PMATH 347 Groups and Rings, Exercises for Chapter 9

1: For each of the rings $\mathbb{Z}_{6}, \mathbb{Z}_{2}[i]$ and $\operatorname{Func}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}\right)$, do the following:
(a) Make a multiplication table.
(b) Find all the zero divisors.
(c) Find all the units.
(d) Determine whether the ring is a field, an integral domain, or neither.

2: Determine which of the following are rings; for each ring, determine whether it has an identity.
(a) $Q=\left\{\left.\left(\begin{array}{cc}a & a+b \\ a+b & b\end{array}\right) \right\rvert\, a, b \in \mathbb{Z}\right\} \subset M_{2}(\mathbb{Z})$
(b) $R=\left\{\left.\left(\begin{array}{ll}a & a \\ b & b\end{array}\right) \right\rvert\, a, b \in \mathbb{Z}\right\} \subset M_{2}(\mathbb{Z})$
(c) $S=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ under the operations addition + and composition \circ
(d) $T=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}\right.$ with a even and b odd $\}$

3: Find the smallest subring of \mathbb{Q} which contains $\frac{2}{3}$.
4: An element a in a ring R is called nilpotent if $a^{n}=0$ for some $n \in \mathbb{Z}$. An element a is called an idempotent if $a^{2}=a$. Find all the zero divisors, all the units, all the nilpotent elements, and all the idempotents in the ring $R=\mathbb{Z}_{3} \oplus \mathbb{Z}_{6}$.

5: Find all the solutions of $x^{2}-x+2=0$, where
(a) $x \in \mathbb{Z}_{8}$
(b) $x \in \mathbb{Z}_{3}[i]$.

6: Find all solutions to $X^{2}=I$, where
(a) $X \in M_{2}(\mathbb{R})$
(b) $X \in M_{2}\left(\mathbb{Z}_{2}\right)$.

7: (a) If $a b=a$ and $b a=b$ in a ring, show that $a^{2}=a$.
(b) If $a b+b a=1$ and $a^{3}=a$ in a ring, show that $a^{2}=1$.

