1: Consider the IVP $y' = x - y^2$ with y(0) = 0.

(a) Sketch the direction field for the given DE for $-2 \le x \le 3$ and $-2 \le y \le 2$ and, on the same grid, sketch the solution curve to the given IVP.

(b) Using a calculator, apply Euler's method with step size $\Delta x = 0.5$ to approximate the value of f(3) where y = f(x) is the solution to the given IVP.

2: (a) The substitution u(x) = y'(x) and u'(x) = y''(x) transforms a second order DE of the form y'' = F(y', x) for y = y(x) to the first order DE u' = F(u, x) for u = u(x). Use this substitution to solve the IVP $y'' + x(y')^2 = 0$ with y(0) = 2 and $y'(0) = \frac{1}{2}$.

(b) The substitution u(y(x)) = y'(x) and u'(y(x))y'(x) = y''(x) transforms a second order DE of the form y'' = F(y', y) for y = y(x) to the first order DE uu' = F(u, y) for u = u(y). Use this substitution to solve $y'' + (y')^2 = 2e^{-y}$ with y(0) = 0 and y'(0) = 2.

- **3:** Given one solution $y = y_1(x)$ to the linear homogeneous DE y'' + p(x) + q(x)y = 0, we can often find a second independent solution by trying $y_2(x) = y_1(x)u(x)$ for some function u = u(x). Use this method, known as **reduction of order**, to solve each of the following.
 - (a) Solve the DE $x^3y'' + xy' y = 0$, given that y = x is one solution.
 - (b) Solve the IVP $x^2y'' + 3xy' + y = 0$ with y(1) = 2, y'(1) = 3 given that $y = \frac{1}{x}$ is one solution to the DE.

4: Given two independent solutions $y = y_1(x)$ and $y = y_2(x)$ to the linear homogeneous DE

$$y'' + p(x)y' + q(x)y = 0$$

we can often find a particular solution $y = y_p(x)$ to the associated non-homogeneous DE

$$y'' + p(x) y' + q(x) y = r(x)$$

by trying $y_p(x) = y_1(x)u_1(x) + y_2(x)u_2(x)$ for some functions $u_1(x)$ and $u_2(x)$ satisfying the condition $y_1u_1' + y_2u_2' = 0$ (1). Putting $y = y_1u_1 + y_2u_2$ into the non-homogeneous DE, and using condition (1) along with the fact that y_1 and y_2 are solutions to the homogeneous DE, gives $y_1'u_1' + y_2'u_2' = r$ (2). Solving the two equations (1) and (2) allows us to find the unknown functions u_1 and u_2 , and hence the particular solution $y_p = y_1u_1 + y_2u_2$. Use this method, known as **variation of parameters**, to solve each of the following.

(a) Solve the DE $x^2y'' - x(x+2)y' + (x+2)y = 2x^3$ given that y = x and $y = xe^x$ are solutions to the associated homogeneous DE.

(b) Solve the DE $xy'' - (1+x)y' + y = x^2e^{2x}$ given that y = 1 + x and $y = e^x$ are solutions to the associated homogeneous DE.