PMATH 347 Groups and Rings, Solutions to the Exercises for Chapter 10

1: In each case, determine whether A is an ideal of the ring R.
(a) $R=\mathbb{Z} \times \mathbb{Z}, A=\{(k, k) \mid k \in \mathbb{Z}\}$.

Solution: A is a subring but not an ideal, since it is not closed under multiplication by elements of R. For example, $(1,1) \in A$ and $(1,2) \in R$ but $(1,1)(1,2)=(1,2) \notin A$.
(b) $R=\operatorname{Func}(\mathbb{R}, \mathbb{R}), A=\left\{f: \mathbb{R} \rightarrow \mathbb{R} \mid \int_{0}^{1} f(x) d x=0\right\}$.

Solution: A is not even a subring. For example if $f(x)=2 x-1$ then $f \in A$ but $f^{2} \notin A$.
(c) $R=\left\{\left.\left(\begin{array}{cc}a & b \\ 0 & c\end{array}\right) \right\rvert\, a, b, c \in \mathbb{Z}\right\}, A=\left\{\left.\left(\begin{array}{cc}a & 2 b \\ 0 & c\end{array}\right) \right\rvert\, a, b, c \in \mathbb{Z}\right\}$.

Solution: A is a subring but not an ideal. For example $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \in R$ and $\left(\begin{array}{ll}0 & 2 \\ 0 & 1\end{array}\right) \in A$ but $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 2 \\ 0 & 1\end{array}\right)$ $=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \notin A$.

2: For each of the following quotient rings, list the elements, construct the multiplication table, and determine whether the quotient ring is a field.
(a) $3 \mathbb{Z} /\langle 12\rangle$

Solution: $3 \mathbb{Z} /\langle 12\rangle=\{[0],[3],[6],[9]\}$, which we write as $\{0,3,6,9\}$. The multiplication table is

	0	3	6	9
0	0	0	0	0
3	0	9	6	3
6	0	6	0	6
9	0	3	6	9

Since 6 is a zero divisor, $3 \mathbb{Z} /\langle 12\rangle$ is not an integral domain (and hence not a field). (The ring does have an identity, namely 9).
(b) $\mathbb{Z}_{2}[x] /\left\langle x^{2}+x+1\right\rangle$

Solution: $\mathbb{Z}_{2}[x] /\left\langle x^{2}+x+1\right\rangle=\{[0],[1],[x],[1+x]\}$, which we write as $\{0,1, x, 1+x\}$. The multiplication table is

	0	1	x	$1+x$
0	0	0	0	0
1	0	1	x	$1+x$
x	0	x	$1+x$	1
$1+x$	0	$1+x$	1	x

This ring is commutative and has a 1 , and every element has an inverse, so its a field.

3: Determine the number of elements in the ring $\mathbb{Z}[i] /\langle 2-2 i\rangle$.
Solution: $\mathbb{Z}[i] /\langle 2-2 i\rangle$ has 8 elements. The easiest way to see this is to draw a picture. It can also be shown as follows. Since $[2-2 i]=[0]$ we have $[2 i]=[2]$ and so $[2 k i]=[2 k]$ and $[(2 k+1) i]=[2 k+i]$. So we have

$$
[a+b i]=\left\{\begin{array}{l}
{[a+b], \text { if } b \text { is even }} \\
{[(a+b-1)+i], \text { if } b \text { is odd }}
\end{array}\right.
$$

Thus the elements of $\mathbb{Z}[i] /\langle 2-2 i\rangle$ are all of the form $[c]$ or $[c+i]$ for some $c \in \mathbb{Z}$. Also, we have $[2+2 i]=$ $[2-2 i][i]=[0][i]=[0]$, hence $[4]=[2+2 i]+[2-2 i]=[0]+[0]=[0]$, and so $[c]=[c+4 k]$ for all $k \in \mathbb{Z}$. Thus $\mathbb{Z}[i] /\langle 2-2 i\rangle=\{[0],[1],[2],[3],[i],[1+i],[2+i],[3+i]\}$. It remains to show that these 8 elements are all distinct. To do this, let $c, d \in \mathbb{Z}$. We have $[c]=[d] \Longleftrightarrow c-d \in\langle 2-2 i\rangle \Longleftrightarrow c-d=(2-2 i)(x+i y)=2(x+y)+2(y-x) i$ for some $x, y \in \mathbb{Z} \Longleftrightarrow 2(y-x)=0$ and $2(x+y)=c-d$ for some $x, y \in \mathbb{Z} \Longleftrightarrow y=x$ and $4 x=c-d$ for some $x, y \in \mathbb{Z} \Longleftrightarrow c=d$ modulo 4. This shows that the elements [0], [1], [2] and [3] are distinct. Also, we have $[c+i]=[d] \Longleftrightarrow(c+i)-d \in\langle 2-2 i\rangle \Longleftrightarrow(c-d)+i=(2-2 i)(x+i y)=2(x+y)+2(y-x) i$ for some $x, y \in \mathbb{Z} \Longleftrightarrow 2(y-x)=1$ and $2(x+y)=c-d$ for some $x, y \in \mathbb{Z}$, which never occurs, since $2(y-x)$ is even so $2(y-x) \neq 1$. This shows that the elements of the form $[c]$ are all distinct from the elements of the form $[d+i]$. Finally, we have $[c+i]=[d+i] \Longleftrightarrow[c]=[d] \Longleftrightarrow c=d$ modulo 4 . This shows that the elements $[i],[1+i],[2+i]$ and $[3+i]$ are all distinct.

4: Let A and B be ideals in a ring R. One can show that $A \cap B, A+B=\{a+b \mid a \in A, b \in B\}$, and $A B=\left\{a_{1} b_{1}+\cdots+a_{n} b_{n} \mid a_{i} \in A, b_{i} \in B\right\}$ are ideals of R (you do not need to show this). If $R=\mathbb{Z}, A=\langle 12\rangle$ and $B=\langle 30\rangle$ then find $A \cap B, A+B$ and $A B$.
Solution: $x \in\langle k\rangle \cap\langle l\rangle \Longleftrightarrow k \mid x$ and $l|x \Longleftrightarrow \operatorname{lcm}(k, l)| x$, so $\langle k\rangle \cap\langle l\rangle=\langle\operatorname{lcm}(k, l)\rangle$. In particular $\langle 12\rangle \cap\langle 30\rangle=\langle 60\rangle$.

Also, $x \in\langle k\rangle+\langle l\rangle \Longleftrightarrow x=k s+l t$ for somr $s, t \in \mathbb{Z} \Longleftrightarrow \operatorname{gcd}(k, l) \mid x$ (by first year algebra), and so $\langle k\rangle+\langle l\rangle=\langle\operatorname{gcd}(k, l)\rangle$. In particular, $\langle 12\rangle+\langle 30\rangle=\langle 6\rangle$.

Finally, we have $x \in\langle k\rangle\langle l\rangle \Longleftrightarrow x=a_{1} b_{1}+\cdots+a_{n} b_{n}$ for some $n \in \mathbb{Z}, a_{i} \in\langle k\rangle$ and $b_{i} \in\langle l\rangle \Longleftrightarrow$ $x=\left(k s_{1}\right)\left(l t_{1}\right)+\cdots+\left(k s_{n}\right)\left(l t_{n}\right)$ for some $n, s_{i}, t_{i} \in \mathbb{Z} \Longleftrightarrow x=r_{1} k l+\cdots+r_{n} k l$ for some $n, r_{i} \in \mathbb{Z} \Longleftrightarrow$ $x=r k l$ for some $r \in \mathbb{Z}$, and so $\langle k\rangle\langle l\rangle=\langle k l\rangle$. In particular $\langle 12\rangle\langle 30\rangle=\langle 360\rangle$.

5: In the ring $\mathbb{Z}[x]$, show that the ideal $\langle x\rangle$ is prime but not maximal.
Solution: Note first that $\langle x\rangle=\{f \in \mathbb{Z}[x] \mid f(0)=0\}$. The ideal $\langle x\rangle$ is prime, because for $f, g \in \mathbb{Z}[x]$ we have $f g \in\langle x\rangle \Longrightarrow(f g)(0)=0 \Longrightarrow f(0) g(0)=0 \Longrightarrow f(0)=0$ or $g(0)=0 \Longrightarrow f \in\langle x\rangle$ or $g \in\langle x\rangle$. On the other hand, $\langle x\rangle$ is not maximal since for any integer $n \geq 2$, the set $A_{n}=\{f \in \mathbb{Z}[x] \mid f(0) \in n \mathbb{Z}\}$ is an ideal of $\mathbb{Z}[x]$ which properly contains $\langle x\rangle$.

6: (a) Find all the ring homomorphisms from \mathbb{Z}_{12} to $\mathbb{Z}_{2} \times \mathbb{Z}_{6}$.
Solution: We know that the ring homomorphisms are of the form $\phi(k)=(k a, k b)$, where $(a, b) \in \mathbb{Z}_{2} \times \mathbb{Z}_{6}$ with $\left(a^{2}, b^{2}\right)=(a, b)$ and $(12 a, 12 b)=0$. In $\mathbb{Z}_{2} \times \mathbb{Z}_{6}$, we always have $(12 a, 12 b)=0$. In \mathbb{Z}_{2} we have $0^{2}=0$ and $1^{2}=1$. In \mathbb{Z}_{6} we have $0^{2}=0,1^{2}=1,2^{2}=4 \neq 2,3^{2}=3,4^{2}=4$, and $5^{2}=1 \neq 5$. Thus there are 8 ring homomorphisms $\phi: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{6}$, namely $\phi(k)=(k a, k b)$, where $a=0,1$ and $b=0,1,3,4$.
(b) Find all the ring homomorphisms from $\mathbb{Z}_{2} \times \mathbb{Z}_{6}$ to \mathbb{Z}_{12}.

Solution: Suppose that $\phi: \mathbb{Z}_{m} \times \mathbb{Z}_{n} \rightarrow R$ is a ring homomorphism, where $m, n \in \mathbb{Z}$ and R is any ring. Say $\phi(1,0)=a$ and $\phi(0,1)=b$. Then ϕ is given by $\phi(k, l)=\phi(k(1,0)+l(0,1))=k \phi(1,0)+l \phi(0,1)=k a+l b$. Note that we must have $m a=m \phi(1,0)=\phi(m(1,0))=\phi(0,0)=0$, and similarly $n b=0$. Also we must have $a^{2}=(\phi(1,0))^{2}=\phi\left((1,0)^{2}\right)=\phi(1,0)=a$, and similarly we must have $b^{2}=b$. Thirdly, we must have $a b=\phi(1,0) \phi(0,1)=\phi((1,0)(0,1))=\phi(0,0)=0$, and similarly we must have $b a=0$. Conversely, check that if $m a=0$ and $n b=0$ then the $\operatorname{map} \phi(k . l)=k a+l b$ is well defined and preserves addition, and that if $a^{2}=a$ and $b^{2}=b$ and $a b=b a=0$ then the map ϕ preserves multiplication. In particular, the ring homomorphisms $\phi: \mathbb{Z}_{2} \times \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{12}$ are given by $\phi(k, l)=k a+l b$, where $a, b \in \mathbb{Z}_{12}$ satisfy $2 a=0,6 b=0, a^{2}=a, b^{2}=b$, and $a b=b a=0$. Check that $a=0$ and $b=0$ or 4 , so there are two ring homomorphisms.

7: For each of the following pairs of rings R, and S, determine whether $R \cong S$.
(a) $R=\mathbb{Z}_{2} \times \mathbb{Z}_{2}, S=\mathbb{Z}_{2}[i]$

Solution: Note first that for any rings R and S, if $\phi: R \rightarrow S$ is a ring isomorphism, then we have $a b=0 \in$ $R \Longleftrightarrow \phi(a) \phi(b)=0 \in S, a b=1 \in R \Longleftrightarrow \phi(a) \phi(b)=1 \in S$ and also $a^{2}=a \in R \Longleftrightarrow \phi(a)^{2}=\phi(a) \in S$. This shows that if $R \cong S$ then R and S must have the same number of zero divisors, units, and idempotents. Check that $Z_{2} \times \mathbb{Z}_{2}$ has 2 zero divisors (namely (1,0) and (0,1)), 1 unit (namely (1,1)) and 4 idempotents. Check, on the other hand, that $\mathbb{Z}_{2}[i]$ has 1 zero divisor (namely $1+i$), 2 units (namely 1 and i), and 2 idempotents (namely 0 and 1). Thus $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is not isomorphic to $\mathbb{Z}_{2}[i]$.
(b) $R=\mathbb{Z}_{2} \times \mathbb{Z}_{2}, S=\mathbb{Z}_{2}[x] /\left\langle x^{2}+x\right\rangle$

Solution: Define $\phi: \mathbb{Z}_{2} \times \mathbb{Z}_{2} \rightarrow \mathbb{Z}[x] /\left\langle x^{2}+x\right\rangle$ by $\phi(0,0)=0, \phi(1,0)=x, \phi(0,1)=1+x$ and $\phi(1,1)=1$. Check that ϕ is an isomorphism by writing out the addition and multiplication tables for R and S.

