1: Consider the system $\binom{x^{\prime}}{y^{\prime}}=\binom{x y}{x+y}$.
(a) In the region $-3 \leq x \leq 3,-3 \leq y \leq 3$, sketch the curves $x^{\prime}=0, y^{\prime}=0$, and $\frac{y^{\prime}}{x^{\prime}}= \pm \frac{1}{2}, \pm 1 \pm 2$, sketch the direction field field for this system, and sketch the three solution curves through $(1,-1),(1,1)$ and $(-1,1)$.
(b) Use Euler's method with step size $\Delta t=\frac{1}{2}$ to approximate the point $(x(2), y(2))$, where $(x(t), y(t))$ is the solution to the above system with $(x(0), y(0))=(-1,1)$.

2: Consider the system $\binom{x^{\prime}}{y^{\prime}}=\binom{\frac{1}{y}}{\frac{2}{x}}$.
(a) Solve the system by first solving the DE $\frac{d y}{d x}=\frac{y^{\prime}}{x^{\prime}}$ for $y=y(x)$, that is for $y(t)=y(x(t))$.
(b) Solve the system again, this time by eliminating y and y^{\prime} from $x^{\prime \prime}$ to get a second order DE for $x=x(t)$.
(c) Find the unique solution to the system which satisfies the initial conditions $x(0)=2$ and $y(0)=1$.

3: Given one solution $\binom{x}{y}=\binom{x(t)}{y(t)}$ to the pair of linear homogeneous ODEs given by $\binom{x^{\prime}}{y^{\prime}}=A\binom{x}{y}$, (where A is a 2×2 matrix whose entries are continuous functions of t, we can often find a second independent solution by trying $\binom{x}{y}=\binom{x_{2}}{y_{2}}=\left(\begin{array}{cc}1 & x_{1} \\ 0 & y_{1}\end{array}\right)\binom{u}{v}=\binom{u+x_{1} v}{y_{1} v}$. Then we have $\binom{x^{\prime}}{y^{\prime}}=\binom{u^{\prime}+x_{1}^{\prime} v+x_{1} v^{\prime}}{y_{1}^{\prime} v+y_{1} v^{\prime}}$ and we have $A\binom{x}{y}=A\binom{u+x_{1} v}{y_{1} v}=A\binom{u}{0}+A\binom{x_{1}}{y_{1}} v=\binom{a_{11} u}{a_{21} u}+\binom{x_{1}^{\prime}}{y_{1}^{\prime}} v=\binom{a_{11} u+x_{1}^{\prime} v}{a_{21} u+y_{1}^{\prime} v}$, so the pair of ODEs becomes

$$
\binom{0}{0}=\binom{x^{\prime}}{y^{\prime}}-A\binom{x}{y}=\binom{u^{\prime}+x_{1}^{\prime} v+x_{1} v^{\prime}}{y_{1}^{\prime} v+y_{1} v^{\prime}}-\binom{a_{11} u+x_{1}^{\prime} v}{a_{21} u+y_{1}^{\prime} v}=\binom{u^{\prime}+x_{1} v^{\prime}-a_{11} u}{y_{1} v_{1}^{\prime}-a_{21} u} .
$$

Eliminating v^{\prime} from the two equations $u^{\prime}+x_{1} v^{\prime}-a_{11} u=0$ and $y_{1} v_{1}^{\prime}-a_{21} u=0$ (by multiplying the first equation by y_{1} and the second by x_{1} and subtracting) gives $y_{1} u^{\prime}-a_{11} y_{1} u+a_{21} x_{1} u=0$ which is a first order linear (and separable) DE for $u=u(x)$. Once we solve for u we have found a second independent solution. Use this method, which is known as reduction of order, to solve the IVT given by $\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}0 & \frac{1}{t} \\ \frac{1}{t} & 1\end{array}\right)\binom{x}{y}$ with $x(1)=2$ and $y(1)=3$, given that $\binom{x_{1}}{y_{1}}=\binom{1+\frac{1}{t}}{-\frac{1}{t}}$ is one solution.

4: Given n independent solutions $x_{1}, x_{2}, \cdots, x_{n}$ to the system of homogeneous linear ODEs $x^{\prime}=A x$, we can often find a particular solution to the nonhomogeneous system $x^{\prime}=A x+b$ by trying $x=x_{p}=$ $x_{1} u_{1}+x_{2} u_{2}+\cdots+x_{n} u_{n}=X u$, where X is the matrix with columns x_{1}, \cdots, x_{n} and $u=\left(u_{1}, \cdots, u_{n}\right)^{T}$. We then have $x^{\prime}=X^{\prime} u+X u^{\prime}=A X u+X u^{\prime}$ and $A x=A X u$, so the nonhomogeneous system becomes $b=x^{\prime}-A x=A X u+X u^{\prime}-A X u=X u^{\prime}$, that is $u^{\prime}=X^{-1} b$. Once we solve for u we have found a particular solution. This method is known as variation of parameters.
Use reduction of order and variation of parameters to solve $\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}0 & \frac{1}{t^{2}} \\ 1 & \frac{1}{t}\end{array}\right)\binom{x}{y}+\binom{4}{3 \sqrt{t}}$ given that $\binom{x_{1}}{y_{1}}=\binom{\frac{1}{t}}{-1}$ is one solution to the associated homogeneous system.

