PMATH 347 Groups and Rings, Solutions to the Exercises for Chapter 2

1: In D_{n}, for $k \in \mathbb{Z}_{n}$, we write R_{k} for the rotation in about the point $(0,0)$ by the angle $\frac{2 \pi k}{n}$, and we write F_{k} for the reflection in the line through $(0,0)$ and $\left(\cos \frac{\pi k}{n}, \sin \frac{\pi k}{n}\right)$.
(a) Find all values of $k \in \mathbb{Z}_{6}$ such that $F_{3} R_{k} F_{1}=R_{k}$ in D_{6}.

Solution: We can use the formulas $R_{k} R_{l}=R_{k+l}, F_{k} F_{l}=R_{k-l}, R_{k} F_{l}=F_{k+l}$ and $F_{k} R_{l}=F_{k-l}$. For $k \in \mathbb{Z}_{6}$, $F_{3} R_{k} F_{1}=R_{k} \Longleftrightarrow F_{3-k} F_{1}=R_{k} \Longleftrightarrow R_{3-k-1}=R_{k} \Longleftrightarrow 3-k-1=k \Longleftrightarrow 2 k=2 \Longleftrightarrow k=1$ or 4 .
(b) Find the centralizer of F_{1} in D_{6}.

Solution: $R_{k} F_{1}=F_{1} R_{k} \Longleftrightarrow F_{k+1}=F_{1-k} \Longleftrightarrow k+1=1-k \Longleftrightarrow 2 k=0 \Longleftrightarrow k=0$ or 3 in \mathbb{Z}_{6}. Also, $F_{k} F_{1}=F_{1} F_{k} \Longleftrightarrow R_{k-1}=R_{1-k} \Longleftrightarrow k-1=1-k \Longleftrightarrow 2 k=2 \Longleftrightarrow k=1$ or 4 in \mathbb{Z}_{6}. So $C\left(F_{1}\right)=\left\{I, R_{3}, F_{1}, F_{4}\right\}$.

2: (a) Find $\left|G L\left(3, \mathbb{Z}_{2}\right)\right|$
Solution: For a matrix in $G L\left(3, \mathbb{Z}_{2}\right)$, the first row must be non-zero, and there are $2^{3}-1=7$ such rows. Having fixed the first row, the second row can be any row that is not a multiple of the first; there are 2^{1} multiples of the first row, so there are $2^{3}-2^{1}=6$ possibilities for the second row. Having fixed the first two rows, the last row can be any row which is not a linear combination of the first two rows; there are 2^{2} different linear combinations of the first two rows, so there are $2^{3}-2^{2}=4$ possibilities for the last row. Altogether, there are $7 \cdot 6 \cdot 4=168$ matrices in $G L\left(3, \mathbb{Z}_{2}\right)$, so $\left|G L\left(3, \mathbb{Z}_{2}\right)\right|=168$.
(b) List all the elements in $S O\left(3, \mathbb{Z}_{2}\right)$.

Solution: Let A be the 3×3 matrix over \mathbb{Z}_{2} with columns u_{1}, u_{2}, u_{3}. Note that $A \in S O\left(3, \mathbb{Z}_{2}\right)=O\left(3, \mathbb{Z}_{2}\right) \Longleftrightarrow$ $A^{T} A=I \Longleftrightarrow\left(u_{k} \cdot u_{k}=1\right.$ for all k and $u_{k} \cdot u_{l}=0$ for all $\left.k \neq l\right)$. The only vectors u_{k} with $u_{k} \cdot u_{k}=1$ are the three standard basis vectors e_{k} and the vector $(1,1,1)^{T}$, so each u_{k} must be one of these 4 vectors. Note that if $u_{k}=(1,1,1)^{T}$ and u_{l} is any one of the above 4 vectors then $u_{k} \cdot u_{l}=1$, not 0 , so we cannot have $u_{k}=(1,1,1)^{T}$. Also, the vectors u_{k} must be distinct, so the 3 vectors u_{k} are equal to the 3 standard basis vectors (in some order). Thus there are 6 matrices in $S O\left(3, \mathbb{Z}_{2}\right)$, namely

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \text { and }\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) .
$$

3: (a) Show that U_{26} is cyclic.
Solution: Notice that $\langle 7\rangle=\{1,7,23,5,9,11,25,19,3,21,17,15\}=U_{26}$, and so U_{26} is cyclic.
(b) List all the elements and all the generators in every subgroup of U_{26}.

Solution: We list all the subgroups with the generators in boldface.

$$
\begin{aligned}
\langle 7\rangle & =\{1, \mathbf{7}, 23,5,9, \mathbf{1 1}, 25, \mathbf{1 9}, 3,21,17, \mathbf{1 5}\} \\
\left\langle 7^{2}\right\rangle & =\{1, \mathbf{2 3}, 9,25,3, \mathbf{1 7}\} \\
\left\langle 7^{3}\right\rangle & =\{1, \mathbf{5}, 25, \mathbf{2 1}\} \\
\left\langle 7^{4}\right\rangle & =\{1, \mathbf{9}, \mathbf{3}\} \\
\left\langle 7^{6}\right\rangle & =\{1, \mathbf{2 5}\} \\
\left\langle 7^{12}\right\rangle & =\{\mathbf{1}\}
\end{aligned}
$$

4: (a) Determine the number of subgroups of $\mathbb{Z}_{12,000}$.
Solution: Since $12,000=2^{5} 3^{1} 5^{3}$, the divisors of 12,000 are of the form $2^{i} 3^{j} 5^{k}$ with $0 \leq i \leq 5,0 \leq j \leq 1$ and $0 \leq k \leq 3$. Since there are 6 possible values for $i, 2$ possible values for j and 4 posible values for k, there are $6 \cdot 2 \cdot 4=48$ divisors of 12,000 . Thus there are 48 subgroups of $\mathbb{Z}_{12,000}$.
(b) Find the number of elements of even order in $\mathbb{Z}_{12,000}$.

Solution: The odd factors of 12,000 are of the form $3^{j} 5^{k}$ with $0 \leq j \leq 1$ and $0 \leq k \leq 3$. There are 8 such odd factors, namely $1,5,25,125,3,15,75$ and 375 , and correspondingly there are 8 subgroups of odd order in $\mathbb{Z}_{12,000}$. The elements in $\mathbb{Z}_{12,000}$ of odd order are the generators of these 8 subgroups, so the number of elements of odd order is $\phi(1)+\phi(5)+\phi(25)+\phi(125)+\phi(3)+\phi(15)+\phi(75)+\phi(375)=$ $1+4+20+100+2+8+40+200=375$. Thus the number of elements of even order in $\mathbb{Z}_{12,000}$ is $12,000-375=825$.

5: (a) Find the number of elements of each order in $\mathbb{Z}_{3} \times \mathbb{Z}_{6}$.
Solution: There is 1 element of order 1,1 of order 2,8 of order 3 and 8 of order 6 .
(b) List all the elements in every cyclic subgroup of $\mathbb{Z}_{3} \times \mathbb{Z}_{6}$.

Solution: By the result of Part (a), there is 1 cyclic subgroup of order 1,1 of order 2,4 of order 3 and 4 of order 6 . The cyclic subgroups are

$$
\begin{aligned}
\langle(0,0)\rangle & =\{(0,0)\} \\
\langle(0,3)\rangle & =\{(0,0),(0,3)\} \\
\langle(0,2)\rangle & =\{(0,0),(0,2),(0,4)\} \\
\langle(1,0)\rangle & =\{(0,0),(1,0),(2,0)\} \\
\langle(1,2)\rangle & =\{(0,0),(1,2),(2,4)\} \\
\langle(1,4)\rangle & =\{(0,0),(1,4),(2,2)\} \\
\langle(0,1)\rangle & =\{(0,0),(0,1),(0,2),(0,3),(0,4),(0,5)\} \\
\langle(1,3)\rangle & =\{(0,0),(1,3),(2,0),(0,3),(1,0),(2,3)\} \\
\langle(1,1)\rangle & =\{(0,0),(1,1),(2,2),(0,3),(1,4),(2,5)\} \\
\langle(1,5)\rangle & =\{(0,0),(1,5),(2,4),(0,3),(1,2),(5,1)\}
\end{aligned}
$$

(c) List all the elements in every non-cyclic subgroup of $\mathbb{Z}_{3} \times \mathbb{Z}_{6}$. Explain why your list is complete.

Solution: $\mathbb{Z}_{3} \times \mathbb{Z}_{6}$ and the subgroup $\mathbb{Z}_{3} \times\langle 2\rangle=\{(0,0),(1,0),(2,0),(0,2),(1,2),(2,2),(0,4),(1,4),(2,4)\}$ are non-cyclic subgroups of $\mathbb{Z}_{3} \times \mathbb{Z}_{6}$. We now show that these are the only two. Since $\left|\mathbb{Z}_{3} \times \mathbb{Z}_{6}\right|=18$, any subgroup must have order $1,2,3,6,9$ or 18 . Any group of order 1,2 or 3 must be cyclic, and any abelian group of order 6 is cyclic, so any non-cyclic subgroup of $\mathbb{Z}_{3} \times \mathbb{Z}_{6}$ must have order 9 or 18 . Of course, the only subgroup of $\mathbb{Z}_{3} \times \mathbb{Z}_{6}$ of order 18 is $\mathbb{Z}_{3} \times \mathbb{Z}_{6}$ itself. Now, let H be a subgroup of order 9 in $\mathbb{Z}_{3} \times \mathbb{Z}_{6}$. Then the elements of H could only be of order 1,3 or 9 . No elements in $\mathbb{Z}_{3} \times \mathbb{Z}_{6}$ have order 9 , so H must consist of the identity along with 8 elements of order 3 . But the group $\mathbb{Z}_{3} \times \mathbb{Z}_{6}$ only has 8 elements of order 3 , so all of these must be in H, and hence H must be the group $\mathbb{Z}_{3} \times\langle 2\rangle$.

