]]. More generally, R[x1, · · · , xn] is a subring of R[[x1, · · · , xn]]. If S is a
subring of R then S[x] is a subring of R[x] and S[[x]] is a subring of R[[x]], and more
generally, S[x1, · · · , xn] is a subring of R[x1, · · · , xn] and S[[x1, · · · , xn]] is a subring of
R[[x1, · · · , xn]]. We can regard R as a subring of R[x] by identifying an element a ∈ R
with the corresponding constant polynomial in R[x]. Similarly, we can regard R[x1, · · · , xn]
as a subring of R[x1, · · · , xn, xn+1] and R[[x1, · · · , xn]] as a subring of R[[x1, · · · , xn, xn+1]].

9.31 Example: Although we can regard the polynomial ring R[x] as a subring of the
ring of functions Func(R,R) (since we can regard a polynomial as a kind of function), in
general given a ring R we cannot regard R[x] as a subring of Func(R,R). For example, if
R is finite, say with |R| = n, then

∣∣Func(R,R)
∣∣ = nn but

∣∣R[x]
∣∣ = ∞ (or more precisely∣∣R[x]

∣∣ = ℵ0).

9.32 Example: For a ring R, the set Tn(R) of upper-triangular matrices with entries in
R is a subring of Mn(R). If S is a subring of R then Mn(S) is a subring of Mn(R).

9.33 Definition: For a ring R, we define the centre of R to be the ring

Z(R) =
{
a ∈ R

∣∣ax = xa for all x ∈ R
}
.

As an exercise, verify that Z(R) is in fact a subring of R.
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