SYDE Advanced Math 2, Assignment 1

1: Consider the IVP $y^{\prime}=x-y^{2}$ with $y(0)=0$.
(a) Sketch the direction field for the given DE for $-2 \leq x \leq 3$ and $-2 \leq y \leq 2$ and, on the same grid, sketch the solution curve to the given IVP.
(b) Using a calculator, apply Euler's method with step size $\Delta x=0.5$ to approximate the value of $f(3)$ where $y=f(x)$ is the solution to the given IVP.

2: (a) The substitution $u(x)=y^{\prime}(x)$ and $u^{\prime}(x)=y^{\prime \prime}(x)$ transforms a second order DE of the form $y^{\prime \prime}=F\left(y^{\prime}, x\right)$ for $y=y(x)$ to the first order DE $u^{\prime}=F(u, x)$ for $u=u(x)$. Use this substitution to solve the IVP $y^{\prime \prime}+x\left(y^{\prime}\right)^{2}=0$ with $y(0)=2$ and $y^{\prime}(0)=\frac{1}{2}$.
(b) The substitution $u(y(x))=y^{\prime}(x)$ and $u^{\prime}(y(x)) y^{\prime}(x)=y^{\prime \prime}(x)$ transforms a second order DE of the form $y^{\prime \prime}=F\left(y^{\prime}, y\right)$ for $y=y(x)$ to the first order DE $u u^{\prime}=F(u, y)$ for $u=u(y)$. Use this substitution to solve $y^{\prime \prime}+\left(y^{\prime}\right)^{2}=2 e^{-y}$ with $y(0)=0$ and $y^{\prime}(0)=2$.

3: Given one solution $y=y_{1}(x)$ to the linear homogeneous DE $y^{\prime \prime}+p(x)+q(x) y=0$, we can often find a second independent solution by trying $y_{2}(x)=y_{1}(x) u(x)$ for some function $u=u(x)$. Use this method, known as reduction of order, to solve each of the following.
(a) Solve the $\mathrm{DE} x^{3} y^{\prime \prime}+x y^{\prime}-y=0$, given that $y=x$ is one solution.
(b) Solve the IVP $x^{2} y^{\prime \prime}+3 x y^{\prime}+y=0$ with $y(1)=2, y^{\prime}(1)=3$ given that $y=\frac{1}{x}$ is one solution to the DE.

4: Given two independent solutions $y=y_{1}(x)$ and $y=y_{2}(x)$ to the linear homogeneous DE

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

we can often find a particular solution $y=y_{p}(x)$ to the associated non-homogeneous DE

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x)
$$

by trying $y_{p}(x)=y_{1}(x) u_{1}(x)+y_{2}(x) u_{2}(x)$ for some functions $u_{1}(x)$ and $u_{2}(x)$ satisfying the condition $y_{1} u_{1}{ }^{\prime}+y_{2} u_{2}^{\prime}=0$ (1). Putting $y=y_{1} u_{1}+y_{2} u_{2}$ into the non-homogeneous DE, and using condition (1) along with the fact that y_{1} and y_{2} are solutions to the homogeneous DE, gives $y_{1}{ }^{\prime} u_{1}{ }^{\prime}+y_{2}{ }^{\prime} u_{2}{ }^{\prime}=r$ (2). Solving the two equations (1) and (2) allows us to find the unknown functions u_{1} and u_{2}, and hence the particular solution $y_{p}=y_{1} u_{1}+y_{2} u_{2}$. Use this method, known as variation of parameters, to solve each of the following.
(a) Solve the $\mathrm{DE} x^{2} y^{\prime \prime}-x(x+2) y^{\prime}+(x+2) y=2 x^{3}$ given that $y=x$ and $y=x e^{x}$ are solutions to the associated homogeneous DE.
(b) Solve the DE $x y^{\prime \prime}-(1+x) y^{\prime}+y=x^{2} e^{2 x}$ given that $y=1+x$ and $y=e^{x}$ are solutions to the associated homogeneous DE.

