1: In each case, determine whether A is an ideal of the ring R.

(a)
$$R = \mathbb{Z} \times \mathbb{Z}, A = \{(k, k) | k \in \mathbb{Z}\}.$$

(b) $R = \operatorname{Func}(\mathbb{R}, \mathbb{R}), A = \left\{f : \mathbb{R} \to \mathbb{R} \middle| \int_0^1 f(x) \, dx = 0\right\}.$
(c) $R = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \middle| a, b, c \in \mathbb{Z} \right\}, A = \left\{ \begin{pmatrix} a & 2b \\ 0 & c \end{pmatrix} \middle| a, b, c \in \mathbb{Z} \right\}.$

- 2: For each of the following quotient rings, list the elements, construct the multiplication table, and determine whether the quotient ring is a field.
 - (a) $3\mathbb{Z}/\langle 12 \rangle$ (b) $\mathbb{Z}_2[x]/\langle x^2 + x + 1 \rangle$
- **3:** Determine the number of elements in the ring $\mathbb{Z}[i]/\langle 2-2i\rangle$.
- 4: Let A and B be ideals in a ring R. One can show that $A \cap B$, $A+B = \{a+b | a \in A, b \in B\}$, and $AB = \{a_1b_1 + \cdots + a_nb_n | a_i \in A, b_i \in B\}$ are ideals of R (you do not need to show this). If $R = \mathbb{Z}$, $A = \langle 12 \rangle$ and $B = \langle 30 \rangle$ then find $A \cap B$, A + B and AB.
- 5: In the ring $\mathbb{Z}[x]$, show that the ideal $\langle x \rangle$ is prime but not maximal.
- 6: (a) Find all the ring homomorphisms from Z₁₂ to Z₂ × Z₆.
 (b) Find all the ring homomorphisms from Z₂ × Z₆ to Z₁₂.
- 7: For each of the following pairs of rings R, and S, determine whether $R \cong S$.
 - (a) $R = \mathbb{Z}_2 \times \mathbb{Z}_2, S = \mathbb{Z}_2[i]$
 - (b) $R = \mathbb{Z}_2 \times \mathbb{Z}_2, S = \mathbb{Z}_2[x]/\langle x^2 + x \rangle$