PMATH 347 Groups and Rings, Solutions to the Exercises for Chapter 9

1: For each of the rings $\mathbb{Z}_{6}, \mathbb{Z}_{2}[i]$ and $\operatorname{Func}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}\right)$, do the following:
(a) Make a multiplication table.

Solution: Let us write $\operatorname{Func}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}\right)=\{e, \ell, f, g\}$ where $e(x)=0, \ell(x)=1, f(x)=x$, and $g(x)=1+x$. The multiplication tables are as follows:

(b) Find all the zero divisors.

Solution: In \mathbb{Z}_{6} the zero divisors are 2,3 and 4 . In $\mathbb{Z}_{2}[i]$ the only zero divisor is $1+i$, and in $\operatorname{Func}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}\right)$ the zero divisors are f and g.
(c) Find all the units.

Solution: In \mathbb{Z}_{6} are 1 and 5 ; in $\mathbb{Z}_{2}[i]$ the units are 1 and i; and in $\operatorname{Func}\left(\mathbb{Z}_{2}, \mathbb{Z}_{2}\right)$ the only unit is ℓ.
(d) Determine whether the ring is a field, an integral domain, or neither.

Solution: All three rings have zero-divisors, so none of them are integral domains (or fields).
2: Determine which of the following are rings; for each ring, determine whether it has an identity.
(a) $Q=\left\{\left.\left(\begin{array}{cc}a & a+b \\ a+b & b\end{array}\right) \right\rvert\, a, b \in \mathbb{Z}\right\} \subset M_{2}(\mathbb{Z})$

Solution: Q is not a ring since it is not closed under multiplication. Its easy to find a counterexample.
(b) $R=\left\{\left.\left(\begin{array}{ll}a & a \\ b & b\end{array}\right) \right\rvert\, a, b \in \mathbb{Z}\right\} \subset M_{2}(\mathbb{Z})$

Solution: R is a subring of $M_{2}(\mathbb{Z})$, since $0 \in R$ and R is closed under addition, subtraction and multiplication. To see that R is closed under multiplication, note that $\left(\begin{array}{ll}a & a \\ b & b\end{array}\right)\left(\begin{array}{ll}c & c \\ d & d\end{array}\right)=\left(\begin{array}{ll}e & e \\ f & f\end{array}\right)$, where $e=a(c+d)$ and $f=b(c+d)$. R does not have an identity, since if $\left(\begin{array}{ll}a & a \\ b & b\end{array}\right)$ were the identity then we would need to have $a(c+d)=c$ for all c and d, and no such $a \in \mathbb{Z}$ exists.
(c) $S=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ under the operations addition + and composition \circ

Solution: S is not a ring since it is not true that $f \circ(g+h)=f \circ g+f \circ h$ for all f, g, h. For example, if f is the constant function $f=1$, then $f \circ(g+h)=1$ but $f \circ g+f \circ h=2$.
(d) $T=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}\right.$ with a even and b odd $\}$

Solution: T is a ring. We have $0 \in T$ since $0=\frac{0}{3}$. Also T is closed under,+- and \cdot since if a and c are even, and b and d are odd, then we have $\frac{a}{b} \pm \frac{c}{d}=\frac{a d \pm b c}{b d}$ and $\frac{a}{b} \frac{c}{d}=\frac{a c}{b d}$; the numerators are $a d \pm b c$ and $a c$, which are even, and the denominators are both $b d$, which is odd.

3: Find the smallest subring of \mathbb{Q} which contains $\frac{2}{3}$.
Solution: Let S be the smallest such subring. We have $\frac{2}{3}=\frac{6}{9} \in S$ and $\frac{2}{3} \frac{2}{3}=\frac{4}{9} \in S$ and so $\frac{6}{9}-\frac{4}{9}=\frac{2}{9} \in S$. Suppose (inductively) that $\frac{2}{3^{n}} \in S$ for some fixed $n \in \mathbb{Z}_{+}$. Then $\frac{2}{3^{n}}=\frac{6}{3^{n+1}} \in S$ and $\frac{2}{3^{n}} \frac{2}{3}=\frac{4}{3^{n+1}} \in S$ and so $\frac{6}{3^{n+1}}-\frac{4}{3^{n+1}}=\frac{2}{3^{n+1}} \in S$. By induction, $\frac{2}{3^{n}} \in S$ for all $n \in \mathbb{Z}_{+}$. Thus $T=\left\{\left.\frac{2 k}{3^{n}} \right\rvert\, k \in \mathbb{Z}, n \in \mathbb{Z}_{+}\right\} \subset S$. It is easy to check that T is a ring, and so we must have $S=T$.

4: An element a in a ring R is called nilpotent if $a^{n}=0$ for some $n \in \mathbb{Z}$. An element a is called an idempotent if $a^{2}=a$. Find all the zero divisors, all the units, all the nilpotent elements, and all the idempotents in the ring $R=\mathbb{Z}_{3} \oplus \mathbb{Z}_{6}$.

Solution: The zero-divisors are the elements (a, b) with $a=0,1$ or 2 in \mathbb{Z}_{3} and $b=2,3$ or 4 in \mathbb{Z}_{6} (there are 9 zero-divisors). The units are the elements (a, b) with $a=1$ or 2 and $b=1$ or 5 (there are 4 units). The nilpotents are $(0,0)$ and $(0,2)$. The idempotents are the elements (a, b) with $a=0$ or 1 and $b=0,1,3$ or 4 (there are 8 idempotents).

5: Find all the solutions of $x^{2}-x+2=0$, where
(a) $x \in \mathbb{Z}_{8}$

Solution: By trying every element, we find the solutions $x=3$ or 6 .
(b) $x \in \mathbb{Z}_{3}[i]$.

Solution: By trying every element, we find the solutions $x=2+i$ or $2+2 i$.
6: Find all solutions to $X^{2}=I$, where
(a) $X \in M_{2}(\mathbb{R})$

Solution: Let $X=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Then $X^{2}=\left(\begin{array}{cc}a^{2}+b c & b(a+d) \\ c(a+d) & d^{2}+b c\end{array}\right)$. To get $X^{2}=I$ we need $a^{2}+b c=1$ (1), $b(a+d)=0(2), c(a+d)=0(3)$ and $d^{2}+b c=1$ (4). From equations (1) and (4) we see that $a^{2}=d^{2}=1-b c$ so $a= \pm d$. Case 1: if $a=d \neq 0$ then equations (2) and (3) imply that $b=c=0$, and then equation (1) implies that $a= \pm 1$ so we obtain $X= \pm I$. Case 2: if $a=-d$ (this includes the case that $a=d=0$) then equations (2) and (3) place no restriction on b and c, and then equation (1) implies that $a= \pm \sqrt{1-b c}$ so we obtain $X=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, where b and c may be any real numbers satisfying $b c<1$, and where $a= \pm \sqrt{1-b c}$ and $d=-a$.
(b) $X \in M_{2}\left(\mathbb{Z}_{2}\right)$.

Solution: As above we let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, and as above, the same 4 equations must be satisfied. However, in \mathbb{Z}_{2} we have $x^{2}=x$ for all x, so equations (1) and (4) imply that $a=d=1-b c$. Since $a=d$, we have $a+d=2 a=0$ so equations (2) and (3) give no further restrictions. Thus $X=\left(\begin{array}{cc}1-b c & b \\ c & 1-b c\end{array}\right)$ where b and c are arbitrary. To be explicit, $X=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ or $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

7: (a) If $a b=a$ and $b a=b$ in a ring, show that $a^{2}=a$.
Solution: Suppose $a b=a$ and $b a=b$. Then $a=a b=a(b a)=(a b) a=a a=a^{2}$.
(b) If $a b+b a=1$ and $a^{3}=a$ in a ring, show that $a^{2}=1$.

Solution: Suppose that $a b+b a=1$ and $a^{3}=a$. Then $a^{2}=a^{2}+a^{2}-a^{2}=a^{2}(a b+b a)+(a b+b a) a^{2}-a^{2}=$ $a^{3} b+a^{2} b a+a b a^{2}+b a^{3}-a^{2}=a b+a^{2} b a+a b a^{2}+b a-a^{2}=(a b+b a)+a(a b+b a) a-a^{2}=1+a^{2}-a^{2}=1$

