1: In S_8 , let $\alpha = (1632)(27)(3748)$ and let $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 5 & 7 & 2 & 8 & 4 & 1 & 6 \end{pmatrix}$.

(a) Find $|\alpha|$ and find $(-1)^{\beta}$.

Solution: First we express α and β as products of disjoint cycles. We find that $\alpha = (163)(2748)$ and $\beta = (137)(25864)$. So $|\alpha| = \text{lcm}(3, 4) = 12$ and $(-1)^{\beta} = (-1)^{4+6} = 1$.

(b) Express each of the permutations α^{110} and $\alpha\beta\alpha^{-1}$ as products of disjoint cycles.

Solution: We have $\alpha^{110} = \alpha^{9 \cdot 12 + 8} = (\alpha^{12})^9 \alpha^2 = \alpha^2 = (163)^2 (2748)^2 = (136)(24)(78)$, and we have $\alpha \beta \alpha^{-1} = (163)(2748)(137)(25864)(136)(2847) = (146)(23875)$.

2: (a) Find the number of elements of each order in S_7 and in A_7 .

Solution: We find the number of permutations of each form, them we list the number of each order.

$ \alpha $	$(-1)^{\alpha}$	# of such α				
1	+	1				
2	—	$\binom{7}{2} = 21$				
2	+	$\binom{7}{4} \cdot 3 = 105$	In S_7 :		In A_7 :	
2	_	$\binom{7}{6} \cdot 5 \cdot 3 = 105$	ordor		ordor	-#
3	+	$\binom{7}{3} \cdot 2 = 70$	order	#	order	#
6	_	$\binom{7}{2} \cdot 2 \cdot \binom{4}{2} = 420$	1	1	1	1
6	+	$\binom{37}{7} \cdot 2 \cdot 3 = 210$	2	231	2	105
• •		(3) = 0 = 10 (7) = 4 = 0 = 000	3	350	3	350
3	+	$\binom{6}{6} \cdot 3 \cdot 4 \cdot 2 \equiv 280$	4	840	4	630
4	—	$\binom{7}{4} \cdot 3 \cdot 2 = 210$	5	504	5	504
4	+	$\binom{7}{4} \cdot 3 \cdot 2 \cdot \binom{3}{2} = 630$	6	1470	6	210
12	—	$\binom{7}{4} \cdot 3 \cdot 2 \cdot 2 = 420$	7	720	7	720
5	+	$\binom{7}{5} \cdot 4! = 504$	10	504		
10	_	$\binom{7}{5} \cdot 4! = 504$	12	420		
6	_	$\binom{7}{6} \cdot 5! = 840$				
7	+	6! = 720				
	lpha 1 2 2 3 6 6 3 4 12 5 10 6 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

(b) Find the number of cyclic subgroups of A_7 .

Solution: Recall that the number of cyclic subgroups of order k is equal to the number of elements of order k divided by $\phi(k)$. So from the third of the tables in part (a), we see that the total number of cyclic subgroups is $\frac{1}{\phi(1)} + \frac{105}{\phi(2)} + \frac{350}{\phi(3)} + \frac{630}{\phi(4)} + \frac{504}{\phi(5)} + \frac{210}{\phi(6)} + \frac{720}{\phi(7)} = 1 + 105 + 175 + 315 + 126 + 105 + 120 = 947.$

3: Let $n \geq 3$.

(a) Show that $Z(S_n) = \{e\}.$

Solution: Suppose that $\alpha \neq e$, and say the permutation α sends k to l, where $k \neq l$. Choose $m \notin \{k, l\}$. Then $(lm)\alpha$ sends k to m, but $\alpha(lm)$ sends k to l, so $(lm)\alpha \neq \alpha(lm)$, and therefore $\alpha \notin Z(S_n)$.

(b) Show that every element in A_n is equal to a product of 3-cycles.

Solution: We already know that every permutation in A_n is equal to a product of an even number of 2-cycles, so it suffices to show that every product of a pair of 2-cycles is equal to a product of 3-cycles. Every product of a pair of 2-cycles is of one of the following three forms, where a, b, c and d are distinct: (ab)(ab), (ab)(ac) or (ab)(cd), and indeed, each of these can be written as a product of 3-cycles:

$$(ab)(ab) = (abc)(acb)$$
$$(ab)(ac) = (acb)$$
$$(ab)(cd) = (adc)(abc)$$