PMATH 347 Groups and Rings, Solutions to the Exercises for Chapter 6

1: For each of the following groups G, find a group of the form $\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{l}}$ with $n_{i} \mid n_{i+1}$ for all i, which is isomorphic to G.
(a) $G=\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{5} \times \mathbb{Z}_{6} \times \mathbb{Z}_{8} \times \mathbb{Z}_{9} \times \mathbb{Z}_{12} \times \mathbb{Z}_{18} \times \mathbb{Z}_{25}$.

Solution: $\quad G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{5} \times\left(\mathbb{Z}_{2} \times \mathbb{Z}_{3}\right) \times \mathbb{Z}_{8} \times \mathbb{Z}_{9} \times\left(\mathbb{Z}_{4} \times \mathbb{Z}_{3}\right) \times\left(\mathbb{Z}_{2} \times \mathbb{Z}_{9}\right) \times \mathbb{Z}_{25}$
$\cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times\left(\mathbb{Z}_{2} \times \mathbb{Z}_{3}\right) \times\left(\mathbb{Z}_{4} \times \mathbb{Z}_{3}\right) \times\left(\mathbb{Z}_{4} \times \mathbb{Z}_{9} \times \mathbb{Z}_{5}\right) \times\left(\mathbb{Z}_{8} \times \mathbb{Z}_{9} \times \mathbb{Z}_{25}\right)$
$\cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{6} \times \mathbb{Z}_{12} \times \mathbb{Z}_{180} \times \mathbb{Z}_{1800}$
(b) $G=U_{180}$

Solution: $\quad G=U_{4.5 \cdot 9}$
$\cong U_{4} \times U_{5} \times U_{9}$
$\cong \mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{6}$
$\cong \mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3}$
$\cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{12}$
(c) $G=U(60) /\langle 29\rangle$.

Solution: In $U(60)$ we have $\langle 29\rangle=\{1,29\}$ and also $\langle 7\rangle=\{1,7,49,43\rangle$ and $\langle 59\rangle=\{1,59\}$. Now $|U(60)|=16$, so $|G|=|U(60) /\langle 29\rangle|=16 / 2=8$, and so G is isomorphic to $\mathbb{Z}_{8}, \mathbb{Z}_{2} \times \mathbb{Z}_{4}$ or to $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Looking at the powers of 7 in $U(60)$, we see that $7\langle 29\rangle$ has order 4 in G, so G is not isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Also, note that $49\langle 29\rangle$ and $59\langle 29\rangle$ both have order 2 in G, so G cannot be isomorphic to \mathbb{Z}_{8}. Thus $G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{4}$.

2: (a) List all of the abelian groups of order 1,500 .
Solution: We have $1500=2^{2} 3^{1} 5^{3}$, and there are 2 ways to partition 2 (namely (2) and (1,1)), 1way to partition 1 , 3 ways to partition 3 (namely (3) and (1,2) and (1,1,1)), so there are $2 \cdot 1 \cdot 3=6$ abelian groups of order 1500. They are $\mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{125}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{125}, \mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{25}, \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{25}$, $\mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}$ and $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}$.
(b) Determine the number of abelian groups of order 160,000.

Solution: We have $160,000=2^{8} 5^{4}$. There are 22 ways to partition 8 , that is to find $\left(k_{1}, k_{2}, \cdots, k_{l}\right)$ with $1 \leq k_{1} \leq k_{2} \leq \cdots \leq k_{l}$ and $\sum k_{i}=8$, namely $(1,1,1,1,1,1,1,1),(1,1,1,1,1,1,2),(1,1,1,1,2,2)$, $(1,1,2,2,2),(2,2,2,2),(1,1,1,1,1,3),(1,1,1,2,3),(1,2,2,3),(1,1,3,3),(2,3,3),(1,1,1,1,4),(1,1,2,4)$, $(2,2,4),(1,3,4),(4,4),(1,1,1,5),(1,2,5),(3,5),(1,1,6),(2,6),(1,7)$ and (8). There are 5 ways to partition 4 , namely $(1,1,1,1),(1,1,2),(2,2),(1,3),(4)$. So there are $22 \cdot 5=110$ abelian groups of order 160,000 .

