PMATH 347 Groups and Rings, Solutions to the Exercises for Chapter 5

1: (a) List all the elements in every coset of $H=\{1,9,17,33\}$ in $G=U_{40}$.
Solution: Since $|H|=4$ and $|G|=16$, we know there must $|G| /|H|=4$ distinct cosets. They are $1 H=\{1,9,17,33\}, 3 H=\{3,27,11,19\}, 39 H=(-1) H=\{-1,-9,-17,-33\}=\{39,31,23,7\}$ and $37 H=(-3) H=\{-3,-27,-11,-19\}=\{37,13,29,21\}$.
(b) List all the elements in every left coset and every right coset of $H=\langle(1234)\rangle$ in $G=S_{4}$.

Solution: $G=\{(1),(12),(13),(14),(23),(24),(34),(12)(34),(13)(24),(14)(23),(123),(124),(132),(134),(142)$, (143), (234), (243), (1234), (1243), (1324), (1342), (1423), (1432) $\}$ and $H=\{(1),(1234),(13)(24),(1432)\}$, and there are $24 / 4=6$ left cosets;

$$
\begin{aligned}
(1) H & =\{(1),(1234),(13)(24),(1432)\} \\
(12) H & =\{(12),(234),(1324),(143)\} \\
(13) H & =\{(13),(12)(34),(24),(14)(23)\} \\
(14) H & =\{(14),(123),(1342),(243)\} \\
(23) H & =\{(23),(134),(1243),(142)\} \\
(34) H & =\{(34),(124),(1423),(132)\}
\end{aligned}
$$

There are also 6 right cosets:

$$
\begin{aligned}
H(1) & =\{(1),(1234),(13)(24),(1432)\} \\
H(12) & =\{(12),(134),(1423),(243)\} \\
H(13) & =\{(13),(14)(23),(24),(12)(34)\} \\
H(14) & =\{(14),(234),(1243),(132)\} \\
H(23) & =\{(23),(124),(1342),(143)\} \\
H(34) & =\{(34),(123),(1324),(142)\}
\end{aligned}
$$

2: Find four distinct subgroups $G_{i} \leq S_{5}$, with $i=1,2,3,4$, such that $\operatorname{orb}_{G_{i}}(1)=\{1,2,4\}$. For each of the four subgroups G_{i}, find $\operatorname{stab}_{G_{i}}(1)$.

Solution: The groups G_{i} will permute the numbers 1,2 and 4 amongst one another, and might also permute the numbers 3 and 5 amongst each other. The four groups are

$$
\begin{aligned}
& G_{1}=\{(1),(124),(142)\} \\
& G_{2}=\{(1),(124),(142),(12),(14),(24)\} \\
& G_{3}=\{(1),(124),(142),(35),(124)(35),(142)(35)\} \\
& G_{4}=\{(1),(124),(142),(12),(14),(24),(35),(124)(35),(142)(35),(12)(35),(14)(35),(24)(35)\}
\end{aligned}
$$

and the stabilizers are the groups stab $G_{G_{1}}(1)=\{(1)\}, \operatorname{stab}_{G_{2}}(1)=\{(1),(24)\}, \operatorname{stab}_{G_{3}}(1)=\{(1),(35)\}$ and $\operatorname{stab}(1)=\{(1),(24),(35),(24)(35)\}$.

3: Let $G=\mathbb{Z}^{2}$ and let $H=\langle(3,2),(6,8)\rangle=\{k(3,2)+l(6,8) \mid k, l \in \mathbb{Z}\}$. For each pair $(a, b) \in G$ with $0 \leq a<6$ and $0 \leq b<2$, find the order of $(a, b)+H$ in the group G / H.

Solution: The order of $(a, b)+H$ in G / H is the smallest positive integer n such that $n(a, b) \in H$, so we would like to find an easy way to test a given point (c, d) to determine whether it is in H. One way is to use a picture of the group H in G to determine whether a given point $(c, d) \in H$. Another is as follows.

$$
\begin{aligned}
(c, d) \in H & \Longleftrightarrow(c, d)=k(3,2)+l(6,8) \text { for some }(k, l) \in \mathbb{Z}^{2} \\
& \Longleftrightarrow\left(\begin{array}{cc}
3 & 6 \\
2 & 8
\end{array}\right)\binom{k}{l}=\binom{c}{d} \quad \text { for some }(k, l) \in \mathbb{Z}^{2} \\
& \Longleftrightarrow\binom{k}{l}=\left(\begin{array}{cc}
3 & 6 \\
2 & 8
\end{array}\right)^{-1}\binom{c}{d}=\frac{1}{12}\left(\begin{array}{cc}
8 & -6 \\
-2 & 3
\end{array}\right)\binom{c}{d} \in \mathbb{Z}^{2} \\
& \Longleftrightarrow 8 c-6 d=0(\bmod 12) \text { and }-2 c+3 d=0(\bmod 12) \\
& \Longleftrightarrow 2 c=3 d(\bmod 12)
\end{aligned}
$$

For $(a, b) \in \mathbb{Z}^{2}$ let us write $[a, b]=(a, b)+H \in G / H$. With the help of a picture of H, or by using the formula $(c, d) \in H \Longleftrightarrow 2 c=3 d(\bmod 12)$, we find that $|[1,1]|=12$ with $\langle[1,1]\rangle=\{[0,0],[1,1],[2,2], \cdots,[11,11]\}$ (note that $[12,12]=[0,0]$ in G / H since $(12,12) \in H)$. Consequently we have $|[k, k]|=12 / \operatorname{gcd}(k, 12)$ for all k. We could find the order of $[a, b]$ for each of the given elements (a, b) in a similar manner, but it is more amusing to notice that every element $[a, b]$ is equal to $[k, k]$ for some $0 \leq k<12$. For example, we have $[1,0]=[1,0]+[9,10]=[10,10]($ since $[9,10] \in H)$, and so $|[1,0]|=|[10, \overline{10}]|=\frac{12}{\operatorname{gcd}(10,12)}=6$. In this way, we can find the order of each of the given elements: $|[0,0]|=1,|[1,0]|=|[10,10]|=6,|[2,0]|=|[8,8]|=3$, $|[3,0]|=|[6,6]|=2,|[4,0]|=|[4,4]|=3,|[5,0]|=|[2,2]|=6,|[0,1]|=|[3,3]|=4,|[1,1]|=12$, $|[2,1]|=|[11,11]|=12,|[3,1]|=|[9,9]|=4,|[4,1]|=|[7,7]|=12$ and $|[5,1]|=|[5,5]|=12$

4: Determine which of the following five subgroups of S_{4} are normal: $\langle(12)\rangle,\langle(12)(34)\rangle,\langle(123)\rangle,\langle(1234)\rangle$ and $\operatorname{stab}_{S_{4}}(1)$.

Solution: Notice that we have $(14)(12)(14)=(24) \notin\langle(12)\rangle,(14)(12)(34)(14)=(13)(24) \notin\langle(12)(34)\rangle$, $(14)(123)(14)=(234) \notin\langle(123)\rangle,(14)(1234)(14)=(1423) \notin\langle(1234)\rangle$, and $(14)(24)(14)=(12) \notin \operatorname{stab}_{S_{4}}(1)$, and so none of these subgroups are normal.

