Chapter 9. Definition and Examples of Rings and Subrings

9.1 Definition: A ring is a set R with two binary operations, addition denoted by + and multiplication denoted by \times , by \cdot or by concatenation, and an element $0 \in R$ such that

(1) + is associative: (a + b) + c = a + (b + c) for all $a, b, c \in R$,

(2) + is commutative: a + b = b + a for all $a, b, c \in R$,

(3) 0 is an additive identity: a + 0 = 0 + a = a for all $a \in R$,

(4) every $a \in R$ has an additive inverse: there exists $b \in R$ such that a + b = b + a = 0,

(5) × is associative: (ab)c = a(bc) for all $a, b, c \in R$, and

(6) × is distributive over +: a(b+c) = ab + ac and (a+b)c = ac + bc for all $a, b, c \in R$.

We say that R is **commutative** when \times is commutative, that is ab = ba for all $a, b \in R$. We say that R has an **identity** (or that R has a 1) when it has a multiplicative identity, that is when there is a non-zero element $1 \in R$ such that $1 \cdot a = a \cdot 1 = a$ for all $a \in R$. When R has a 1, for $a \in R$ we say that a is **invertible** (or that a is a **unit**) when there is an element $b \in R$ with ab = 1 = ba. A **division ring** is a ring R with identity such that every non-zero element of R is invertible. A **field** is a commutative division ring.

9.2 Theorem: (Uniqueness of Identity and Inverse) Let R be a ring. Then

(1) the additive identity 0 is unique in the sense that if $e \in R$ has the property that a + e = a = e + a for all $a \in R$ then e = 0,

(2) the additive inverse of $a \in G$ is unique in the sense that for all $a, b, c \in G$ if we have a + b = 0 = b + a and a + c = 0 = c + a then b = c,

(3) if R has a 1, then it is unique in the sense that for all $u \in R$, if u has the property that au = a = ua for all $a \in G$ then u = 1, and

(4) if R has a 1 and $a \in R$ has an inverse, then it is unique in the sense that for all $a \in G$ if there exist $b, c \in G$ such that ab = ba = 1 and ac = ca = 1 then b = c.

9.3 Notation: Let R be a ring. For $a \in R$ we denote the unique additive inverse of $a \in R$ by -a, and for $a, b \in R$ we write b - a for b + (-a). If R has a 1 and $a \in R$ has a multiplicative inverse, we say that a is a **unit** in R, and we denote its inverse by a^{-1} .

9.4 Theorem: (Cancellation Under Addition) Let R be a ring. Then for all $a, b, c \in R$,

(1) if a + c = b + c then a = c, (2) if a + b = a then b = 0, and (3) if a + b = 0 then b = -a.

9.5 Note: We do not, in general, have similar rules for cancellation under multiplication. In general, for a, b, c in a ring R, ac = bc does not imply that a = b, ac = a does not imply that c = 1, ac = 1 does not imply that ca = 1, and ac = 0 does not imply that a = 0 or b = 0. When ac = 1 we say that a is a **left inverse** for c and that c is a **right inverse** for a. When ac = 0 but $a \neq 0$ and $b \neq 0$, we say that a and b are **zero divisors**. A commutative ring with 1 which has no zero divisors is called an **integral domain**.

9.6 Theorem: (Cancellation Under Multiplication) Let R be a ring. For all $a, b, c \in R$, if ac = bc, or if ca = cb, then either a = b or c = 0 or c is a zero divisor.

Proof: Suppose ac = bc. Then ac - bc = 0 so (a - b)c = 0. Either (a - b) = 0 so a = b, or c = 0 or (a - b) and c are zero divisors. The case that ca = cb is similar.

9.7 Theorem: (Basic Properties of Rings) Let R be a ring. Then

(1) $0 \cdot a = a \cdot 0 = 0$ for all $a \in R$, (2) (-a)b = -(ab) = a(-b) for all $a, b \in R$, (3) (-a)(-b) = ab for all $a, b \in R$, (4) if R has a 1 then (-1)a = -a for all $a \in R$.

Proof: Let $a \in R$. Then $0 \cdot a = (0+0) \cdot a = 0 \cdot a + 0 \cdot a$. Thus $0 \cdot a = 0$ by additive cancellation. The proof that $a \cdot 0 = 0$ is similar, and the other proofs are left as an exercise.

9.8 Notation: Let R be a ring. For $k \in \mathbb{Z}^+$ we write $ka = a + a + \cdots + a$ with k terms in the sum, and we write (-k)a = k(-a), and we write $a^k = a \cdot a \cdot \ldots \cdot a$ with k terms in the product. For $0 \in \mathbb{Z}$ we write 0a = 0 and if R has a 1 we write $a^0 = 1$. If R has a 1 and $a \in R$ is a unit, we write $a^{-k} = (a^{-1})^k$. For all $k, l \in \mathbb{Z}$ and all $a \in R$ we have (k + l)a = ka + la, (-k)a = -(ka) = k(-a), -(-a) = a, -(a + b) = -a - b, (ka)(lb) = (kl)(ab). For $a \in R$ and $k, l \in \mathbb{Z}^+$ we have $a^{k+l} = a^k a^l$. When R has a 1 and a and b are units, then for $k, l \in \mathbb{Z}$ we have $a^{k+l} = a^k a^l, a^{-k} = (a^k)^{-1}, (a^{-1})^{-1} = a$ and $(ab)^{-1} = b^{-1}a^{-1}$.

9.9 Example: \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} and \mathbb{Z}_n are all commutative rings with 1. Of these, \mathbb{Q} , \mathbb{R} and \mathbb{C} , and also \mathbb{Z}_p when p is prime, are fields.

9.10 Example: The ring of real **quaternions** is the set $\mathbf{H} = \mathbb{R}^4$ in which we write 1 = (1,0,0,0), i = (0,1,0,0), j = (0,0,1,0), k = (0,0,0,1) and for $t \in \mathbb{R}$ we write t = (t,0,0,0), ti = it = (0,t,0,0), tj = jt = (0,0,t,0) and tk = kt = (0,0,0,t). We define addition as usual in $\mathbf{H} = \mathbb{R}^4$. and we define multiplication by requiring that $i^2 = j^2 = k^2 = -1$, that ij = -ji = k, jk = -kj = i and ki = -ik = j, and that every real number commutes with i, j and k. It can be verified that \mathbf{H} is a division ring with

$$(a+ib+jc+kd)^{-1} = \frac{a-ib-jc-kd}{a^2+b^2+c^2+d^2}$$

for all $0 \neq a + ib + jc + kd \in \mathbf{H}$.

9.11 Example: For a set A and a ring R, the set

$$\operatorname{Func}(A,R) = R^A = \{ \operatorname{fuctions} f : A \to R \}$$

is a ring under the operations given by (f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x)for all $x \in A$. If R is commutative then so is Func(A, R). If R has identity 1 then the identity of Func(A, R) is the constant function $1: A \to R$ given by 1(x) = 1 for all $x \in A$.

9.12 Example: For a group G, an **endomorphism** of G is a group homomorphism $\phi: G \to G$. If G is an additive abelian group then the set

$$\operatorname{End}(G) = \left\{ \operatorname{endomorphisms} \phi : G \to G \right\}$$

is a ring under the operations given by $(\phi + \psi)(x) = \phi(x) + \psi(x)$ and $(\phi\psi)(x) = \phi(\psi(x))$ for all $x \in G$. The ring End(G) has an identity, namely the identity function $I : G \to G$ given by I(x) = x for all $x \in G$.

9.13 Example: Let R be a ring with 1. Then the set

$$R^* = \left\{ a \in R \middle| a \text{ is a unit} \right\}$$

is a group under multiplication, called the **group of units** of R.

9.14 Example: For a ring R and a variable symbol x, a formal power series in x over R is a sequence (a_0, a_1, a_2, \cdots) with each $a_i \in R$, and we write this sequence as

$$f(x) = \sum_{i=0}^{\infty} a_i x^i = a_0 + a_1 x + a_2 x^2 + \cdots$$

The elements a_i are called the **coefficients** of f and a_0 is called the **constant coefficient**. A power series of the form f(x) = a with $a \in R$ is called a **constant series**. The set

 $R[[x]] = \{ \text{formal power series in } x \text{ over } R \}$

is a ring, which we call the **ring of formal power series** in x over R, with the following operations: for $f(x) = \sum_{i=0}^{\infty} a_i x^i$ and $g(x) = \sum_{j=0}^{\infty} b_j x^j$ we have

$$(f+g)(x) = \sum_{k=0}^{\infty} (a_k + b_k) x^i$$
, and $(fg)(x) = \sum_{k=0}^{\infty} c_k x^k$ where $c_k = \sum_{i=0}^k a_i b_{k-i}$.

If R is commutative then so is R[[x]], and if R has identity 1 then the identity of R[[x]] is the constant polynomial 1, that is the sequence $1 = (1, 0, 0, \dots)$. A **polynomial** in x over R is a formal power series with only finitely non-zero coefficients. When we have $a_i = 0$ for all i > n we also write $f(x) = \sum_{i=0}^{n} a_i x^i$. When $a_n \neq 0$ and $a_i = 0$ for all i > n we say that a_n is the **leading coefficient** of f and that the **degree** of f is deg(f) = n. The set

 $R[x] = \{ \text{polynomials in } x \text{ over } R \}$

is a ring, which we call the **ring of polynomials** in x over R, using the same operations as in R[[x]].

9.15 Example: For a ring R and variable symbols x_1, \dots, x_n , a formal power series in x_1, \dots, x_n over R is a function $a : \mathbb{N}^n \to R$, and we write this function as

$$f(x_1, \dots, x_n) = \sum_{(i_1, \dots, i_n) \in \mathbb{N}^n} a_{i_1, \dots, i_n} x_1^{i_1} \cdots x_n^{i_n} \text{ where } a_{i_1, \dots, i_n} = a(i_1, \dots, i_n).$$

The elements $a_{i_1,\dots,i_n} \in R$ are called the **coefficients** of the power series. The set

$$R[[x_1, \cdots, x_n]] = \{ \text{formal power series in } x_1, \cdots, x_n \text{ over } R \}$$

is a ring, called the **ring of formal power series** in x_1, \dots, x_n over R, under the following operations: for $f(x) = \sum a_{i_1,\dots,i_n} x_1^{i_1} \cdots x_n^{i_n}$ and $g(x) = \sum b_{j_1,\dots,j_n} x_1^{j_1} \cdots x_n^{j_n}$ we define

$$(f+g)(x) = \sum (a_{k_1,\dots,k_n} + b_{k_1,\dots,k_n}) x_1^{k_1} \cdots x_n^{k_n}$$
$$(fg)(x) = \sum c_{k_1,\dots,k_n} x_1^{k_1} \cdots x_n^{k_n}$$

where c_{k_1,\dots,k_n} is the sum of all terms $a_{i_1,\dots,i_n}b_{j_1,\dots,j_n}$ for which $i_{\alpha} + j_{\alpha} = k_{\alpha}$ for all $\alpha = 1,\dots,n$. A **polynomial** in x_1,\dots,x_n over R is a formal power series with only finitely many non-zero coefficients, and the set

$$R[x_1, x_2, \cdots, x_n] = \{ \text{polynomials in } x_1, \cdots, x_n \text{ over } R \}$$

is a ring using the same operations as in $R[[x_1, \dots, x_n]]$.

9.16 Example: For a ring R, the set

 $M_n(R) = \{n \times n \text{ matrices with entries in } R\}$

is a ring under matrix addition and matrix multiplication, which we call the **ring of** $n \times n$ **matrices over** R. If R has identity 1 then the identity of $M_n(R)$ is the $n \times n$ identity matrix I.

9.17 Example: If R and S are rings then the cartesian product

$$R \times S = \{(a, b) | a \in R, b \in S\}$$

is a ring, called the **product ring** of R and S, with operations

$$(a,b) + (c,d) = (a+c,b+d)$$
 and $(a,b)(c,d) = (ac,bd)$

More generally, if R_1, \dots, R_n are rings then so is the product

$$\prod_{i=1}^{n} R_i = R_1 \times \dots \times R_n = \{(a_1, \dots, a_n) | \text{each } a_i \in R_i \},\$$

which we call the **product ring** of R_1, \dots, R_n , under the operations

$$(a_1, \dots, a_n) + (b_1, \dots, b_n) = (a_1 + b_1, \dots, a_n + b_n)$$
, and
 $(a_1, \dots, a_n)(b_1, \dots, b_n) = (a_1, b_1, \dots, a_n b_n).$

More generally still, if A is any set and R_{α} is a ring for each $\alpha \in A$, then the product

$$\prod_{\alpha \in A} R_{\alpha} = \left\{ f : A \to \bigcup_{\alpha \in A} R_{\alpha} \big| f(\alpha) \in R_{\alpha} \text{ for all } \alpha \in A \right\}$$

is a ring, called the **product ring** of the rings $R_{\alpha}, \alpha \in A$, under the operations

$$(f+g)(\alpha) = f(\alpha) + g(\alpha)$$
 and $(fg)(\alpha) = f(\alpha)g(\alpha)$.

9.18 Theorem: Let R be a finite ring. Then R is a field if and only if R is an integral domain.

Proof: Suppose that R is a field. Let $a, b \in R$. Suppose that ab = 0 and $a \neq 0$. Then $b = 1 \cdot b = (a^{-1}a)b = a^{-1}(ab) = a^{-1} \cdot 0 = 0$. Thus R has no zero divisors.

Conversely, suppose that R is an integral domain. We must show that every non-zero element in R is a unit. Let $0 \neq a \in R$. Consider the left multiplication map $L_a : R \to R$ given by $L_a(x) = ax$. For $x, y \in R$ we have $L_a(x) = L_a(y) \Longrightarrow ax = ay \Longrightarrow x = y$ by cancellation, since $a \neq 0$ and a is not a zero divisor. Thus L_a is injective. Since R is finite, this implies that L_a is bijective. In particular, we can choose $b \in R$ so that $L_a(b) = 1$, that is ab = 1. Similarly, right multiplication R_a is bijective, and so we can choose $c \in R$ so that ca = 1. Then we have $c = c \cdot 1 = c(ab) = (ca)b = 1 \cdot b = b$, and so a is a unit with $a^{-1} = b = c$.

9.19 Definition: Let R be a ring with 1. We define the **characteristic** of R, written as char(R), to be the smallest $n \in \mathbb{Z}^+$ such that $n \cdot 1 = 0$ if such an n exists, and if no such n exists then the characteristic of R is 0. Note that when $n \cdot 1 = 0$ we have $n \cdot a = 0$ for all $a \in R$ because $na = a + a + \cdots + a = (1 + 1 + \cdots + 1)a = (n \cdot 1)a$.

9.20 Theorem: Let R be a ring with 1 with no zero divisors. Then either char(R) = 0 or char(R) is prime.

Proof: Suppose char $(R) = n \in \mathbb{Z}^+$. Suppose, for a contradiction, that n is composite, say n = kl with 1 < k, l < n. Then $0 = n \cdot 1 = (kl) \cdot 1 = (k \cdot 1)(l \cdot 1)$. Since R has no zero divisors, either $k \cdot 1 = 0$ or $l \cdot 1 = 0$. This contradicts the definition of n = char(R).

9.21 Definition: A subring of a ring R is a subset $S \subseteq R$ which is a ring using the same operations used in R. Similarly, a subfield of a field F is a subset $K \subseteq F$ which is also a field using the same operations used in F.

9.22 Theorem: If S be a subset of a ring R, then S is a subring of R if and only if

 $(1) \ 0 \in S,$

(2) S is closed under addition, that is $a + b \in S$ for all $a, b \in S$,

(3) S is closed under multiplication, that is $ab \in S$ for all $a, b \in S$, and

(4) S is closed under additive inverse, that is $-a \in S$ for all $a \in S$.

Similarly, if K is a subset of a field F then K is a subfield of F if and only if

(1) $0 \in K$ and $1 \in K$,

(2) K is closed under addition, that is $a + b \in K$ for all $a, b \in K$,

(3) K is closed under multiplication, that is $ab \in K$ for all $a, b \in K$,

(4) K is closed under additive inverse, that is $-a \in S$ for all $a \in K$, and

(5) K s closed under multiplicative inverse, that is $a^{-1} \in K$ for all $0 \neq a \in F$.

9.23 Example: \mathbb{Z} is a subring of \mathbb{Q} , \mathbb{Q} is a subring of \mathbb{R} , \mathbb{R} is a subring of \mathbb{C} , and \mathbb{C} is a subring of **H**. Also, \mathbb{Q} is a subfield of \mathbb{R} which is a subfield of \mathbb{C} .

9.24 Example: In \mathbb{Z} , the subgroups are of the form $\langle n \rangle = \{kn | k \in \mathbb{Z}\}$ where $0 \leq n \in \mathbb{Z}$. Each of these subgroups is also a subring of \mathbb{Z} . In \mathbb{Z}_n , the subgroups are of the form $\langle d \rangle = \{kd | k \in \mathbb{Z}_{n/d}\}$ where d|n, and each of these subgroups is also a subring.

9.25 Example: In \mathbb{Z}_{12} we have the subring $\langle 3 \rangle = \{0, 3, 6, 9\}$. Notice that $9 \cdot 0 = 0$, $9 \cdot 3 = 3$, $9 \cdot 6 = 6$ and $9 \cdot 9 = 9$, so 9 is the identity element in the group $\langle 3 \rangle$. This example shows that the identity element in a subring of R does not need to be equal to the identity element of R.

9.26 Example: Define

$$\mathbb{Z}[\sqrt{2}] = \left\{ a + b\sqrt{2} | a, b \in \mathbb{Z} \right\}, \text{ and}$$
$$\mathbb{Q}[\sqrt{2}] = \left\{ a + b\sqrt{2} | a, b \in \mathbb{Q} \right\}.$$

Then $\mathbb{Z}[\sqrt{2}]$ is a subring of \mathbb{R} and $\mathbb{Q}[\sqrt{2}]$ is a subring of \mathbb{R} because

 $(a + b\sqrt{2})(c + d\sqrt{2}) = (ac + 2bd) + (ad + bc)\sqrt{2}.$

In fact $\mathbb{Q}[\sqrt{2}]$ is a subfield of \mathbb{R} because for $a, b \in \mathbb{Q}$, if $a + b\sqrt{2} \neq 0$ then $a^2 \neq 2b^2$ and

$$(a+b\sqrt{2})\left(\frac{a}{a^2-2b^2}-\frac{b}{a^2-2b^2}\sqrt{2}\right)=1.$$

9.27 Example: More generally, if R is a subring of S and $A \subseteq S$, then we write R[A] for the smallest subring of S which contains R and A, or equivalently the intersection of all subrings of S which contain $R \cup A$. Some particular cases of this include the subrings

$$\mathbb{Z}[i] = \left\{ a + bi \mid a, b \in \mathbb{Z} \right\} \subseteq \mathbb{C}$$
$$\mathbb{Q}[\alpha] = \left\{ a + b\alpha + c\alpha^2 \mid a, b, c \in \mathbb{Q} \right\} \subseteq \mathbb{C} \text{, where } \alpha = e^{i 2\pi/3}$$
$$\mathbb{Q}[\sqrt{2}, \sqrt{3}] = \left\{ a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} \mid a, b, c, d \in \mathbb{Q} \right\} \subseteq \mathbb{R}.$$

As an exercise, check that these are all rings and that $\mathbb{Q}[\alpha]$ and $\mathbb{Q}[\sqrt{2},\sqrt{3}]$ are fields.

9.28 Example: We sometimes use notation, similar to the notation used in the above example, for some other rings. For example, we write

$$\mathbb{Z}_n[i] = \left\{ a + bi \, \big| \, a, b \in \mathbb{Z}_n \right\}.$$

This is a ring under the operations given by (a + bi) + (c + di) = (a + c) + (b + d)i and (a + bi)(c + di) = (ac - bd) + (ad + bc)i.

9.29 Example: For an interval $A \subseteq \mathbb{R}$, let $\mathcal{C}^0(A, \mathbb{R})$ denote the set of continuous functions $f : A \to \mathbb{R}$, for $k \in \mathbb{Z}^+$ let $\mathcal{C}^k(A, \mathbb{R})$ denote the set of functions $f : A \to \mathbb{R}$ such that the k^{th} derivative $f^{(k)}$ exists and is continuous in A, and let $\mathcal{C}^{\infty}(A, \mathbb{R})$ denote the set of infinitely differentiable functions $f : A \to \mathbb{R}$. Then $\mathcal{C}^{\infty}(A, \mathbb{R})$ is a subring of $\mathcal{C}^k(A, \mathbb{R})$ which is a subring of $\mathcal{C}^0(A, \mathbb{R})$ which, in turn, is a subring of $\text{Func}(A, \mathbb{R})$.

9.30 Example: For a ring R, the polynomial ring R[x] is a subring of the formal power series ring R[[x]]. More generally, $R[x_1, \dots, x_n]$ is a subring of $R[[x_1, \dots, x_n]]$. If S is a subring of R then S[x] is a subring of R[x] and S[[x]] is a subring of R[[x]], and more generally, $S[x_1, \dots, x_n]$ is a subring of $R[x_1, \dots, x_n]$ and $S[[x_1, \dots, x_n]]$ is a subring of $R[x_1, \dots, x_n]$ and $S[[x_1, \dots, x_n]]$ is a subring of $R[x_1, \dots, x_n]$ and $S[[x_1, \dots, x_n]]$ is a subring of $R[[x_1, \dots, x_n]]$. We can regard R as a subring of R[x] by identifying an element $a \in R$ with the corresponding constant polynomial in R[x]. Similarly, we can regard $R[x_1, \dots, x_n]$ as a subring of $R[x_1, \dots, x_n, x_{n+1}]$ and $R[[x_1, \dots, x_n]]$ as a subring of $R[[x_1, \dots, x_n, x_{n+1}]]$.

9.31 Example: Although we can regard the polynomial ring $\mathbb{R}[x]$ as a subring of the ring of functions $\operatorname{Func}(\mathbb{R}, \mathbb{R})$ (since we can regard a polynomial as a kind of function), in general given a ring R we cannot regard R[x] as a subring of $\operatorname{Func}(R, R)$. For example, if R is finite, say with |R| = n, then $|\operatorname{Func}(R, R)| = n^n$ but $|R[x]| = \infty$ (or more precisely $|R[x]| = \aleph_0$).

9.32 Example: For a ring R, the set $T_n(R)$ of upper-triangular matrices with entries in R is a subring of $M_n(R)$. If S is a subring of R then $M_n(S)$ is a subring of $M_n(R)$.

9.33 Definition: For a ring R, we define the **centre** of R to be the ring

$$Z(R) = \{ a \in R | ax = xa \text{ for all } x \in R \}.$$

As an exercise, verify that Z(R) is in fact a subring of R.