Chapter 9. Definition and Examples of Rings and Subrings

9.1 Definition: A ring is a set R with two binary operations, addition denoted by + and multiplication denoted by \times, by or by concatenation, and an element $0 \in R$ such that
$(1)+$ is associative: $(a+b)+c=a+(b+c)$ for all $a, b, c \in R$,
(2) + is commutative: $a+b=b+a$ for all $a, b, c \in R$,
(3) 0 is an additive identity: $a+0=0+a=a$ for all $a \in R$,
(4) every $a \in R$ has an additive inverse: there exists $b \in R$ such that $a+b=b+a=0$,
(5) \times is associative: $(a b) c=a(b c)$ for all $a, b, c \in R$, and
(6) \times is distributive over $+: a(b+c)=a b+a c$ and $(a+b) c=a c+b c$ for all $a, b, c \in R$.

We say that R is commutative when \times is commutative, that is $a b=b a$ for all $a, b \in R$. We say that R has an identity (or that R has a 1) when it has a multiplicative identity, that is when there is a non-zero element $1 \in R$ such that $1 \cdot a=a \cdot 1=a$ for all $a \in R$. When R has a 1 , for $a \in R$ we say that a is invertible (or that a is a unit) when there is an element $b \in R$ with $a b=1=b a$. A division ring is a ring R with identity such that every non-zero element of R is invertible. A field is a commutative division ring.
9.2 Theorem: (Uniqueness of Identity and Inverse) Let R be a ring. Then
(1) the additive identity 0 is unique in the sense that if $e \in R$ has the property that $a+e=a=e+a$ for all $a \in R$ then $e=0$,
(2) the additive inverse of $a \in G$ is unique in the sense that for all $a, b, c \in G$ if we have $a+b=0=b+a$ and $a+c=0=c+a$ then $b=c$,
(3) if R has a 1 , then it is unique in the sense that for all $u \in R$, if u has the property that $a u=a=u a$ for all $a \in G$ then $u=1$, and
(4) if R has a 1 and $a \in R$ has an inverse, then it is unique in the sense that for all $a \in G$ if there exist $b, c \in G$ such that $a b=b a=1$ and $a c=c a=1$ then $b=c$.
9.3 Notation: Let R be a ring. For $a \in R$ we denote the unique additive inverse of $a \in R$ by $-a$, and for $a, b \in R$ we write $b-a$ for $b+(-a)$. If R has a 1 and $a \in R$ has a multiplicative inverse, we say that a is a unit in R, and we denote its inverse by a^{-1}.
9.4 Theorem: (Cancellation Under Addition) Let R be a ring. Then for all $a, b, c \in R$,
(1) if $a+c=b+c$ then $a=c$,
(2) if $a+b=a$ then $b=0$, and
(3) if $a+b=0$ then $b=-a$.
9.5 Note: We do not, in general, have similar rules for cancellation under multiplication. In general, for a, b, c in a ring $R, a c=b c$ does not imply that $a=b, a c=a$ does not imply that $c=1, a c=1$ does not imply that $c a=1$, and $a c=0$ does not imply that $a=0$ or $b=0$. When $a c=1$ we say that a is a left inverse for c and that c is a right inverse for a. When $a c=0$ but $a \neq 0$ and $b \neq 0$, we say that a and b are zero divisors. A commutative ring with 1 which has no zero divisors is called an integral domain.
9.6 Theorem: (Cancellation Under Multiplication) Let R be a ring. For all $a, b, c \in R$, if $a c=b c$, or if $c a=c b$, then either $a=b$ or $c=0$ or c is a zero divisor.

Proof: Suppose $a c=b c$. Then $a c-b c=0$ so $(a-b) c=0$. Either $(a-b)=0$ so $a=b$, or $c=0$ or $(a-b)$ and c are zero divisors. The case that $c a=c b$ is similar.
9.7 Theorem: (Basic Properties of Rings) Let R be a ring. Then
(1) $0 \cdot a=a \cdot 0=0$ for all $a \in R$,
(2) $(-a) b=-(a b)=a(-b)$ for all $a, b \in R$,
(3) $(-a)(-b)=a b$ for all $a, b \in R$,
(4) if R has a 1 then $(-1) a=-a$ for all $a \in R$.

Proof: Let $a \in R$. Then $0 \cdot a=(0+0) \cdot a=0 \cdot a+0 \cdot a$. Thus $0 \cdot a=0$ by additive cancellation. The proof that $a \cdot 0=0$ is similar, and the other proofs are left as an exercise.
9.8 Notation: Let R be a ring. For $k \in \mathbb{Z}^{+}$we write $k a=a+a+\cdots+a$ with k terms in the sum, and we write $(-k) a=k(-a)$, and we write $a^{k}=a \cdot a \cdot \ldots \cdot a$ with k terms in the product. For $0 \in \mathbb{Z}$ we write $0 a=0$ and if R has a 1 we write $a^{0}=1$. If R has a 1 and $a \in R$ is a unit, we write $a^{-k}=\left(a^{-1}\right)^{k}$. For all $k, l \in \mathbb{Z}$ and all $a \in R$ we have $(k+l) a=k a+l a,(-k) a=-(k a)=k(-a),-(-a)=a,-(a+b)=-a-b$, $(k a)(l b)=(k l)(a b)$. For $a \in R$ and $k, l \in \mathbb{Z}^{+}$we have $a^{k+l}=a^{k} a^{l}$. When R has a 1 and a and b are units, then for $k, l \in \mathbb{Z}$ we have $a^{k+l}=a^{k} a^{l}, a^{-k}=\left(a^{k}\right)^{-1},\left(a^{-1}\right)^{-1}=a$ and $(a b)^{-1}=b^{-1} a^{-1}$.
9.9 Example: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ and \mathbb{Z}_{n} are all commutative rings with 1 . Of these, \mathbb{Q}, \mathbb{R} and \mathbb{C}, and also \mathbb{Z}_{p} when p is prime, are fields.
9.10 Example: The ring of real quaternions is the set $\mathbf{H}=\mathbb{R}^{4}$ in which we write $1=(1,0,0,0), i=(0,1,0,0), j=(0,0,1,0), k=(0,0,0,1)$ and for $t \in \mathbb{R}$ we write $t=(t, 0,0,0), t i=i t=(0, t, 0,0), t j=j t=(0,0, t, 0)$ and $t k=k t=(0,0,0, t)$. We define addition as usual in $\mathbf{H}=\mathbb{R}^{4}$. and we define multiplication by requiring that $i^{2}=j^{2}=$ $k^{2}=-1$, that $i j=-j i=k, j k=-k j=i$ and $k i=-i k=j$, and that every real number commutes with i, j and k. It can be verified that \mathbf{H} is a division ring with

$$
(a+i b+j c+k d)^{-1}=\frac{a-i b-j c-k d}{a^{2}+b^{2}+c^{2}+d^{2}}
$$

for all $0 \neq a+i b+j c+k d \in \mathbf{H}$.
9.11 Example: For a set A and a ring R, the set

$$
\operatorname{Func}(A, R)=R^{A}=\{\text { fuctions } f: A \rightarrow R\}
$$

is a ring under the operations given by $(f+g)(x)=f(x)+g(x)$ and $(f g)(x)=f(x) g(x)$ for all $x \in A$. If R is commutative then so is $\operatorname{Func}(A, R)$. If R has identity 1 then the identity of $\operatorname{Func}(A, R)$ is the constant function $1: A \rightarrow R$ given by $1(x)=1$ for all $x \in A$.
9.12 Example: For a group G, an endomorphism of G is a group homomorphism $\phi: G \rightarrow G$. If G is an additive abelian group then the set

$$
\operatorname{End}(G)=\{\text { endomorphisms } \phi: G \rightarrow G\}
$$

is a ring under the operations given by $(\phi+\psi)(x)=\phi(x)+\psi(x)$ and $(\phi \psi)(x)=\phi(\psi(x))$ for all $x \in G$. The ring $\operatorname{End}(G)$ has an identity, namely the identity function $I: G \rightarrow G$ given by $I(x)=x$ for all $x \in G$.
9.13 Example: Let R be a ring with 1 . Then the set

$$
R^{*}=\{a \in R \mid a \text { is a unit }\}
$$

is a group under multiplication, called the group of units of R.
9.14 Example: For a ring R and a variable symbol x, a formal power series in x over R is a sequence $\left(a_{0}, a_{1}, a_{2}, \cdots\right)$ with each $a_{i} \in R$, and we write this sequence as

$$
f(x)=\sum_{i=0}^{\infty} a_{i} x^{i}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots
$$

The elements a_{i} are called the coefficients of f and a_{0} is called the constant coefficient. A power series of the form $f(x)=a$ with $a \in R$ is called a constant series. The set

$$
R[[x]]=\{\text { formal power series in } x \text { over } R\}
$$

is a ring, which we call the ring of formal power series in x over R, with the following operations: for $f(x)=\sum_{i=0}^{\infty} a_{i} x^{i}$ and $g(x)=\sum_{j=0}^{\infty} b_{j} x^{j}$ we have

$$
(f+g)(x)=\sum_{k=0}^{\infty}\left(a_{k}+b_{k}\right) x^{i}, \text { and }(f g)(x)=\sum_{k=0}^{\infty} c_{k} x^{k} \text { where } c_{k}=\sum_{i=0}^{k} a_{i} b_{k-i}
$$

If R is commutative then so is $R[[x]]$, and if R has identity 1 then the identity of $R[[x]]$ is the constant polynomial 1 , that is the sequence $1=(1,0,0, \cdots)$. A polynomial in x over R is a formal power series with only finitely non-zero coefficients. When we have $a_{i}=0$ for all $i>n$ we also write $f(x)=\sum_{i=0}^{n} a_{i} x^{i}$. When $a_{n} \neq 0$ and $a_{i}=0$ for all $i>n$ we say that a_{n} is the leading coefficient of f and that the degree of f is $\operatorname{deg}(f)=n$. The set

$$
R[x]=\{\text { polynomials in } x \text { over } R\}
$$

is a ring, which we call the ring of polynomials in x over R, using the same operations as in $R[[x]]$.
9.15 Example: For a ring R and variable symbols x_{1}, \cdots, x_{n}, a formal power series in x_{1}, \cdots, x_{n} over R is a function $a: \mathbb{N}^{n} \rightarrow R$, and we write this function as

$$
f\left(x_{1}, \cdots, x_{n}\right)=\sum_{\left(i_{1}, \cdots, i_{n}\right) \in \mathbb{N}^{n}} a_{i_{1}, \cdots, i_{n}} x_{1}{ }^{i_{1}} \cdots x_{n}{ }^{i_{n}} \text { where } a_{i_{1}, \cdots, i_{n}}=a\left(i_{1}, \cdots, i_{n}\right) .
$$

The elements $a_{i_{1}, \cdots, i_{n}} \in R$ are called the coefficients of the power series. The set

$$
R\left[\left[x_{1}, \cdots, x_{n}\right]\right]=\left\{\text { formal power series in } x_{1}, \cdots, x_{n} \text { over } R\right\}
$$

is a ring, called the ring of formal power series in x_{1}, \cdots, x_{n} over R, under the following operations: for $f(x)=\sum a_{i_{1}, \cdots, i_{n}} x_{1}{ }^{i_{1}} \cdots x_{n}{ }^{i_{n}}$ and $g(x)=\sum b_{j_{1}, \cdots, j_{n}} x_{1}{ }^{j_{1}} \cdots x_{n}{ }^{j_{n}}$ we define

$$
\begin{aligned}
(f+g)(x) & =\sum\left(a_{k_{1}, \cdots, k_{n}}+b_{k_{1}, \cdots, k_{n}}\right) x_{1}^{k_{1}} \cdots x_{n}{ }^{k_{n}} \\
(f g)(x) & =\sum c_{k_{1}, \cdots, k_{n}} x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}
\end{aligned}
$$

where $c_{k_{1}, \cdots, k_{n}}$ is the sum of all terms $a_{i_{1}, \cdots, i_{n}} b_{j_{1}, \cdots, j_{n}}$ for which $i_{\alpha}+j_{\alpha}=k_{\alpha}$ for all $\alpha=1, \cdots, n$. A polynomial in x_{1}, \cdots, x_{n} over R is a formal power series with only finitely many non-zero coefficients, and the set

$$
R\left[x_{1}, x_{2}, \cdots, x_{n}\right]=\left\{\text { polynomials in } x_{1}, \cdots, x_{n} \text { over } R\right\}
$$

is a ring using the same operations as in $R\left[\left[x_{1}, \cdots, x_{n}\right]\right]$.
9.16 Example: For a ring R, the set

$$
M_{n}(R)=\{n \times n \text { matrices with entries in } R\}
$$

is a ring under matrix addition and matrix multiplication, which we call the ring of $n \times n$ matrices over R. If R has identity 1 then the identity of $M_{n}(R)$ is the $n \times n$ identity matrix I.
9.17 Example: If R and S are rings then the cartesian product

$$
R \times S=\{(a, b) \mid a \in R, b \in S\}
$$

is a ring, called the product ring of R and S, with operations

$$
(a, b)+(c, d)=(a+c, b+d) \text { and }(a, b)(c, d)=(a c, b d)
$$

More generally, if R_{1}, \cdots, R_{n} are rings then so is the product

$$
\prod_{i=1}^{n} R_{i}=R_{1} \times \cdots \times R_{n}=\left\{\left(a_{1}, \cdots, a_{n}\right) \mid \text { each } a_{i} \in R_{i}\right\},
$$

which we call the product ring of R_{1}, \cdots, R_{n}, under the operations

$$
\begin{aligned}
\left(a_{1}, \cdots, a_{n}\right)+\left(b_{1}, \cdots, b_{n}\right) & =\left(a_{1}+b_{1}, \cdots, a_{n}+b_{n}\right), \text { and } \\
\left(a_{1}, \cdots, a_{n}\right)\left(b_{1}, \cdots, b_{n}\right) & =\left(a_{1}, b_{1}, \cdots, a_{n} b_{n}\right) .
\end{aligned}
$$

More generally still, if A is any set and R_{α} is a ring for each $\alpha \in A$, then the product

$$
\prod_{\alpha \in A} R_{\alpha}=\left\{f: A \rightarrow \bigcup_{\alpha \in A} R_{\alpha} \mid f(\alpha) \in R_{\alpha} \text { for all } \alpha \in A\right\}
$$

is a ring, called the product ring of the rings $R_{\alpha}, \alpha \in A$, under the operations

$$
(f+g)(\alpha)=f(\alpha)+g(\alpha) \text { and }(f g)(\alpha)=f(\alpha) g(\alpha)
$$

9.18 Theorem: Let R be a finite ring. Then R is a field if and only if R is an integral domain.

Proof: Suppose that R is a field. Let $a, b \in R$. Suppose that $a b=0$ and $a \neq 0$. Then $b=1 \cdot b=\left(a^{-1} a\right) b=a^{-1}(a b)=a^{-1} \cdot 0=0$. Thus R has no zero divisors.

Conversely, suppose that R is an integral domain. We must show that every non-zero element in R is a unit. Let $0 \neq a \in R$. Consider the left multiplication map $L_{a}: R \rightarrow R$ given by $L_{a}(x)=a x$. For $x, y \in R$ we have $L_{a}(x)=L_{a}(y) \Longrightarrow a x=a y \Longrightarrow x=y$ by cancellation, since $a \neq 0$ and a is not a zero divisor. Thus L_{a} is injective. Since R is finite, this implies that L_{a} is bijective. In particular, we can choose $b \in R$ so that $L_{a}(b)=1$, that is $a b=1$. Similarly, right multiplication R_{a} is bijective, and so we can choose $c \in R$ so that $c a=1$. Then we have $c=c \cdot 1=c(a b)=(c a) b=1 \cdot b=b$, and so a is a unit with $a^{-1}=b=c$.
9.19 Definition: Let R be a ring with 1 . We define the characteristic of R, written as $\operatorname{char}(R)$, to be the smallest $n \in \mathbb{Z}^{+}$such that $n \cdot 1=0$ if such an n exists, and if no such n exists then the characteristic of R is 0 . Note that when $n \cdot 1=0$ we have $n \cdot a=0$ for all $a \in R$ because $n a=a+a+\cdots+a=(1+1+\cdots 1) a=(n \cdot 1) a$.
9.20 Theorem: Let R be a ring with 1 with no zero divisors. Then either $\operatorname{char}(R)=0$ or char (R) is prime.
Proof: Suppose $\operatorname{char}(R)=n \in \mathbb{Z}^{+}$. Suppose, for a contradiction, that n is composite, say $n=k l$ with $1<k, l<n$. Then $0=n \cdot 1=(k l) \cdot 1=(k \cdot 1)(l \cdot 1)$. Since R has no zero divisors, either $k \cdot 1=0$ or $l \cdot 1=0$. This contradicts the definition of $n=\operatorname{char}(R)$.
9.21 Definition: A subring of a ring R is a subset $S \subseteq R$ which is a ring using the same operations used in R. Similarly, a subfield of a field F is a subset $K \subseteq F$ which is also a field using the same operations used in F.
9.22 Theorem: If S be a subset of a ring R, then S is a subring of R if and only if
(1) $0 \in S$,
(2) S is closed under addition, that is $a+b \in S$ for all $a, b \in S$,
(3) S is closed under multiplication, that is $a b \in S$ for all $a, b \in S$, and
(4) S is closed under additive inverse, that is $-a \in S$ for all $a \in S$.

Similarly, if K is a subset of a field F then K is a subfield of F if and only if
(1) $0 \in K$ and $1 \in K$,
(2) K is closed under addition, that is $a+b \in K$ for all $a, b \in K$,
(3) K is closed under multiplication, that is $a b \in K$ for all $a, b \in K$,
(4) K is closed under additive inverse, that is $-a \in S$ for all $a \in K$, and
(5) K s closed under multiplicative inverse, that is $a^{-1} \in K$ for all $0 \neq a \in F$.
9.23 Example: \mathbb{Z} is a subring of \mathbb{Q}, \mathbb{Q} is a subring of \mathbb{R}, \mathbb{R} is a subring of \mathbb{C}, and \mathbb{C} is a subring of \mathbf{H}. Also, \mathbb{Q} is a subfield of \mathbb{R} which is a subfield of \mathbb{C}.
9.24 Example: In \mathbb{Z}, the subgroups are of the form $\langle n\rangle=\{k n \mid k \in \mathbb{Z}\}$ where $0 \leq n \in \mathbb{Z}$. Each of these subgroups is also a subring of \mathbb{Z}. In \mathbb{Z}_{n}, the subgroups are of the form $\langle d\rangle=\left\{k d \mid k \in \mathbb{Z}_{n / d}\right\}$ where $d \mid n$, and each of these subgroups is also a subring.
9.25 Example: In \mathbb{Z}_{12} we have the subring $\langle 3\rangle=\{0,3,6,9\}$. Notice that $9 \cdot 0=0$, $9 \cdot 3=3,9 \cdot 6=6$ and $9 \cdot 9=9$, so 9 is the identity element in the group $\langle 3\rangle$. This example shows that the identity element in a subring of R does not need to be equal to the identity element of R.
9.26 Example: Define

$$
\begin{aligned}
& \mathbb{Z}[\sqrt{2}]=\{a+b \sqrt{2} \mid a, b \in \mathbb{Z}\}, \text { and } \\
& \mathbb{Q}[\sqrt{2}]=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}
\end{aligned}
$$

Then $\mathbb{Z}[\sqrt{2}]$ is a subring of \mathbb{R} and $\mathbb{Q}[\sqrt{2}]$ is a subring of \mathbb{R} because

$$
(a+b \sqrt{2})(c+d \sqrt{2})=(a c+2 b d)+(a d+b c) \sqrt{2}
$$

In fact $\mathbb{Q}[\sqrt{2}]$ is a subfield of \mathbb{R} because for $a, b \in \mathbb{Q}$, if $a+b \sqrt{2} \neq 0$ then $a^{2} \neq 2 b^{2}$ and

$$
(a+b \sqrt{2})\left(\frac{a}{a^{2}-2 b^{2}}-\frac{b}{a^{2}-2 b^{2}} \sqrt{2}\right)=1
$$

9.27 Example: More generally, if R is a subring of S and $A \subseteq S$, then we write $R[A]$ for the smallest subring of S which contains R and A, or equivalently the intersection of all subrings of S which contain $R \cup A$. Some particular cases of this include the subrings

$$
\begin{aligned}
\mathbb{Z}[i] & =\{a+b i \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{C} \\
\mathbb{Q}[\alpha] & =\left\{a+b \alpha+c \alpha^{2} \mid a, b, c \in \mathbb{Q}\right\} \subseteq \mathbb{C}, \text { where } \alpha=e^{i 2 \pi / 3} \\
\mathbb{Q}[\sqrt{2}, \sqrt{3}] & =\{a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6} \mid a, b, c, d \in \mathbb{Q}\} \subseteq \mathbb{R} .
\end{aligned}
$$

As an exercise, check that these are all rings and that $\mathbb{Q}[\alpha]$ and $\mathbb{Q}[\sqrt{2}, \sqrt{3}]$ are fields.
9.28 Example: We sometimes use notation, similar to the notation used in the above example, for some other rings. For example, we write

$$
\mathbb{Z}_{n}[i]=\left\{a+b i \mid a, b \in \mathbb{Z}_{n}\right\}
$$

This is a ring under the operations given by $(a+b i)+(c+d i)=(a+c)+(b+d) i$ and $(a+b i)(c+d i)=(a c-b d)+(a d+b c) i$.
9.29 Example: For an interval $A \subseteq \mathbb{R}$, let $\mathcal{C}^{0}(A, \mathbb{R})$ denote the set of continuous functions $f: A \rightarrow \mathbb{R}$, for $k \in \mathbb{Z}^{+}$let $\mathcal{C}^{k}(A, \mathbb{R})$ denote the set of functions $f: A \rightarrow \mathbb{R}$ such that the $k^{\text {th }}$ derivative $f^{(k)}$ exists and is continuous in A, and let $\mathcal{C}^{\infty}(A, \mathbb{R})$ denote the set of infinitely differentiable functions $f: A \rightarrow \mathbb{R}$. Then $\mathcal{C}^{\infty}(A, \mathbb{R})$ is a subring of $\mathcal{C}^{k}(A, \mathbb{R})$ which is a subring of $\mathcal{C}^{0}(A, \mathbb{R})$ which, in turn, is a subring of $\operatorname{Func}(A, \mathbb{R})$.
9.30 Example: For a ring R, the polynomial ring $R[x]$ is a subring of the formal power series ring $R[[x]]$. More generally, $R\left[x_{1}, \cdots, x_{n}\right]$ is a subring of $R\left[\left[x_{1}, \cdots, x_{n}\right]\right]$. If S is a subring of R then $S[x]$ is a subring of $R[x]$ and $S[[x]]$ is a subring of $R[[x]]$, and more generally, $S\left[x_{1}, \cdots, x_{n}\right]$ is a subring of $R\left[x_{1}, \cdots, x_{n}\right]$ and $S\left[\left[x_{1}, \cdots, x_{n}\right]\right]$ is a subring of $R\left[\left[x_{1}, \cdots, x_{n}\right]\right]$. We can regard R as a subring of $R[x]$ by identifying an element $a \in R$ with the corresponding constant polynomial in $R[x]$. Similarly, we can regard $R\left[x_{1}, \cdots, x_{n}\right]$ as a subring of $R\left[x_{1}, \cdots, x_{n}, x_{n+1}\right]$ and $R\left[\left[x_{1}, \cdots, x_{n}\right]\right]$ as a subring of $R\left[\left[x_{1}, \cdots, x_{n}, x_{n+1}\right]\right]$.
9.31 Example: Although we can regard the polynomial ring $\mathbb{R}[x]$ as a subring of the ring of functions $\operatorname{Func}(\mathbb{R}, \mathbb{R})$ (since we can regard a polynomial as a kind of function), in general given a ring R we cannot regard $R[x]$ as a subring of $\operatorname{Func}(R, R)$. For example, if R is finite, say with $|R|=n$, then $|\operatorname{Func}(R, R)|=n^{n}$ but $|R[x]|=\infty$ (or more precisely $\left.|R[x]|=\aleph_{0}\right)$.
9.32 Example: For a ring R, the set $T_{n}(R)$ of upper-triangular matrices with entries in R is a subring of $M_{n}(R)$. If S is a subring of R then $M_{n}(S)$ is a subring of $M_{n}(R)$.
9.33 Definition: For a ring R, we define the centre of R to be the ring

$$
Z(R)=\{a \in R \mid a x=x a \text { for all } x \in R\} .
$$

As an exercise, verify that $Z(R)$ is in fact a subring of R.

