PMATH 347 Groups and Rings, Solutions to the Exercises for Chapter 1

1: (a) Write down the multiplication table for U_{18}.

Solution:		1	5	7	11	13	17
	1	1	5	7	11	13	17
	5	5	7	17	1	11	13
	7	7	17	13	5	1	11
	11	11	1	5	13	17	7
	13	13	11	1	17	7	5
17	17	13	11	7	5	1	

(b) Find the order of each element in U_{18}.

Solution: We tabulate powers of each element a until we reach n such that $a^{n}=1$. :

a	a^{2}	a^{3}	a^{4}	a^{5}	a^{6}
1					
5	7	17	13	11	1
7	13	1			
11	13	17	7	5	1
13	7	1			
17	1				

The table shows that $|1|=1,|5|=|11|=6,|7|=|13|=3$ and $|17|=2$.
2: Determine which of the following are groups.
(a) $X=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}=y^{2}\right\}$ under vector adition.

Solution: This is not a group because vector addition is not an operation on X (X is not closed under +), for example $(1,1) \in X$ and $(1,-1) \in X$ but $(1,1)+(1,-1)=(1,0) \notin X$.
(b) $G=\{1,3,5,7,9\}$ under multiplication modulo 10.

Solution: This is not a group. If it were, then the identity would have to be 1 , but then 5 has no inverse.
(c) \mathbb{R} under the operation $*$ given by $x * y=x+y+1$.

Solution: This is a group. The operation $*$ is associative since $(x * y) * z=(x+y+1) * z=x+y+z+2$ and $x *(y * z)=x *(y+z+1)=x+y+z+2$. To find the identity e, we solve $x * e=x$, that is $x+e+1=x$ to get $e=-1$. To find the inverse of $x \in \mathbb{R}$, we solve $x * y=e$, that is $x+y+1=-1$, to get $y=-x-2$.
(d) $H=\{1,2,4,8,16\}$ under the operation $*$ given by $a * b=\operatorname{gcd}(a, b)$.

Solution: This is not a group. If it were, then the identity would have to be $16, \operatorname{since} \operatorname{gcd}(a, 16)=a$ for all $a \in H$. But then 16 is the only element in H with an inverse, since for $a, b \in H, \operatorname{gcd}(a, b)=16 \Longrightarrow a=b=16$.

3: Let G be a group with identity e. Prove each of the following statements.
(a) If $(\forall a, b, c \in G \quad a b=c a \Rightarrow b=c)$ then G is abelian.

Solution: Suppose that for all $a, b, c \in G$ we have $a b=c a \Longrightarrow b=c$ (so we can cancel an a on the left with an a on the right). Then since $a b a=a b a$, we can cancel the a on the left with the a on the right to get $b a=a b$.
(b) If $\left(\forall a, b \in G(a b)^{2}=a^{2} b^{2}\right)$ then G is abelian.

Solution: Suppose that for all $a, b \in G$ we have $(a b)^{2}=a^{2} b^{2}$. Then from $a b a b=a a b b$, cancel the a on the left to get $b a b=a b b$, and then cancel the b on the right to get $b a=a b$.
(c) If $\left(\forall a \in G a^{2}=e\right)$ then G is abelian.

Solution: Suppose that for all $a \in G$ we have $a^{2}=e$. Then in particular, given $a, b \in G$ we have $a a=e$, $b b=e$ and $a b a b=e$. Multiply the equation $a b a b=e$ on the left by a to get $a a b a b=a$, use the fact that $a a=e$ to get $b a b=a$, then multiply on the right by b to get $b a b b=a b$ and use $b b=e$ to get $b a=a b$.

