- 1: For each of the rings \mathbb{Z}_6 , $\mathbb{Z}_2[i]$ and Func $(\mathbb{Z}_2, \mathbb{Z}_2)$, do the following:
 - (a) Make a multiplication table.
 - (b) Find all the zero divisors.
 - (c) Find all the units.
 - (d) Determine whether the ring is a field, an integral domain, or neither.
- 2: Determine which of the following are rings; for each ring, determine whether it has an identity.

(a)
$$Q = \left\{ \begin{pmatrix} a & a+b\\ a+b & b \end{pmatrix} \middle| a, b \in \mathbb{Z} \right\} \subset M_2(\mathbb{Z})$$

(b) $R = \left\{ \begin{pmatrix} a & a\\ b & b \end{pmatrix} \middle| a, b \in \mathbb{Z} \right\} \subset M_2(\mathbb{Z})$
(c) $S = \left\{ f : \mathbb{R} \to \mathbb{R} \right\}$ under the operations addition + and composition of
(d) $T = \left\{ \frac{a}{b} \middle| a, b \in \mathbb{Z} \text{ with } a \text{ even and } b \text{ odd} \right\}$

- **3:** Find the smallest subring of \mathbb{Q} which contains $\frac{2}{3}$.
- 4: An element a in a ring R is called **nilpotent** if $a^n = 0$ for some $n \in \mathbb{Z}$. An element a is called an **idempotent** if $a^2 = a$. Find all the zero divisors, all the units, all the nilpotent elements, and all the idempotents in the ring $R = \mathbb{Z}_3 \oplus \mathbb{Z}_6$.
- **5:** Find all the solutions of $x^2 x + 2 = 0$, where
 - (a) $x \in \mathbb{Z}_8$ (b) $x \in \mathbb{Z}_3[i]$.
- **6:** Find all solutions to $X^2 = I$, where
 - (a) $X \in M_2(\mathbb{R})$
 - (b) $X \in M_2(\mathbb{Z}_2)$.
- 7: (a) If ab = a and ba = b in a ring, show that a² = a.
 (b) If ab + ba = 1 and a³ = a in a ring, show that a² = 1.