Chapter 9. Definition and Examples of Rings and Subrings

9.1 Definition: A ring is a set R with two binary operations, addition denoted by + and
multiplication denoted by x, by - or by concatenation, and an element 0 € R such that

1) + is associative: (a+b) +c=a+ (b+c) for all a,b,c € R,

) + is commutative: a +b = b+ a for all a,b,c € R,

) 0 is an additive identity: a +0 =0+ a = a for all a € R,

) every a € R has an additive inverse: there exists b € R such that a +b=5b+ a =0,
) x is associative: (ab)c = a(bc) for all a,b,c € R, and

) x is distributive over +: a(b+ ¢) = ab+ ac and (a + b)c = ac + be for all a, b, c € R.
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We say that R is commutative when x is commutative, that is ab = ba for all a,b € R.
We say that R has an identity (or that R has a 1) when it has a multiplicative identity,
that is when there is a non-zero element 1 € R such that 1-a =a-1 =a for all a € R.
When R has a 1, for a € R we say that a is invertible (or that a is a unit) when there is
an element b € R with ab =1 = ba. A division ring is a ring R with identity such that
every non-zero element of R is invertible. A field is a commutative division ring.

9.2 Theorem: (Uniqueness of Identity and Inverse) Let R be a ring. Then

(1) the additive identity 0 is unique in the sense that if e € R has the property that
a+e=a=e+aforalla € R thene=0,

(2) the additive inverse of a € G is unique in the sense that for all a,b,c € G if we have
a+b=0=b+aanda+c=0=c+a thenb=c,

(3) if R has a 1, then it is unique in the sense that for all u € R, if u has the property that
au = a = ua for all a € G then v =1, and

(4) if R has a 1 and a € R has an inverse, then it is unique in the sense that for all a € G
if there exist b, c € G such that ab =ba =1 and ac = ca = 1 then b = c.

9.3 Notation: Let R be a ring. For a € R we denote the unique additive inverse of
a € R by —a, and for a,b € R we write b — a for b+ (—a). If R has a 1 and a € R has a

multiplicative inverse, we say that a is a unit in R, and we denote its inverse by a~!.

9.4 Theorem: (Cancellation Under Addition) Let R be a ring. Then for all a,b,c € R,

(1) ifa+c=0b+c then a = c,
(2) if a4+ b= a then b =0, and
(3) ifa+b=0 then b = —a.

9.5 Note: We do not, in general, have similar rules for cancellation under multiplication.
In general, for a, b, c in a ring R, ac = bc does not imply that a = b, ac = a does not imply
that ¢ = 1, ac = 1 does not imply that ca = 1, and ac = 0 does not imply that a = 0 or
b= 0. When ac = 1 we say that a is a left inverse for ¢ and that c is a right inverse
for a. When ac = 0 but a # 0 and b # 0, we say that a and b are zero divisors. A
commutative ring with 1 which has no zero divisors is called an integral domain.

9.6 Theorem: (Cancellation Under Multiplication) Let R be a ring. For all a,b,c € R,
if ac = be, or if ca = ¢b, then either a = b or ¢ = 0 or c¢ is a zero divisor.

Proof: Suppose ac = be. Then ac — bc = 0 so (a — b)c = 0. Either (a —b) =0so a =0b, or
c¢=0or (a —b) and c are zero divisors. The case that ca = ¢b is similar.



9.7 Theorem: (Basic Properties of Rings) Let R be a ring. Then
(1)0-a=a-0=0 for all a € R,

(2) (—a)b = —(ab) = a(=b) for all a,b € R,

(3) (—a)(—b) = ab for all a,b € R,

(4) if R has a 1 then (—1)a = —a for all a € R.

Proof: Let @ € R. Then 0-a = (04+0)-a=0-a+0-a. Thus 0-a = 0 by additive
cancellation. The proof that a-0 = 0 is similar, and the other proofs are left as an exercise.

9.8 Notation: Let R be a ring. For k € ZT we write ka = a +a + -+ + a with k
terms in the sum, and we write (—k)a = k(—a), and we write a* = a-a-...-a with k
terms in the product. For 0 € Z we write 0a = 0 and if R has a 1 we write a® = 1. If
R has a 1 and a € R is a unit, we write a=* = (a=")*. For all k,l € Z and all a € R
we have (k + l)a = ka + la, (—k)a = —(ka) = k(—a), (—a) =a, —(a+b) = —a—0b,
(ka)(1b) = (kl)(ab). For a € R and k: | € Z* we have a**! = a*a'!. When R has a 1 and

a and b are units, then for k,1 € Z we have a**! = a*a!, a™% = (a*)71, (a7 !)"! = a and

(ab)~t = b1 ol

9.9 Example: Z, Q, R, C and Z,, are all commutative rings with 1. Of these, Q, R and
C, and also Z, when p is prime, are fields.

9.10 Example: The ring of real quaternions is the set H = R* in which we write
1 = (1,0,0,0), « = (0,1,0,0), 7 = (0,0,1,0), & = (0,0,0,1) and for ¢t € R we write

= (¢,0,0,0), ti =it = (0,¢,0,0), tj = 5t = (0,0,¢,0) and tk = kt = (0,0,0,t). We define
addition as usual in H = R*. and we define multiplication by requiring that i = j2 =
k? = —1, that ij = —ji = k, jk = —kj =i and ki = —ik = j, and that every real number
commutes with ¢, 5 and k. It can be verified that H is a division ring with

a—1ib—jc—kd
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(atibtjetkd) ™ =

for all 0 # a +ib+ jc+ kd € H.
9.11 Example: For a set A and a ring R, the set
Func(A, R) = R = {fuctions f: A — R}

is a ring under the operations given by (f + g)(z) = f(x) + g(z) and (fg)(z) = f(z)g(x)
for all x € A. If R is commutative then so is Func(A, R). If R has identity 1 then the
identity of Func(A, R) is the constant function 1: A — R given by 1(x) =1 for all x € A.

9.12 Example: For a group G, an endomorphism of G is a group homomorphism
¢: G — G. If G is an additive abelian group then the set

End(G) = {endomorphisms p:G—>G }

is a ring under the operations given by (¢ + ¢)(z) = ¢(z) + ¢(z) and (¢9)(z) = ¢(¢(z))
for all x € G. The ring End(G) has an identity, namely the identity function [ : G — G

given by I(z) =z for all z € G.
9.13 Example: Let R be a ring with 1. Then the set
R*={a € R| ais a unit}

is a group under multiplication, called the group of units of R.



9.14 Example: For a ring R and a variable symbol x, a formal power series in = over
R is a sequence (ag, a1, a9, ---) with each a; € R, and we write this sequence as

= E a; " = ag + a1z + agx® + - - -
i=0

The elements a; are called the coefficients of f and ag is called the constant coefficient.
A power series of the form f(z) = a with a € R is called a constant series. The set

R[[z]] = {formal power series in x over R}

is a ring, which we call the ring of formal power series in x over R, with the following

operations: for f Z a;z’ and g(z Z b; 27 we have
7=0
(f+g)(x) = Z(ak + b))z’ , and (fg)(x chx where ¢, = Z a;bp_; .
k=0 k=0 =0

If R is commutative then so is R[[z]], and if R has identity 1 then the identity of R][[x]] is
the constant polynomial 1, that is the sequence 1 = (1,0,0,---). A polynomial in x over
R is a formal power series with only ﬁnitely non-zero coefficients. When we have a; = 0

for all i > n we also write f(z) = Z a;z'. When a,, # 0 and a; = 0 for all i > n we say
that a,, is the leading coefﬁc1ent of f and that the degree of f is deg(f) = n. The set
R[z] = {polynomials in x over R}

is a ring, which we call the ring of polynomials in x over R, using the same operations
as in R][z]].

9.15 Example: For a ring R and variable symbols z1,---,z,, a formal power series
in xq,---,x, over R is a function a : N” — R, and we write this function as
flzy, - xp) = 5 Qjy iy @1 -y where agy i, = alin, -, ip) .
(21771n)€Nn

The elements a;, ... ;,, € R are called the coefficients of the power series. The set
R[[z1,- -+, zy]] = {formal power series in z1,---,z, over R}

is a ring, called the ring of formal power series in x4, - - -, x, over R, under the following
operations: for f(x) =) aiy,..i,x1" - - xp' and g(x) = > bj, ... j, x17* -+ - 2,/ we define

(f+9)(@) =D (@hy ey + Do) P
(fg)<x) = chh...’knxlkl .. .xnkn

where cg, ..., is the sum of all terms ay, ... ;,bj, ..., for which i, + jo = ko for all
a =1,---,n. A polynomial in z1,---,z, over R is a formal power series with only
finitely many non-zero coefficients, and the set

Rlz1,x0, -, x,] = {polynomials in xy,---,x, over R}
is a ring using the same operations as in R[[x1, -, zy]].



9.16 Example: For a ring R, the set
M, (R) = {n x n matrices with entries in R}

is a ring under matrix addition and matrix multiplication, which we call the ring of n x n
matrices over R. If R has identity 1 then the identity of M, (R) is the n x n identity
matrix I.

9.17 Example: If R and S are rings then the cartesian product
Rx S ={(a,b)lacRbe S}
is a ring, called the product ring of R and S, with operations
(a,b) + (¢,d) = (a+ ¢, b+ d) and (a,b)(c,d) = (ac, bd) .

More generally, if Ry, -+, R, are rings then so is the product
n
HR’L' =Ry X---XR, = {(al,---,an)‘each a; € Ri},
i=1

which we call the product ring of Ry, ---, R,, under the operations
(a1, an) + (br,--+,b,) = (a1 + b1, -, an + by,) , and
(a1, -, an)(by, -, by) = (a1,b1,'-~,anbn) )
More generally still, if A is any set and R,, is a ring for each o € A, then the product

[[ Be={f:A4—= U Ra|f(a) € R, for all o € A}
a€A acA

is a ring, called the product ring of the rings R,,a € A, under the operations

(f + 9)(a) = f(@) + g(@) and (fg)(a) = f(a)g(e).

9.18 Theorem: Let R be a finite ring. Then R is a field if and only if R is an integral
domain.

Proof: Suppose that R is a field. Let a,b € R. Suppose that ab = 0 and a # 0. Then
b=1-b=(a"ta)b =a"1(ab) =a=!-0=0. Thus R has no zero divisors.

Conversely, suppose that R is an integral domain. We must show that every non-zero
element in R is a unit. Let 0 # a € R. Consider the left multiplication map L, : R — R
given by L,(z) = az. For z,y € R we have L,(x) = L,(y) = axr = ay = = = y by
cancellation, since a # 0 and a is not a zero divisor. Thus L, is injective. Since R is finite,
this implies that L, is bijective. In particular, we can choose b € R so that L,(b) = 1,
that is ab = 1. Similarly, right multiplication R, is bijective, and so we can choose ¢ € R
so that ca = 1. Then we have ¢ = c¢-1 = c(ab) = (ca)b =1-b=b, and so a is a unit with
al=b=c

9.19 Definition: Let R be a ring with 1. We define the characteristic of R, written as
char(R), to be the smallest n € ZT such that n -1 = 0 if such an n exists, and if no such
n exists then the characteristic of R is 0. Note that when n-1 = 0 we have n-a = 0 for
alla € Rbecausena=a+a+---+a=(1+1+---1)a=(n-1)a.



9.20 Theorem: Let R be a ring with 1 with no zero divisors. Then either char(R) = 0
or char(R) is prime.

Proof: Suppose char(R) = n € Z*. Suppose, for a contradiction, that n is composite, say

n =kl with 1 <k,l<n. ThenO=n-1=(kl)-1=(k-1)(l-1). Since R has no zero
divisors, either k-1 =0 or [-1 = 0. This contradicts the definition of n = char(R).

9.21 Definition: A subring of a ring R is a subset S C R which is a ring using the same
operations used in R. Similarly, a subfield of a field F' is a subset K C F' which is also a
field using the same operations used in F.

9.22 Theorem: If S be a subset of a ring R, then S is a subring of R if and only if

(1)0 €S,

(2) S is closed under addition, that is a +b € S for all a,b € S,

(3) S is closed under multiplication, that is ab € S for all a,b € S, and
(4) S is closed under additive inverse, that is —a € S for alla € S.

Similarly, if K is a subset of a field F' then K is a subfield of F if and only if

(1)0e K and 1 € K,

(2) K is closed under addition, that is a + b € K for all a,b € K,

(3) K is closed under multiplication, that is ab € K for all a,b € K,

(4) K is closed under additive inverse, that is —a € S for all a € K, and

(5) K s closed under multiplicative inverse, that is a™! € K for all0 # a € F.

9.23 Example: 7Z is a subring of Q, Q is a subring of R, R is a subring of C, and C is a
subring of H. Also, Q is a subfield of R which is a subfield of C.

9.24 Example: In Z, the subgroups are of the form (n) = {kn‘k € Z} where 0 < n € Z.
Each of these subgroups is also a subring of Z. In Z,, the subgroups are of the form
(d) = {kd|k € Z,,/q4} where d|n, and each of these subgroups is also a subring.

9.25 Example: In Z;» we have the subring (3) = {0,3,6,9}. Notice that 9-0 = 0,
9-3=3,9-6=6and 9-9 =9, s09 is the identity element in the group (3). This example
shows that the identity element in a subring of R does not need to be equal to the identity
element of R.

9.26 Example: Define
Z[V2] = {a+bv2|a,b € Z} , and
QV2] = {a+bV2|a,b € Q}.
Then Z[v/2] is a subring of R and Q[v/2] is a subring of R because
(a4 bV2)(c+ dv/2) = (ac + 2bd) + (ad + be)V2.
In fact Q[v/2] is a subfield of R because for a,b € Q, if a + bv/2 # 0 then a? # 2b? and

(a+b\/§)<a2_a b \/5):1.

262 a? — 2b?




9.27 Example: More generally, if R is a subring of S and A C S, then we write R[A] for
the smallest subring of S which contains R and A, or equivalently the intersection of all
subrings of S which contain R U A. Some particular cases of this include the subrings

Zli)={a+bi|la,beZ} CC
Qla] = {a+ba+ca2 |a,b,c € Q} CC, where a = ' 2 /3
QV2,V3] = {a+b\/§+0\/§+d\/6‘a,b,c,d€ Q} CR.
As an exercise, check that these are all rings and that Q[a] and Q[v/2, /3] are fields.

9.28 Example: We sometimes use notation, similar to the notation used in the above
example, for some other rings. For example, we write

Znli) ={a+bi|a,beZ,}.

This is a ring under the operations given by (a + bi) + (¢ + di) = (a + ¢) + (b + d)i and
(a + bi)(c+ di) = (ac — bd) + (ad + be)i.

9.29 Example: For an interval A C R, let C°(A,R) denote the set of continuous functions
f:A—=R, for k€ Z" let C*(A,R) denote the set of functions f : A — R such that the k™
derivative f(*) exists and is continuous in A, and let C>(A,R) denote the set of infinitely
differentiable functions f : A — R. Then C*(4,R) is a subring of C*(A4,R) which is a
subring of C°(A, R) which, in turn, is a subring of Func(A, R).

9.30 Example: For a ring R, the polynomial ring R[x] is a subring of the formal power
series ring R[[z]]. More generally, R[z1,--,x,] is a subring of R[[z1, -, z,]]. If S is a
subring of R then S[z] is a subring of R[x] and S[[z]] is a subring of R[[z]], and more
generally, S[zy,---,z,]| is a subring of R[zq,---,x,] and S|[z1,---,2,]] is a subring of
R[[z1, -+, x,]]. We can regard R as a subring of R[z] by identifying an element a € R
with the corresponding constant polynomial in R[x|. Similarly, we can regard R[z1, - -, x,]
as a subring of R[zy,- -, %y, Tpt1] and R[[x1, -+, x,]] as a subring of R[[z1, -, Zpn, Tnt]]-

9.31 Example: Although we can regard the polynomial ring R[z| as a subring of the
ring of functions Func(R,R) (since we can regard a polynomial as a kind of function), in
general given a ring R we cannot regard R[z] as a subring of Func(R, R). For example, if
R is finite, say with |R| = n, then |Func(R, R)| = n" but |R[z]| = co (or more precisely
9.32 Example: For a ring R, the set T},(R) of upper-triangular matrices with entries in
R is a subring of M,,(R). If S is a subring of R then M, (95) is a subring of M, (R).

9.33 Definition: For a ring R, we define the centre of R to be the ring
Z(R)={ae R|ax = za for all z € R}.

As an exercise, verify that Z(R) is in fact a subring of R.



