1: For each of the rings \mathbb{Z}_6 , $\mathbb{Z}_2[i]$ and Func($\mathbb{Z}_2, \mathbb{Z}_2$), do the following:

(a) Make a multiplication table.

Solution: Let us write $\operatorname{Func}(\mathbb{Z}_2,\mathbb{Z}_2) = \{e, \ell, f, g\}$ where e(x) = 0, $\ell(x) = 1$, f(x) = x, and g(x) = 1 + x. The multiplication tables are as follows:

		\mathbb{Z}_6						$\mathbb{Z}_2[i]$						$\operatorname{Func}(\mathbb{Z}_2,\mathbb{Z}_2)$				
	0	1	2	3	4	5												
0	0	0	0	0	0	0			0	1	i	1+i			e	ℓ	f	g
1	0	1	2	3	4	5		0	0	0	0	0		e	e	e	e	e
2	0	2	4	0	2	4		1	0	1	i	1+i		ℓ	e	ℓ	f	g
3	0	3	0	3	0	3		i	0	i	1	1+i		f	e	f	f	e
4	0	4	2	0	4	2		1+i	0	1+i	1+i	0		g	e	g	e	g
5	0	5	4	3	2	1												

(b) Find all the zero divisors.

Solution: In \mathbb{Z}_6 the zero divisors are 2, 3 and 4. In $\mathbb{Z}_2[i]$ the only zero divisor is 1 + i, and in Func($\mathbb{Z}_2, \mathbb{Z}_2$) the zero divisors are f and g.

(c) Find all the units.

Solution: In \mathbb{Z}_6 are 1 and 5; in $\mathbb{Z}_2[i]$ the units are 1 and *i*; and in Func($\mathbb{Z}_2, \mathbb{Z}_2$) the only unit is ℓ .

(d) Determine whether the ring is a field, an integral domain, or neither.

Solution: All three rings have zero-divisors, so none of them are integral domains (or fields).

2: Determine which of the following are rings; for each ring, determine whether it has an identity.

(a)
$$Q = \left\{ \begin{pmatrix} a & a+b \\ a+b & b \end{pmatrix} \middle| a, b \in \mathbb{Z} \right\} \subset M_2(\mathbb{Z})$$

Solution: Q is not a ring since it is not closed under multiplication. Its easy to find a counterexample.

(b)
$$R = \left\{ \begin{pmatrix} a & a \\ b & b \end{pmatrix} \middle| a, b \in \mathbb{Z} \right\} \subset M_2(\mathbb{Z})$$

Solution: R is a subring of $M_2(\mathbb{Z})$, since $0 \in R$ and R is closed under addition, subtraction and multiplication. To see that R is closed under multiplication, note that $\begin{pmatrix} a & a \\ b & b \end{pmatrix} \begin{pmatrix} c & c \\ d & d \end{pmatrix} = \begin{pmatrix} e & e \\ f & f \end{pmatrix}$, where e = a(c+d) and f = b(c+d). R does not have an identity, since if $\begin{pmatrix} a & a \\ b & b \end{pmatrix}$ were the identity then we would need to have a(c+d) = c for all c and d, and no such $a \in \mathbb{Z}$ exists.

(c) $S = \left\{ f : \mathbb{R} \to \mathbb{R} \right\}$ under the operations addition + and composition \circ

Solution: S is not a ring since it is not true that $f \circ (g+h) = f \circ g + f \circ h$ for all f, g, h. For example, if f is the constant function f = 1, then $f \circ (g+h) = 1$ but $f \circ g + f \circ h = 2$.

(d)
$$T = \left\{ \frac{a}{b} \middle| a, b \in \mathbb{Z} \text{ with } a \text{ even and } b \text{ odd} \right\}$$

Solution: T is a ring. We have $0 \in T$ since $0 = \frac{0}{3}$. Also T is closed under +, - and \cdot since if a and c are even, and b and d are odd, then we have $\frac{a}{b} \pm \frac{c}{d} = \frac{ad \pm bc}{bd}$ and $\frac{a}{b} \frac{c}{d} = \frac{ac}{bd}$; the numerators are $ad \pm bc$ and ac, which are even, and the denominators are both bd, which is odd.

3: Find the smallest subring of \mathbb{Q} which contains $\frac{2}{3}$.

Solution: Let S be the smallest such subring. We have $\frac{2}{3} = \frac{6}{9} \in S$ and $\frac{2}{3} \frac{2}{3} = \frac{4}{9} \in S$ and so $\frac{6}{9} - \frac{4}{9} = \frac{2}{9} \in S$. Suppose (inductively) that $\frac{2}{3^n} \in S$ for some fixed $n \in \mathbb{Z}_+$. Then $\frac{2}{3^n} = \frac{6}{3^{n+1}} \in S$ and $\frac{2}{3^n} \frac{2}{3} = \frac{4}{3^{n+1}} \in S$ and so $\frac{6}{3^{n+1}} - \frac{4}{3^{n+1}} = \frac{2}{3^{n+1}} \in S$. By induction, $\frac{2}{3^n} \in S$ for all $n \in \mathbb{Z}_+$. Thus $T = \left\{\frac{2k}{3^n} \middle| k \in \mathbb{Z}, n \in \mathbb{Z}_+\right\} \subset S$. It is easy to check that T is a ring, and so we must have S = T.

4: An element a in a ring R is called **nilpotent** if $a^n = 0$ for some $n \in \mathbb{Z}$. An element a is called an **idempotent** if $a^2 = a$. Find all the zero divisors, all the units, all the nilpotent elements, and all the idempotents in the ring $R = \mathbb{Z}_3 \oplus \mathbb{Z}_6$.

Solution: The zero-divisors are the elements (a, b) with a = 0, 1 or 2 in \mathbb{Z}_3 and b = 2, 3 or 4 in \mathbb{Z}_6 (there are 9 zero-divisors). The units are the elements (a, b) with a = 1 or 2 and b = 1 or 5 (there are 4 units). The nilpotents are (0, 0) and (0, 2). The idempotents are the elements (a, b) with a = 0 or 1 and b = 0, 1, 3 or 4 (there are 8 idempotents).

5: Find all the solutions of $x^2 - x + 2 = 0$, where

(a) $x \in \mathbb{Z}_8$

Solution: By trying every element, we find the solutions x = 3 or 6.

(b) $x \in \mathbb{Z}_3[i]$.

Solution: By trying every element, we find the solutions x = 2 + i or 2 + 2i.

6: Find all solutions to $X^2 = I$, where

(a) $X \in M_2(\mathbb{R})$

Solution: Let $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Then $X^2 = \begin{pmatrix} a^2 + bc & b(a+d) \\ c(a+d) & d^2 + bc \end{pmatrix}$. To get $X^2 = I$ we need $a^2 + bc = 1$ (1), b(a+d) = 0 (2), c(a+d) = 0 (3) and $d^2 + bc = 1$ (4). From equations (1) and (4) we see that $a^2 = d^2 = 1 - bc$ so $a = \pm d$. Case 1: if $a = d \neq 0$ then equations (2) and (3) imply that b = c = 0, and then equation (1) implies that $a = \pm 1$ so we obtain $X = \pm I$. Case 2: if a = -d (this includes the case that a = d = 0) then equations (2) and (3) place no restriction on b and c, and then equation (1) implies that $a = \pm \sqrt{1 - bc}$ so we obtain $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, where b and c may be any real numbers satisfying bc < 1, and where $a = \pm \sqrt{1 - bc}$ and d = -a.

(b) $X \in M_2(\mathbb{Z}_2)$.

Solution: As above we let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, and as above, the same 4 equations must be satisfied. However, in \mathbb{Z}_2 we have $x^2 = x$ for all x, so equations (1) and (4) imply that a = d = 1 - bc. Since a = d, we have a + d = 2a = 0 so equations (2) and (3) give no further restrictions. Thus $X = \begin{pmatrix} 1 - bc & b \\ c & 1 - bc \end{pmatrix}$ where b and c are arbitrary. To be explicit, $X = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ or $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

7: (a) If ab = a and ba = b in a ring, show that $a^2 = a$.

Solution: Suppose ab = a and ba = b. Then $a = ab = a(ba) = (ab)a = aa = a^2$.

(b) If ab + ba = 1 and $a^3 = a$ in a ring, show that $a^2 = 1$.

Solution: Suppose that ab + ba = 1 and $a^3 = a$. Then $a^2 = a^2 + a^2 - a^2 = a^2(ab + ba) + (ab + ba)a^2 - a^2 = a^3b + a^2ba + aba^2 + ba^3 - a^2 = ab + a^2ba + aba^2 + ba - a^2 = (ab + ba) + a(ab + ba)a - a^2 = 1 + a^2 - a^2 = 1$