PMATH 347 Groups and Rings, Exercises for Chapter 12

1: (a) Let $f=5 x^{4}+3 x^{3}+1$ and $g=3 x^{2}+2 x+1$ in $\mathbb{Z}_{7}[x]$. Find q and r in $\mathbb{Z}_{7}[x]$ with $\operatorname{deg} r<\operatorname{deg} g$ such that $f=g q+r$.
(b) Find a monic polynomial of degree 2 with 4 roots in \mathbb{Z}_{10}.

2: (a) List all the irreducible polynomials of degree less than 4 in $\mathbb{Z}_{2}[x]$.
(b) Determine the number of irreducible polynomials of degree 4 in $\mathbb{Z}_{2}[x]$.
(c) Determine the number of irreducible polynomials of degree 2 in $\mathbb{Z}_{p}[x]$ where p is prime.

3: Determine which of the following polynomials are irreducible in $\mathbb{Q}[x]$.
(a) $x^{5}+9 x^{4}+12 x^{2}+6$
(b) $x^{4}+x+1$
(c) $x^{4}+3 x^{2}+3$
(d) $x^{5}+5 x^{2}+1$

4: Factor each of the following polynomials into irreducible factors.
(a) $f=4 x^{4}+x^{3}-3 x^{2}+4 x-3 \in \mathbb{Q}[x]$
(b) $f=x^{4}+x^{3}+3 x^{2}+2 x+2 \in \mathbb{Q}[x]$
(c) $f=x^{3}+2 x^{2}+2 x+1 \in \mathbb{Z}_{7}$

5: Find an irreducible polynomial in $\mathbb{Z}[x]$ which is reducible over $\mathbb{Z}_{2}, \mathbb{Z}_{3}, \mathbb{Z}_{5}$ and \mathbb{Z}_{7}.

