PMATH 347 Groups and Rings, Solutions to the Exercises for Chapter 12

1: (a) Let $f=5 x^{4}+3 x^{3}+1$ and $g=3 x^{2}+2 x+1$ in $\mathbb{Z}_{7}[x]$. Find q and r in $\mathbb{Z}_{7}[x]$ with $\operatorname{deg} r<\operatorname{deg} g$ such that $f=g q+r$.

Solution: Make a multiplication table for \mathbb{Z}_{7}, then use long division:

$$
\begin{array}{r}
4 x ^ { 2 } + 2 x + 1 \longdiv { 5 x ^ { 2 } + 3 x + 6 } \\
\frac{5 x^{4}+3 x^{3}+0 x^{2}+0 x+1}{5 x^{4}+x^{3}+4 x^{2}} \frac{2 x^{3}+3 x^{2}+0 x}{2 x^{3}+6 x^{2}+3 x} \\
4 x^{2}+4 x+1 \\
\frac{4 x^{2}+5 x+6}{6 x+2}
\end{array}
$$

We find $q=4 x^{2}+3 x+6$ and $r=6 x+2$.
(b) Find a monic polynomial of degree 2 with 4 roots in \mathbb{Z}_{10}.

Solution: In \mathbb{Z}_{10} we have $2 \times 5=4 \times 5=6 \times 5=8 \times 5=0$, so the polynomial $f=x(x+3)$ will have 4 roots (namely 0 and $7=-3$ and also 2 and 5). Other such functions are given by $f=(x+a)(x+a+3)$ and also by $f=(x+a)(x+a+1)$, where $a \in \mathbb{Z}_{10}$.

2: (a) List all the irreducible polynomials of degree less than 4 in $\mathbb{Z}_{2}[x]$.
Solution: The linear polynomials x and $x+1$ are both irreducible. The reducible quadratic polynomials are all products of two linear factors; $x^{2}, x(x+1)=x^{2}+x$ and $(x+1)^{2}=x^{2}+1$. The other quadratic polynomial $x^{2}+x+1$ is irreducible. Each reducible cubic polynomial is either a product of 3 linear factors, or the product of a linear factor with the irreducible quadratic $x^{2}+x+1$; so the reducible cubics are x^{3}, $x^{2}(x+1)=x^{3}+x^{2}, x(x+1)^{2}=x^{3}+x,(x+1)^{3}=x^{3}+x^{2}+x+1, x\left(x^{2}+x+1\right)=x^{3}+x^{2}+x$ and $(x+1)\left(x^{2}+x+1\right)=x^{3}+1$. The other 2 cubics, $x^{3}+x+1$ and $x^{3}+x^{2}+1$ are irreducible.
(b) Determine the number of irreducible polynomials of degree 4 in $\mathbb{Z}_{2}[x]$.

Solution: The reducible quartic polynomials may be factored in one of the following ways; 5 of the reducible quartics factor into 4 linear factors (namely $x^{4}, x^{3}(x+1), x^{2}(x+1)^{2}, x(x+1)^{3}$ and $\left.(x+1)^{4}\right)$; 3 of them factor into 2 linear factors and 1 irreducible quadratic factor (namely $x^{2}\left(x^{2}+x+1\right), x(x+1)\left(x^{2}+x+1\right)$ and $\left.(x+1)\left(x^{2}+x+1\right)\right) ; 4$ of them factor into 1 linear factor and one irreducible cubic factors (namely $x\left(x^{3}+x+1\right), x\left(x^{3}+x^{2}+1\right),(x+1)\left(x^{3}+x+1\right)$ and $\left.(x+1)\left(X^{3}+x^{2}+1\right)\right)$; and 1 of them factors into 2 irreducible quadratic factors (namely $\left(x^{2}+x+1\right)^{2}$). Thus there are $5+3+4+1=13$ reducible quartics, and so there are $16-13=3$ irreducible quartics. (If you do list them, you will find that the irreducible quartics are $x^{4}+x+1, x^{4}+x^{3}+1$ and $\left.x^{4}+x^{3}+x^{2}+x+1\right)$.
Alternate Solution: If f is irreducible then f has no roots, so $f(0) \neq 0$ and $f(1) \neq 0$. Since $f(0)=1$, the constant coefficient of f is 1 , so $f=x^{4}+a x^{3}+b x^{2}+c x+1$ for some $a, b, c \in \mathbb{Z}_{2}$. Since $f(1)=1$ we have $1+a+b+c+1=1$ so $c=a+b+1$. There are 4 ways to choose a and b in \mathbb{Z}_{2}, so there are 4 polynomials f with no roots hence no linear factors (namely $x^{4}+x+1, x^{4}+x^{2}+1, x^{4}+x^{3}+1$ and $x^{4}+x^{3}+x^{2}+x+1$). Of these 4 , the only reducible one is $\left(x^{2}+x+1\right)^{2}=x^{4}+x^{2}+1$.
(c) Determine the number of irreducible polynomials of degree 2 in $\mathbb{Z}_{p}[x]$ where p is prime.

Solution: In $\mathbb{Z}_{p}[x]$ there are p monic linear polynomials (namely $x-a, a \in \mathbb{Z}_{p}$). The reducible monic quadratics have 2 linear factors; there are p of these with a repeated factor (namely $(x-a)^{2}, a \in \mathbb{Z}_{p}$) and there are $\binom{p}{2}=\frac{p(p-1)}{2}$ with two distinct linear factors (namely $\left.(x-a)(x-b), a \neq b \in \mathbb{Z}_{p}\right)$. Thus there are $p+\frac{p(p-1)}{2}=\frac{p(p+1)}{2}$ reducible monic quadratics. Altogether, there are p^{2} monic quadratics, and so we have $p^{2}-\frac{p(p+1)}{2}=\frac{p(p-1)}{2}$ irreducible monic quadratics. We can multiply any of these by a unit, and in \mathbb{Z}_{p} there are $p-1$ units, so we obtain $\frac{p(p-1)^{2}}{2}$ irreducible quadratics.

3: Determine which of the following polynomials are irreducible in $\mathbb{Q}[x]$.
(a) $x^{5}+9 x^{4}+12 x^{2}+6$

Solution: This is irreducible by Eisenstein's criterion (with $p=3$).
(b) $x^{4}+x+1$

Solution: This is irreducible, since it is irreducible in $\mathbb{Z}_{2}[x]$.
(c) $x^{4}+3 x^{2}+3$

Solution: The only possible roots in \mathbb{Q} are ± 1 and ± 3. These are not roots, so there are no linear factors. If it is reducible, then it must have 2 monic quadratic factors in $\mathbb{Z}[x]$. Say $x^{4}+3 x^{2}+3=\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right)=$ $x^{4}+(a+c) x^{3}+(d+a c+b) x^{2}+(a d+b c)+b d$. Equating coefficients we find that $a+c=0(1), b+a c+d=3(2)$, $a d+b c=0$ (3) and $b d=3$ (4). From equation (1) we have $c=-a$. Put this in equation (3) to get $a(d-b)=0$. We cannot have $d=b$ (equation (4) would imply $b=d= \pm \sqrt{3} \notin \mathbb{Z}$), so we must have $a=0$. So c is also 0 , and equation (2) becomes $b+d=3$. We cannot have $b+d=3$ and $b d=3$ for $b, d \in \mathbb{Z}$, and so $x^{4}+3 x^{2}+3$ is irreducible over $\mathbb{Q}[x]$. (We remark that $\left.x^{4}+3 x+3=\left(x^{2}+\sqrt{2 \sqrt{3}-3} x+\sqrt{3}\right)\left(x^{2}-\sqrt{2 \sqrt{3}-3} x+\sqrt{3}\right) \in \mathbb{R}[x]\right)$.
(d) $x^{5}+5 x^{2}+1$

Solution: Let $f=x^{5}+5 x^{2}+1$. In $\mathbb{Z}_{2}[x]$ we have $f=x^{5}+5 x^{2}+1$. Since $f(0)=1$ and $f(1)=1, f$ has no roots and hence no linear factors. If f is reducible in $\mathbb{Z}_{2}[x]$ then it must factor into an irreducible quadratic factor and an irreducible cubic factor. From question 3 , the only possibilities are $\left(x^{2}+x+1\right)\left(x^{3}+x+1\right)$ and $\left(x^{2}+x+1\right)\left(x^{3}+x^{2}+1\right)$. Neither of these is equal to f, so f is irreducible in $\mathbb{Z}_{2}[x]$ hence also in $\mathbb{Z}[x]$ and in $\mathbb{Q}[x]$.

4: Factor each of the following polynomials into irreducible factors.
(a) $f=4 x^{4}+x^{3}-3 x^{2}+4 x-3 \in \mathbb{Q}[x]$

Solution: The only possible rational roots are $\pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm 3, \pm \frac{3}{2}$ and $\pm \frac{3}{4}$. By trying some of these (sketching a graph helps to see where the roots are) we find $f\left(\frac{3}{4}=0\right.$. Using long division, we obtain $f=(4 x-3)\left(x^{3}+x^{2}+1\right)$. The only possible rational roots of $g=x^{3}+x^{2}+1$ are ± 1, and these are not roots, so g is irreducible.
(b) $f=x^{4}+x^{3}+3 x^{2}+2 x+2 \in \mathbb{Q}[x]$

Solution: The only possible roots are ± 1 and ± 2. These are not roots, so f has no linear factors. If f is reducible then it must factor into 2 irreducible monic quadratics in $\mathbb{Z}[x]$. Say $f=\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right)$. Expand and equate coefficients and solve the resulting 4 equations (as in 6.c) to find that $f=\left(x^{2}+x+\right.$ 1) $\left(x^{2}+2\right)$.
(c) $f=x^{3}+2 x^{2}+2 x+1 \in \mathbb{Z}_{7}$

Solution: We have $f(0)=1, f(1)=6, f(2)=0, f(3)=6, f(4)=0, f(5)=4$ and $f(6)=0$. Thus $f=(x-2)(x-4)(x-6)=(x+5)(x+3)(x+1)$.

5: Find an irreducible polynomial in $\mathbb{Z}[x]$ which is reducible over $\mathbb{Z}_{2}, \mathbb{Z}_{3}, \mathbb{Z}_{5}$ and \mathbb{Z}_{7}.
Solution: A nice easy example is $x^{2}+2 \cdot 3 \cdot 5 \cdot 7=x^{2}+210$.

