PMATH 347 Groups and Rings, Solutions to the Exercises for Chapter 11

1: (a) Find all the units in $\mathbb{Z}\left[\frac{1}{2}+\frac{\sqrt{3}}{2} i\right]$.
Solution: It helps to draw a picture of $\mathbb{Z}\left[\frac{1}{2}+\frac{\sqrt{3}}{2} i\right]=\left\{\left.k+l\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right) \right\rvert\, k, l \in \mathbb{Z}\right\}$. Let a be a unit in $\mathbb{Z}\left[\frac{1}{2}+\frac{\sqrt{3}}{2} i\right]$, say $a b=1$. Then $|a||b|=|a b|=1$. Since there are no elements $b \in \mathbb{Z}\left[\frac{1}{2}+\frac{\sqrt{3}}{2} i\right]$ with $0<|b|<1$, we see that $|a|=1$. The only elements a in $\mathbb{Z}\left[\frac{1}{2}+\frac{\sqrt{3}}{2} i\right]$ with $|a|=1$ are $a= \pm 1$ and $a= \pm \frac{1}{2} \pm \frac{\sqrt{3}}{2} i$, and all 6 of these are units.
(b) Find 10 units in $\mathbb{Z}[\sqrt{3}]$.

Solution: Recall that $a=k+l \sqrt{3}$ is a unit in $\mathbb{Z}[\sqrt{3}]$ when $N(a)=\left|k^{2}-3 l^{2}\right|=1$. We easily see that $a= \pm 1$ and $a= \pm 2 \pm \sqrt{3}$ are units. One can find more units by trial and error. A nicer way is to note that if a is a unit in a commutative ring, then so is a^{n} for $n \in \mathbb{Z}_{+}$since $a b=1 \Longrightarrow a^{n} b^{n}=1$. In this way we obtain infinitely many units. For example, $(2+\sqrt{3})^{2}=7+4 \sqrt{3}$ is another unit as are the elements $\pm 7 \pm 4 \sqrt{3}$.

2: Determine which of the following elements are irreducible in $\mathbb{Z}[\sqrt{3} i]$.
(a) $3+2 \sqrt{3} i$

Solution: Let $a=3+2 \sqrt{3} i$. Then $N(a)=21$, so if $a=b c$ where b and c are not units then we may suppose $N(b)=3$ and $N(c)=7$, that is $|b|=\sqrt{3}$ and $|c|=\sqrt{7}$. A picture of $\mathbb{Z}[\sqrt{3} i]$ shows that $b= \pm \sqrt{3}$ and $c= \pm 2 \pm \sqrt{3} i$. And indeed we can take $b=\sqrt{3} i$ and $c=2-\sqrt{3} i$ to get $a=b c$, so a is reducible.
(b) $2+3 \sqrt{3} i$

Solution: $N(2+3 \sqrt{3} i)=31$ which is prime, so $2+3 \sqrt{3} i$ is irreducible.
(c) 5

Solution: $N(5)=25$, so if $5=b c$ where b and c are not units then $N(b)=N(c)=5$, that is $|b|=|c|=5$. A picture of $\mathbb{Z}[\sqrt{3} i]$ shows that there are no such elements b, c, so 5 is irreducible.
(d) 7

Solution: $N(7)=49$, so if $7=b c$ where b and c are not units then $|b|=|c|=\sqrt{7}$. A picture shows that $b, c= \pm 2 \pm \sqrt{3} i$. Indeed, we can take $b=2-\sqrt{3} i$ and $c=2+\sqrt{3} i$ and we have $b c=7$. So 7 is reducible.

3: (a) Show that $2+\sqrt{5} i$ is irreducible but not prime in $\mathbb{Z}[\sqrt{5} i]$.
Solution: Let $a=2+\sqrt{5} i$. Then $N(a)=9$. If $a=b c$ where b and c are not units, then $N(b)=N(c)=9$ and so $|b|=|c|=3$. A picture of $\mathbb{Z}[\sqrt{5} i]$ shows that the only possible values of b and c are ± 3 so we cannot have $b c=a$. Thus a is irreducible. On the other hand, a is prime because $a(2-\sqrt{5} i)=9=3 \cdot 3$ so a divides $3 \cdot 3$ but a does not divide 3 in $\mathbb{Z}[\sqrt{5} i]$ (since $a / 3 \notin \mathbb{Z}[\sqrt{5} i]$).
(b) Draw a picture of each of the ideals $\langle 2\rangle,\langle 1+\sqrt{3} i\rangle$ and $\langle 2,1+\sqrt{3} i\rangle$ in $\mathbb{Z}[\sqrt{3} i]$.

Solution: We have $\langle 2\rangle=\{2(k+l \sqrt{3} i) \mid k, l \in \mathbb{Z}\}=\{k(2)+l(2 \sqrt{3} i) \mid k, l \in \mathbb{Z}\}=\operatorname{Span}_{\mathbb{Z}}\left\{\binom{2}{0},\binom{0}{2 \sqrt{3}}\right\}$, and $\langle 1+\sqrt{3} i\rangle=\{(1+\sqrt{3} i)(k+l \sqrt{3} i) \mid k, l \in \mathbb{Z}\}=\{k(1+\sqrt{3} i)+l(-3+\sqrt{3} i) \mid k, l \in \mathbb{Z}\}=\operatorname{Span}_{\mathbb{Z}}\left\{\binom{1}{\sqrt{3}},\binom{-3}{\sqrt{3}}\right\}$. Let $I=\langle 2,1+\sqrt{3} i\rangle$. Since $2 \in I$ and $1+\sqrt{3} \in I$ and I is closed under + , we must have $J \subset I$ where $J=\{k(2)+l(1+\sqrt{3} i) \mid k, l \in \mathbb{Z}\}=\operatorname{Span}_{\mathbb{Z}}\left\{\binom{2}{0},\binom{1}{\sqrt{3}}\right\}$. This set J is an ideal since it is closed under multiplication by elements of the ring: $(k(2)+l(1+\sqrt{3} i))(m+n \sqrt{3} i)=k m 2+\ln \sqrt{3} i-3 \ln =$ $(k m-2 l n)(2)+\ln (1+\sqrt{3} i)$. Thus $I=J$.

4: (a) Determine whether the set $\left\{\left(\begin{array}{ll}2 & 1 \\ 3 & 1\end{array}\right),\left(\begin{array}{ll}4 & 1 \\ 1 & 2\end{array}\right),\left(\begin{array}{ll}3 & 1 \\ 2 & 4\end{array}\right)\right\}$ is linearly independent in $M_{2}\left(\mathbb{Z}_{5}\right)$. Solution: Row reduce $\left(\begin{array}{lll}2 & 4 & 3 \\ 1 & 1 & 1 \\ 3 & 1 & 2 \\ 1 & 2 & 4\end{array}\right)$ over \mathbb{Z}_{5} to get $\left(\begin{array}{ccc}1 & 0 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$. The last column has no pivot, so they are not linearly independent; indeed from the reduced matrix we see that $\left(\begin{array}{ll}3 & 1 \\ 2 & 4\end{array}\right)=3\left(\begin{array}{ll}2 & 1 \\ 3 & 1\end{array}\right)+3\left(\begin{array}{ll}4 & 1 \\ 1 & 2\end{array}\right)$.
(b) Find the line of intersection of the planes $x+3 y+z=1$ and $2 x+y+4 z=1$ in $\left(\mathbb{Z}_{5}\right)^{3}$.

Solution: Row reduce $\left(\begin{array}{lll|l}1 & 3 & 1 & 1 \\ 2 & 1 & 4 & 1\end{array}\right)$ over \mathbb{Z}_{5} to get $\left(\begin{array}{lll|l}1 & 3 & 0 & 4 \\ 0 & 0 & 1 & 2\end{array}\right)$. Thus $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}4 \\ 0 \\ 2\end{array}\right)+t\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$.
(c) How many invertible matrices are there in $M_{2}\left(\mathbb{Z}_{2}\right)$?

Solution: The first row can be any row other than $(0,0)$, so there are 3 choices for the first row. The second row cannot be in the line spanned by the first row, so there are 2 choices for the second row. This gives 6 invertible matrices.

