
PMATH 347 Groups and Rings, Solutions to the Exercises for Chapter 10

1: In each case, determine whether A is an ideal of the ring R.

(a) R = Z× Z, A = {(k, k)|k ∈ Z}.
Solution: A is a subring but not an ideal, since it is not closed under multiplication by elements of R. For
example, (1, 1) ∈ A and (1, 2) ∈ R but (1, 1)(1, 2) = (1, 2) /∈ A.

(b) R = Func(R,R), A =
{
f : R→ R

∣∣∣∫ 1

0
f(x) dx = 0

}
.

Solution: A is not even a subring. For example if f(x) = 2x− 1 then f ∈ A but f2 /∈ A.

(c) R =

{(
a b
0 c

) ∣∣∣a, b, c ∈ Z
}

, A =

{(
a 2b
0 c

) ∣∣∣a, b, c ∈ Z
}

.

Solution: A is a subring but not an ideal. For example

(
0 1
0 0

)
∈ R and

(
0 2
0 1

)
∈ A but

(
0 1
0 0

)(
0 2
0 1

)
=

(
0 1
0 0

)
/∈ A.

2: For each of the following quotient rings, list the elements, construct the multiplication table, and determine
whether the quotient ring is a field.

(a) 3Z/〈12〉
Solution: 3Z/〈12〉 = {[0], [3], [6], [9]}, which we write as {0, 3, 6, 9}. The multiplication table is

0 3 6 9
0 0 0 0 0
3 0 9 6 3
6 0 6 0 6
9 0 3 6 9

Since 6 is a zero divisor, 3Z/〈12〉 is not an integral domain (and hence not a field). (The ring does have an
identity, namely 9).

(b) Z2[x]/〈x2 + x+ 1〉
Solution: Z2[x]/〈x2 + x + 1〉 = {[0], [1], [x], [1 + x]}, which we write as {0, 1, x, 1 + x}. The multiplication
table is

0 1 x 1 + x
0 0 0 0 0
1 0 1 x 1 + x
x 0 x 1 + x 1

1 + x 0 1 + x 1 x

This ring is commutative and has a 1, and every element has an inverse, so its a field.



3: Determine the number of elements in the ring Z[i]/〈2− 2i〉.
Solution: Z[i]/〈2− 2i〉 has 8 elements. The easiest way to see this is to draw a picture. It can also be shown
as follows. Since [2− 2i] = [0] we have [2i] = [2] and so [2ki] = [2k] and [(2k + 1)i] = [2k + i]. So we have

[a+ bi] =

{
[a+ b] , if b is even

[(a+ b− 1) + i] , if b is odd

Thus the elements of Z[i]/〈2− 2i〉 are all of the form [c] or [c + i] for some c ∈ Z. Also, we have [2 + 2i] =
[2− 2i][i] = [0][i] = [0], hence [4] = [2 + 2i] + [2− 2i] = [0] + [0] = [0], and so [c] = [c+ 4k] for all k ∈ Z. Thus
Z[i]/〈2−2i〉 = {[0], [1], [2], [3], [i], [1+i], [2+i], [3+i]}. It remains to show that these 8 elements are all distinct.
To do this, let c, d ∈ Z. We have [c] = [d] ⇐⇒ c−d ∈ 〈2−2i〉 ⇐⇒ c−d = (2−2i)(x+iy) = 2(x+y)+2(y−x)i
for some x, y ∈ Z ⇐⇒ 2(y − x) = 0 and 2(x+ y) = c− d for some x, y ∈ Z ⇐⇒ y = x and 4x = c− d for
some x, y ∈ Z ⇐⇒ c = d modulo 4. This shows that the elements [0], [1], [2] and [3] are distinct. Also, we
have [c+ i] = [d] ⇐⇒ (c+ i)− d ∈ 〈2− 2i〉 ⇐⇒ (c− d) + i = (2− 2i)(x+ iy) = 2(x+ y) + 2(y − x)i for
some x, y ∈ Z ⇐⇒ 2(y − x) = 1 and 2(x+ y) = c− d for some x, y ∈ Z, which never occurs, since 2(y − x)
is even so 2(y − x) 6= 1. This shows that the elements of the form [c] are all distinct from the elements of
the form [d+ i]. Finally, we have [c+ i] = [d+ i] ⇐⇒ [c] = [d] ⇐⇒ c = d modulo 4. This shows that the
elements [i], [1 + i], [2 + i] and [3 + i] are all distinct.

4: Let A and B be ideals in a ring R. One can show that A ∩ B, A + B = {a + b|a ∈ A, b ∈ B}, and
AB = {a1b1 + · · ·+ anbn|ai ∈ A, bi ∈ B} are ideals of R (you do not need to show this). If R = Z, A = 〈12〉
and B = 〈30〉 then find A ∩B, A+B and AB.

Solution: x ∈ 〈k〉 ∩ 〈l〉 ⇐⇒ k
∣∣x and l

∣∣x ⇐⇒ lcm(k, l)
∣∣x, so 〈k〉 ∩ 〈l〉 = 〈lcm(k, l)〉. In particular

〈12〉 ∩ 〈30〉 = 〈60〉.
Also, x ∈ 〈k〉 + 〈l〉 ⇐⇒ x = ks + lt for somr s, t ∈ Z ⇐⇒ gcd(k, l)

∣∣x (by first year algebra), and so
〈k〉+ 〈l〉 = 〈gcd(k, l)〉. In particular, 〈12〉+ 〈30〉 = 〈6〉.

Finally, we have x ∈ 〈k〉〈l〉 ⇐⇒ x = a1b1 + · · · + anbn for some n ∈ Z, ai ∈ 〈k〉 and bi ∈ 〈l〉 ⇐⇒
x = (k s1)(l t1) + · · ·+ (k sn)(l tn) for some n, si, ti ∈ Z ⇐⇒ x = r1kl + · · ·+ rnkl for some n, ri ∈ Z ⇐⇒
x = r kl for some r ∈ Z, and so 〈k〉〈l〉 = 〈kl〉. In particular 〈12〉〈30〉 = 〈360〉.

5: In the ring Z[x], show that the ideal 〈x〉 is prime but not maximal.

Solution: Note first that 〈x〉 =
{
f ∈ Z[x]

∣∣f(0) = 0
}

. The ideal 〈x〉 is prime, because for f, g ∈ Z[x] we have
fg ∈ 〈x〉 =⇒ (fg)(0) = 0 =⇒ f(0)g(0) = 0 =⇒ f(0) = 0 or g(0) = 0 =⇒ f ∈ 〈x〉 or g ∈ 〈x〉. On the other
hand, 〈x〉 is not maximal since for any integer n ≥ 2, the set An =

{
f ∈ Z[x]

∣∣f(0) ∈ nZ
}

is an ideal of Z[x]
which properly contains 〈x〉.

6: (a) Find all the ring homomorphisms from Z12 to Z2 × Z6.

Solution: We know that the ring homomorphisms are of the form φ(k) = (ka, kb), where (a, b) ∈ Z2 × Z6

with (a2, b2) = (a, b) and (12a, 12b) = 0. In Z2 × Z6, we always have (12a, 12b) = 0. In Z2 we have 02 = 0
and 12 = 1. In Z6 we have 02 = 0, 12 = 1, 22 = 4 6= 2, 32 = 3, 42 = 4, and 52 = 1 6= 5. Thus there are 8 ring
homomorphisms φ : Z12 → Z2 × Z6, namely φ(k) = (ka, kb), where a = 0, 1 and b = 0, 1, 3, 4.

(b) Find all the ring homomorphisms from Z2 × Z6 to Z12.

Solution: Suppose that φ : Zm × Zn → R is a ring homomorphism, where m,n ∈ Z and R is any ring. Say
φ(1, 0) = a and φ(0, 1) = b. Then φ is given by φ(k, l) = φ

(
k(1, 0) + l(0, 1)

)
= kφ(1, 0) + lφ(0, 1) = ka+ lb.

Note that we must have ma = mφ(1, 0) = φ
(
m(1, 0)

)
= φ(0, 0) = 0, and similarly nb = 0. Also we must

have a2 =
(
φ(1, 0)

)2
= φ

(
(1, 0)2

)
= φ(1, 0) = a, and similarly we must have b2 = b. Thirdly, we must have

ab = φ(1, 0)φ(0, 1) = φ
(
(1, 0)(0, 1)

)
= φ(0, 0) = 0, and similarly we must have ba = 0. Conversely, check that

if ma = 0 and nb = 0 then the map φ(k.l) = ka+ lb is well defined and preserves addition, and that if a2 = a
and b2 = b and ab = ba = 0 then the map φ preserves multiplication. In particular, the ring homomorphisms
φ : Z2 ×Z6 → Z12 are given by φ(k, l) = ka+ lb, where a, b ∈ Z12 satisfy 2a = 0, 6b = 0, a2 = a, b2 = b, and
ab = ba = 0. Check that a = 0 and b = 0 or 4, so there are two ring homomorphisms.



7: For each of the following pairs of rings R, and S, determine whether R ∼= S.

(a) R = Z2 × Z2, S = Z2[i]

Solution: Note first that for any rings R and S, if φ : R → S is a ring isomorphism, then we have ab = 0 ∈
R ⇐⇒ φ(a)φ(b) = 0 ∈ S, ab = 1 ∈ R ⇐⇒ φ(a)φ(b) = 1 ∈ S and also a2 = a ∈ R ⇐⇒ φ(a)2 = φ(a) ∈ S.
This shows that if R ∼= S then R and S must have the same number of zero divisors, units, and idempotents.
Check that Z2 × Z2 has 2 zero divisors (namely (1,0) and (0,1)), 1 unit (namely (1,1)) and 4 idempotents.
Check, on the other hand, that Z2[i] has 1 zero divisor (namely 1 + i), 2 units (namely 1 and i), and 2
idempotents (namely 0 and 1). Thus Z2 × Z2 is not isomorphic to Z2[i].

(b) R = Z2 × Z2, S = Z2[x]/〈x2 + x〉
Solution: Define φ : Z2 × Z2 → Z[x]/〈x2 + x〉 by φ(0, 0) = 0, φ(1, 0) = x, φ(0, 1) = 1 + x and φ(1, 1) = 1.
Check that φ is an isomorphism by writing out the addition and multiplication tables for R and S.


