PMATH 347 Groups and Rings, Exercises for Chapter 4

1: (a) Define $\phi: \mathbb{Z}_{60} \rightarrow U_{45}$ by $\phi(k)=2^{k}$. Show that ϕ is a group homomorphism, and find $\operatorname{Ker}(\phi)$ and $\operatorname{Im}(\phi)$.
(b) Define $\psi: S L(n, \mathbb{R}) \times \mathbb{R}^{*} \rightarrow G L(n, \mathbb{R})$ by $\psi(A, t)=t A$. Show that ψ is a group homomorphism and find $\operatorname{Ker}(\psi)$ and $\operatorname{Im}(\psi)$.

2: Show that no two of the groups $\mathbb{Z}_{8}, U_{16}, D_{4}$ and $\mathbb{Z}_{2}{ }^{3}$ are isomorphic.
3: Find the number of elements of each order in $U_{55} \times A_{4}$.
4: (a) Find the number of homomorphisms from \mathbb{Z}_{12} to D_{9}.
(b) Find the number of homomorphisms from D_{9} to \mathbb{Z}_{12}.

5: (a) Find the number of homomorphisms from $\mathbb{Z}_{4} \times \mathbb{Z}_{6}$ to itself.
(b) Find the number of homomorphisms from $\mathbb{Z}_{4} \times \mathbb{Z}_{6}$ to D_{12}.

6: Let $f: S_{3} \rightarrow\{1,2,3,4,5,6\}$ be the bijection given by the table of values

α	(1)	(12)	(13)	(23)	(123)	(132)
$f(\alpha)$	1	2	3	4	5	6

and let $\phi: S_{3} \rightarrow S_{6}$ be the isomorphism given by $\phi(\alpha)=f \circ L_{\alpha} \circ f^{-1}$, where $L_{\alpha}(\beta)=\alpha \beta$ for all $\beta \in S_{3}$. List all the elements in $\phi\left(S_{3}\right)$

7: Find $|\operatorname{Inn}(Q)|$, where $Q=\{1, i, j, k,-1,-i,-j,-k\}$ is the quaternionic group, which has the following multiplication table (Q is not isomorphic to any group from Exercise 2).

$$
\begin{array}{rrrrrrrr}
& 1 & i & j & k & -1 & -i & -j \\
& 1 & -k \\
1 & 1 & i & j & k & -1 & -i & -j \\
i & i & -1 & k & -j & -i & 1 & -k \\
j & j & j \\
k & k & j & -1 & i & -j & k & 1 \\
\hline & -1 & -k & -j & i & 1 \\
-1 & -1 & -i & -j & -k & 1 & i & j \\
-i & -i & 1 & -k & j & i & -1 & k \\
-j \\
-j & -j & k & 1 & -i & j & -k & -1 \\
-k & -k & -j & i & 1 & k & j & -i \\
-1
\end{array}
$$

