PMATH 347 Groups and Rings, Solutions to the Exercises for Chapter 10

- 1: In each case, determine whether A is an ideal of the ring R.
 - (a) $R = \mathbb{Z} \times \mathbb{Z}, A = \{(k,k) | k \in \mathbb{Z}\}.$

Solution: A is a subring but not an ideal, since it is not closed under multiplication by elements of R. For example, $(1,1) \in A$ and $(1,2) \in R$ but $(1,1)(1,2) = (1,2) \notin A$.

(b) $R = \operatorname{Func}(\mathbb{R}, \mathbb{R}), A = \Big\{ f : \mathbb{R} \to \mathbb{R} \Big| \int_0^1 f(x) \, dx = 0 \Big\}.$

Solution: A is not even a subring. For example if f(x) = 2x - 1 then $f \in A$ but $f^2 \notin A$.

(c)
$$R = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \middle| a, b, c \in \mathbb{Z} \right\}, A = \left\{ \begin{pmatrix} a & 2b \\ 0 & c \end{pmatrix} \middle| a, b, c \in \mathbb{Z} \right\}.$$

Solution: A is a subring but not an ideal. For example $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in R$ and $\begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix} \in A$ but $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix}$

$$= \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \notin A.$$

2: For each of the following quotient rings, list the elements, construct the multiplication table, and determine whether the quotient ring is a field.

(a) $3\mathbb{Z}/\langle 12 \rangle$

Solution: $3\mathbb{Z}/\langle 12 \rangle = \{[0], [3], [6], [9]\}$, which we write as $\{0, 3, 6, 9\}$. The multiplication table is

	0	3	6	9
0	0	0	0	0
3	0	9	6	3
6	0	6	0	6
9	0	3	6	9

Since 6 is a zero divisor, $3\mathbb{Z}/\langle 12 \rangle$ is not an integral domain (and hence not a field). (The ring does have an identity, namely 9).

(b)
$$\mathbb{Z}_2[x]/\langle x^2 + x + 1 \rangle$$

Solution: $\mathbb{Z}_2[x]/\langle x^2 + x + 1 \rangle = \{[0], [1], [x], [1 + x]\},$ which we write as $\{0, 1, x, 1 + x\}$. The multiplication table is

	0	1	x	1+x
0	0	0	0	0
1	0	1	x	1+x
x	0	x	1+x	1
1+x	0	1+x	1	x

This ring is commutative and has a 1, and every element has an inverse, so its a field.

3: Determine the number of elements in the ring $\mathbb{Z}[i]/\langle 2-2i\rangle$.

Solution: $\mathbb{Z}[i]/\langle 2-2i\rangle$ has 8 elements. The easiest way to see this is to draw a picture. It can also be shown as follows. Since [2-2i] = [0] we have [2i] = [2] and so [2ki] = [2k] and [(2k+1)i] = [2k+i]. So we have

$$[a+bi] = \begin{cases} [a+b] & \text{, if } b \text{ is even} \\ [(a+b-1)+i] & \text{, if } b \text{ is odd} \end{cases}$$

Thus the elements of $\mathbb{Z}[i]/\langle 2-2i\rangle$ are all of the form [c] or [c+i] for some $c \in \mathbb{Z}$. Also, we have [2+2i] = [2-2i][i] = [0][i] = [0], hence [4] = [2+2i] + [2-2i] = [0] + [0] = [0], and so [c] = [c+4k] for all $k \in \mathbb{Z}$. Thus $\mathbb{Z}[i]/\langle 2-2i\rangle = \{[0], [1], [2], [3], [i], [1+i], [2+i], [3+i]\}$. It remains to show that these 8 elements are all distinct. To do this, let $c, d \in \mathbb{Z}$. We have $[c] = [d] \iff c-d \in \langle 2-2i\rangle \iff c-d = (2-2i)(x+iy) = 2(x+y)+2(y-x)i$ for some $x, y \in \mathbb{Z} \iff 2(y-x) = 0$ and 2(x+y) = c-d for some $x, y \in \mathbb{Z} \iff y = x$ and 4x = c-d for some $x, y \in \mathbb{Z} \iff c = d$ modulo 4. This shows that the elements [0], [1], [2] and [3] are distinct. Also, we have $[c+i] = [d] \iff (c+i) - d \in \langle 2-2i\rangle \iff (c-d) + i = (2-2i)(x+iy) = 2(x+y) + 2(y-x)i$ for some $x, y \in \mathbb{Z} \iff 2(y-x) = 1$ and 2(x+y) = c-d for some $x, y \in \mathbb{Z}$, which never occurs, since 2(y-x) is even so $2(y-x) \neq 1$. This shows that the elements of the form [c] are all distinct from the elements of the form [d+i]. Finally, we have $[c+i] = [d+i] \iff [c] = [d] \iff c = d$ modulo 4. This shows that the elements [c] are all distinct from the elements of the form [d+i]. Finally, we have $[c+i] = [d+i] \iff [c] = [d] \iff c = d$ modulo 4. This shows that the elements [c] are all distinct from the elements of the form [d+i]. Finally, we have $[c+i] = [d+i] \iff [c] = [d] \iff c = d$ modulo 4. This shows that the elements $[c] = [d] \iff c = d$ modulo 4. This shows that the elements of the form [c] are all distinct from the elements of the form [d+i]. Finally, we have $[c+i] = [d+i] \iff [c] = [d] \iff c = d$ modulo 4. This shows that the elements [i], [1+i], [2+i] and [3+i] are all distinct.

4: Let A and B be ideals in a ring R. One can show that $A \cap B$, $A + B = \{a + b | a \in A, b \in B\}$, and $AB = \{a_1b_1 + \cdots + a_nb_n | a_i \in A, b_i \in B\}$ are ideals of R (you do not need to show this). If $R = \mathbb{Z}$, $A = \langle 12 \rangle$ and $B = \langle 30 \rangle$ then find $A \cap B$, A + B and AB.

Solution: $x \in \langle k \rangle \cap \langle l \rangle \iff k | x \text{ and } l | x \iff \operatorname{lcm}(k, l) | x, \text{ so } \langle k \rangle \cap \langle l \rangle = \langle \operatorname{lcm}(k, l) \rangle$. In particular $\langle 12 \rangle \cap \langle 30 \rangle = \langle 60 \rangle$.

Also, $x \in \langle k \rangle + \langle l \rangle \iff x = ks + lt$ for somr $s, t \in \mathbb{Z} \iff \gcd(k, l) | x$ (by first year algebra), and so $\langle k \rangle + \langle l \rangle = \langle \gcd(k, l) \rangle$. In particular, $\langle 12 \rangle + \langle 30 \rangle = \langle 6 \rangle$.

Finally, we have $x \in \langle k \rangle \langle l \rangle \iff x = a_1 b_1 + \dots + a_n b_n$ for some $n \in \mathbb{Z}$, $a_i \in \langle k \rangle$ and $b_i \in \langle l \rangle \iff x = (k s_1)(l t_1) + \dots + (k s_n)(l t_n)$ for some $n, s_i, t_i \in \mathbb{Z} \iff x = r_1 k l + \dots + r_n k l$ for some $n, r_i \in \mathbb{Z} \iff x = r k l$ for some $r \in \mathbb{Z}$, and so $\langle k \rangle \langle l \rangle = \langle k l \rangle$. In particular $\langle 12 \rangle \langle 30 \rangle = \langle 360 \rangle$.

5: In the ring $\mathbb{Z}[x]$, show that the ideal $\langle x \rangle$ is prime but not maximal.

Solution: Note first that $\langle x \rangle = \{f \in \mathbb{Z}[x] | f(0) = 0\}$. The ideal $\langle x \rangle$ is prime, because for $f, g \in \mathbb{Z}[x]$ we have $fg \in \langle x \rangle \Longrightarrow (fg)(0) = 0 \Longrightarrow f(0)g(0) = 0 \Longrightarrow f(0) = 0$ or $g(0) = 0 \Longrightarrow f \in \langle x \rangle$ or $g \in \langle x \rangle$. On the other hand, $\langle x \rangle$ is not maximal since for any integer $n \ge 2$, the set $A_n = \{f \in \mathbb{Z}[x] | f(0) \in n\mathbb{Z}\}$ is an ideal of $\mathbb{Z}[x]$ which properly contains $\langle x \rangle$.

6: (a) Find all the ring homomorphisms from \mathbb{Z}_{12} to $\mathbb{Z}_2 \times \mathbb{Z}_6$.

Solution: We know that the ring homomorphisms are of the form $\phi(k) = (ka, kb)$, where $(a, b) \in \mathbb{Z}_2 \times \mathbb{Z}_6$ with $(a^2, b^2) = (a, b)$ and (12a, 12b) = 0. In $\mathbb{Z}_2 \times \mathbb{Z}_6$, we always have (12a, 12b) = 0. In \mathbb{Z}_2 we have $0^2 = 0$ and $1^2 = 1$. In \mathbb{Z}_6 we have $0^2 = 0$, $1^2 = 1$, $2^2 = 4 \neq 2$, $3^2 = 3$, $4^2 = 4$, and $5^2 = 1 \neq 5$. Thus there are 8 ring homomorphisms $\phi : \mathbb{Z}_{12} \to \mathbb{Z}_2 \times \mathbb{Z}_6$, namely $\phi(k) = (ka, kb)$, where a = 0, 1 and b = 0, 1, 3, 4.

(b) Find all the ring homomorphisms from $\mathbb{Z}_2 \times \mathbb{Z}_6$ to \mathbb{Z}_{12} .

Solution: Suppose that $\phi : \mathbb{Z}_m \times \mathbb{Z}_n \to R$ is a ring homomorphism, where $m, n \in \mathbb{Z}$ and R is any ring. Say $\phi(1,0) = a$ and $\phi(0,1) = b$. Then ϕ is given by $\phi(k,l) = \phi(k(1,0) + l(0,1)) = k\phi(1,0) + l\phi(0,1) = ka + lb$. Note that we must have $ma = m\phi(1,0) = \phi(m(1,0)) = \phi(0,0) = 0$, and similarly nb = 0. Also we must have $a^2 = (\phi(1,0))^2 = \phi((1,0)^2) = \phi(1,0) = a$, and similarly we must have $b^2 = b$. Thirdly, we must have $ab = \phi(1,0)\phi(0,1) = \phi((1,0)(0,1)) = \phi(0,0) = 0$, and similarly we must have ba = 0. Conversely, check that if ma = 0 and nb = 0 then the map $\phi(k,l) = ka + lb$ is well defined and preserves addition, and that if $a^2 = a$ and $b^2 = b$ and ab = ba = 0 then the map ϕ preserves multiplication. In particular, the ring homomorphisms $\phi : \mathbb{Z}_2 \times \mathbb{Z}_6 \to \mathbb{Z}_{12}$ are given by $\phi(k,l) = ka + lb$, where $a, b \in \mathbb{Z}_{12}$ satisfy 2a = 0, 6b = 0, $a^2 = a$, $b^2 = b$, and ab = ba = 0. Check that a = 0 and b = 0 or 4, so there are two ring homomorphisms. **7:** For each of the following pairs of rings R, and S, determine whether $R \cong S$.

(a)
$$R = \mathbb{Z}_2 \times \mathbb{Z}_2, S = \mathbb{Z}_2[i]$$

Solution: Note first that for any rings R and S, if $\phi: R \to S$ is a ring isomorphism, then we have $ab = 0 \in R \iff \phi(a)\phi(b) = 0 \in S$, $ab = 1 \in R \iff \phi(a)\phi(b) = 1 \in S$ and also $a^2 = a \in R \iff \phi(a)^2 = \phi(a) \in S$. This shows that if $R \cong S$ then R and S must have the same number of zero divisors, units, and idempotents. Check that $Z_2 \times \mathbb{Z}_2$ has 2 zero divisors (namely (1,0) and (0,1)), 1 unit (namely (1,1)) and 4 idempotents. Check, on the other hand, that $\mathbb{Z}_2[i]$ has 1 zero divisor (namely 1 + i), 2 units (namely 1 and i), and 2 idempotents (namely 0 and 1). Thus $\mathbb{Z}_2 \times \mathbb{Z}_2$ is not isomorphic to $\mathbb{Z}_2[i]$.

(b)
$$R = \mathbb{Z}_2 \times \mathbb{Z}_2, S = \mathbb{Z}_2[x]/\langle x^2 + x \rangle$$

Solution: Define $\phi : \mathbb{Z}_2 \times \mathbb{Z}_2 \to \mathbb{Z}[x]/\langle x^2 + x \rangle$ by $\phi(0,0) = 0$, $\phi(1,0) = x$, $\phi(0,1) = 1 + x$ and $\phi(1,1) = 1$. Check that ϕ is an isomorphism by writing out the addition and multiplication tables for R and S.