SYDE Advanced Math 2, Solutions to Assignment 2

1: Consider the system $\binom{x^{\prime}}{y^{\prime}}=\binom{x y}{x+y}$.
(a) In the region $-3 \leq x \leq 3,-3 \leq y \leq 3$, sketch the curves $x^{\prime}=0, y^{\prime}=0$, and $\frac{y^{\prime}}{x^{\prime}}= \pm \frac{1}{2}, \pm 1 \pm 2$, sketch the direction field field for this system, and sketch the three solution curves through $(1,-1),(1,1)$ and $(-1,1)$.
Solution: We have $x^{\prime}=0$ when $x y=0$, so along the x - and y-axes, the slope of any solution curve is vertical. We have $y^{\prime}=0$ when $x+y=0$, so along the line $y=-x$, the slope of any solution curve is zero. The isocline $\frac{d y}{d x}=\frac{y^{\prime}}{x^{\prime}}=c$ is given by $\frac{x+y}{x y}=c$, that is $y=\frac{x}{c x-1}$. This is a hyperbola with vertical asymptote along $x=\frac{1}{c}$ and horizontal asymptote along $y=\frac{1}{c}$, and one branch of the hyperbola passes through the origin $(0,0)$. The isoclines $c= \pm \frac{1}{2}, \pm 1, \pm 2$ are shown in peach, the slope field is shown in green, and the solution curves are shown in blue.

(b) Use Euler's method with step size $\Delta t=\frac{1}{2}$ to approximate the point $(x(2), y(2))$, where $(x(t), y(t))$ is the solution to the above system with $(x(0), y(0))=(-1,1)$.
Solution: We let $t_{0}=0, x_{0}=-1, y_{0}=1$, then set $t_{k+1}=t_{k}+\Delta t, x_{k+1}=x_{k}+\left(x_{k} y_{k}\right) \Delta t$ and $y_{k+1}=y_{k}=$ $\left(x_{k}+y_{k}\right) \Delta t$. The first few values of $t_{k}, x_{k}, y_{k}, x_{k} y_{k}$ and $\left(x_{k}+y_{k}\right)$ are shown in the table below.

k	t_{k}	x_{k}	y_{k}	$x_{k} y_{k}$	$x_{k}+y_{k}$
0	0	-1	1	-1	0
1	$\frac{1}{2}$	$-\frac{3}{2}$	1	$-\frac{3}{2}$	$-\frac{1}{2}$
2	1	$-\frac{9}{4}$	$\frac{3}{4}$	$-\frac{27}{16}$	$-\frac{3}{2}$
3	$\frac{3}{2}$	$-\frac{99}{32}$	0	0	$-\frac{99}{32}$
4	2	$-\frac{99}{32}$	$-\frac{99}{64}$		

Thus we have $(x(2), y(2)) \cong\left(x_{4}, y_{4}\right)=\left(-\frac{99}{32},-\frac{99}{64}\right)$.

2: Consider the system $\binom{x^{\prime}}{y^{\prime}}=\binom{\frac{1}{y}}{\frac{2}{x}}$ with initial conditions $x(0)=2$ and $y(0)=1$.
(a) Solve the system by first solving the $\mathrm{DE} \frac{d y}{d x}=\frac{y^{\prime}}{x^{\prime}}$ for $y=y(x)$, that is for $y(t)=y(x(t))$.

Solution: We wish to solve the $\frac{d y}{d x}=\frac{2 y}{x}$. This DE is separable since we can write it as $\frac{d y}{y}=\frac{2}{x} d x$. Integrate both sides to get $\ln |y|=2 \ln |x|+a$, or equivalently, $y=b x^{2}$, that is $y(t)=b x(t)^{2}$. Now we return to the system given by $x^{\prime}=\frac{1}{y}$ and $y^{\prime}=\frac{2}{x}$. Put $y=b x^{2}$ into the first DE $x^{\prime}=\frac{1}{y}$ to get $x^{\prime}=\frac{1}{b x^{2}}$. This is separable: we can write it as $x^{2} d x=\frac{1}{b} d t$ and integrate to get $\frac{1}{3} x^{3}=\frac{1}{b} t+c$, that is $x^{3}=\frac{3}{b} t+3 c$. Letting $p=\frac{3}{b}$ and $q=3 c$, we can also write this as $x=(p t+q)^{1 / 3}$. Finally, we need $y=b x^{2}=\frac{3}{p} x^{2}=\frac{3}{p}(p t+q)^{2 / 3}$. Thus the solution is given by

$$
\binom{x}{y}=\binom{(p t+q)^{1 / 3}}{\frac{3}{p}(p t+q)^{2 / 3}}
$$

where $p, q \in \mathbb{R}$.
(b) Solve the system again, this time by eliminating y and y^{\prime} from $x^{\prime \prime}$ to get a second order DE for $x=x(t)$. Solution: We have pair of DEs, $x^{\prime}=\frac{1}{y}$ (1) and $y^{\prime}=\frac{2}{x}$ (2). Differentiate equation (1), then use equations (1) and (2) to get $x^{\prime \prime}=-\frac{1}{y^{2}} \cdot y^{\prime}=-\left(x^{\prime}\right)^{2} \cdot \frac{2}{x}$, that is $x x^{\prime \prime}=2\left(x^{\prime}\right)^{2}$. Since this second order DE does not involve the variable t, we let $x^{\prime}=u$ and $x^{\prime \prime}=u u^{\prime}$, and the DE becomes $x u u^{\prime}+2 u^{2}=0$, that is $u^{\prime}+\frac{2}{x} u=0$. This is linear. An integrating factor is $\lambda=e^{\int \frac{2}{x} d x}=e^{2 \ln x}=x^{2}$ and the solution is $u=\frac{1}{x^{2}} \int 0 d x=\frac{a}{x^{2}}$. Replace u by x^{\prime} again, and we have the $\mathrm{DE} x^{\prime}=\frac{a}{x^{2}}$, that is $x^{2} x^{\prime}=a$. Integrate both sides to get $\frac{1}{3} x^{3}=a t+b$, that is $x=(3 a t+3 b)^{1 / 3}$. Let $p=3 a$ and $q=3 b$ and rewrite this as $x=(p t+q)^{1 / 3}$. Note that $x^{\prime}=\frac{p}{3}(p t+q)^{-2 / 3}$. From equation (1) we have $y=\frac{1}{x^{\prime}}=\frac{3}{p}(p t+q)^{2 / 3}$. Thus the solution to the system is

$$
\binom{x}{y}=\binom{(p t+q)^{1 / 3}}{\frac{3}{p}(p t+q)^{2 / 3}} .
$$

(c) Find the unique solution to the system which satisfies the given initial conditions.

Solution: Put $t=0, x=2$ and $y=1$ into our solutions $x=(p t+q)^{1 / 3}$ and $y=\frac{1}{x^{\prime}}=\frac{3}{p}(p t+q)^{2 / 3}$ to get $2=q^{1 / 3}$ and $1=\frac{3}{p} q^{2 / 3}$, so we must have $q=8$ and $p=12$. Thus the solution to the IVP is

$$
\binom{x}{y}=\binom{(12 t+8)^{1 / 3}}{\frac{1}{4}(12 t+8)^{2 / 3}}
$$

3: Use reduction of order to solve the IVT given by $\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}0 & \frac{1}{t} \\ \frac{1}{t} & 1\end{array}\right)\binom{x}{y}$ with $x(1)=2$ and $y(1)=3$, given that $\binom{x_{1}}{y_{1}}=\binom{1+\frac{1}{t}}{-\frac{1}{t}}$ is one solution.
Solution: We try $\binom{x_{2}}{y_{2}}=\left(\begin{array}{ll}1 & x_{1} \\ 0 & y_{1}\end{array}\right)\binom{u}{v}$. Putting this into the DE and simplifying gives

$$
\binom{u^{\prime}}{v^{\prime}}=\left(\begin{array}{ll}
1 & x_{1} \\
0 & y_{1}
\end{array}\right)^{-1} A\binom{1}{0} u=\left(\begin{array}{cc}
1 & 1+\frac{1}{t} \\
0 & -\frac{1}{t}
\end{array}\right)^{-1}\binom{0}{\frac{1}{t}} u=\left(\begin{array}{cc}
1 & t+1 \\
0 & -t
\end{array}\right)\binom{0}{\frac{1}{t}} u=\binom{1+\frac{1}{t}}{-1} u
$$

so we need $u^{\prime}=\left(1+\frac{1}{t}\right) u$ and $v^{\prime}=-u$. The first ODE is linear as it can be written as $u^{\prime}-\left(1+\frac{1}{t}\right) u=0$. An integrating factor is $\lambda=e^{\int-\left(1+\frac{1}{t}\right) d t}=e^{-t-\ln t}=\frac{1}{t e^{t}}$, and the solution is $u=t e^{t} \int 0 d t=a t e^{t}$. We choose $a=1$ so that $u=t e^{t}$. The second ODE becomes $v^{\prime}=-u=-t e^{t}$, so that $v=\int-t e^{t} d t$. Integrate by parts to get $v=\int-t e^{t} d t=-t e^{t}+\int e^{t} d t=-t e^{t}+e^{t}+b$. We choose $b=0$ so that $v=(1-t) e^{t}$. Thus we obtain a second solution to the system

$$
\binom{x_{2}}{y_{2}}=\left(\begin{array}{ll}
1 & x_{1} \\
0 & y_{1}
\end{array}\right)\binom{u}{v}=\left(\begin{array}{cc}
1 & 1+\frac{1}{t} \\
0 & -\frac{1}{t}
\end{array}\right)\binom{t e^{t}}{(1-t) e^{t}}=\binom{t e^{t}+\frac{1}{t}\left(1-t^{2}\right) e^{t}}{-\frac{1}{t}(1-t) e^{t}}=\binom{\frac{1}{t} e^{t}}{\left(1-\frac{1}{t}\right) e^{t}}
$$

and the general solution to the system is

$$
\binom{x}{y}=A\binom{x_{1}}{y_{1}}+B\binom{x_{2}}{y_{2}}=A\binom{1+\frac{1}{t}}{-\frac{1}{t}}+B e^{t}\binom{\frac{1}{t}}{1-\frac{1}{t}}
$$

To get $y(1)=3$ we need $3=-A$ so that $A=-3$, and to get $x(1)=2$ we need $2=2 A+B e=-6+B e$ so that $B=8 e^{-1}$. Thus the solution to the IVP is given by

$$
\binom{x}{y}=-3\binom{1+\frac{1}{t}}{-\frac{1}{t}}+8 e^{t-1}\binom{\frac{1}{t}}{1-\frac{1}{t}}
$$

Alternatively we can write this as $x=\frac{8 e^{t-1}}{t}-3\left(1+\frac{1}{t}\right)$ and $y=\frac{3}{t}+8 e^{t-1}\left(1-\frac{1}{t}\right)$.

4: Use reduction of order and variation of parameters to solve $\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}0 & \frac{1}{t^{2}} \\ 1 & \frac{1}{t}\end{array}\right)\binom{x}{y}+\binom{4}{3 \sqrt{t}}$ given that $\binom{x_{1}}{y_{1}}=\binom{\frac{1}{t}}{-1}$ is one solution to the associated homogeneous system.
Solution: First we use reduction of order to find a second independent solution to the homogeneous system. We try $\binom{x_{2}}{y_{2}}=\left(\begin{array}{ll}1 & x_{1} \\ 0 & y_{1}\end{array}\right)\binom{u}{v}$. Put this into the associated homogeneous DE. and simplify to get

$$
\binom{u^{\prime}}{v^{\prime}}=\left(\begin{array}{ll}
1 & x_{1} \\
0 & y_{1}
\end{array}\right)^{-1} A\binom{1}{0} u=\left(\begin{array}{cc}
1 & \frac{1}{t} \\
0 & -1
\end{array}\right)^{-1}\binom{0}{1} u=\left(\begin{array}{cc}
1 & \frac{1}{t} \\
0 & -1
\end{array}\right)\binom{0}{1} u=\binom{\frac{1}{2}}{-1} u
$$

so we need $u^{\prime}=\frac{1}{t} u$ and $v^{\prime}=-u$. The first ODE is linear. An integrating factor is $\lambda=e^{\int-\frac{1}{t} d t}=e^{-\ln t}=\frac{1}{t}$ and the solution is $u=t \int 0 d t=a t$. The second ODE becomes $v^{\prime}=-u=-a t$, so that $v=-\frac{1}{2} a t^{2}+b$. We choose $a=2$ and $b=0$ so that $u=2 t$ and $v=-t^{2}$. Thus we obtain the second solution

$$
\binom{x_{2}}{y_{2}}=\binom{1_{1}^{x}}{0_{1}^{y}}\binom{u}{v}=\left(\begin{array}{cc}
1 & \frac{1}{t} \\
0 & -1
\end{array}\right)\binom{2 t}{-t^{2}}=\binom{t}{t^{2}} .
$$

Now that we have two independent solutions to the associated homogeneous system, we use variation of parameters to find a particular solution to the given non-homogeneous system. We try $\binom{x_{p}}{y_{p}}=X\binom{u}{v}$ where $X=\left(\begin{array}{ll}x_{1} & x_{2} \\ y_{1} & y_{2}\end{array}\right)=\left(\begin{array}{cc}\frac{1}{t} & t \\ -1 & t^{2}\end{array}\right)$ (and where we are re-using the letters u and v to denote two new functions $u=u(t)$ and $v=v(t))$. Putting this into the given system gives

$$
\binom{u^{\prime}}{v^{\prime}}=X^{-1}\binom{4}{3 \sqrt{t}}=\left(\begin{array}{cc}
\frac{1}{t} & t \\
-1 & t^{2}
\end{array}\right)^{-1}\binom{4}{3 \sqrt{t}}=\frac{1}{2 t}\left(\begin{array}{cc}
t^{2} & -t \\
1 & \frac{1}{t}
\end{array}\right)\binom{4}{3 \sqrt{t}}=\frac{1}{2 t}\binom{4 t^{2}-3 t \sqrt{t}}{4+\frac{3}{\sqrt{t}}} .
$$

Since $u^{\prime}=2 t-\frac{3}{2} t^{1 / 2}$ we have $u=\int 2 t-\frac{3}{2} t^{1 / 2} d t=t^{2}-t^{3 / 2}$ (plus a constant which we choose to be zero), and since $v^{\prime}=2 t^{-1}+\frac{3}{2} t^{-3 / 2}$ we have $v=2 \ln t-3 t^{-1 / 2}$ (plus a constant). Thus we obtain the particular solution

$$
\binom{x_{p}}{y_{p}}=\left(\begin{array}{cc}
\frac{1}{t} & t \\
-1 & t^{2}
\end{array}\right)\binom{u}{v}=\left(\begin{array}{cc}
\frac{1}{t} & t \\
-1 & t^{2}
\end{array}\right)\binom{t^{2}-t^{3 / 2}}{2 \ln t-3 t^{-1 / 2}}=\binom{t-t^{1 / 2}+2 t \ln t-3 t^{1 / 2}}{-t^{2}+t^{3 / 2}+2 t^{2} \ln t-3 t^{3 / 2}}
$$

The general solution to the given (non-homogeneous) system is

$$
\binom{x}{y}=A\binom{x_{1}}{y_{1}}+B\binom{x_{2}}{y_{2}}+\binom{x_{p}}{y_{p}}=A\binom{\frac{1}{t}}{-1}+B\binom{t}{t^{2}}+\binom{t+2 t \ln t-4 t^{1 / 2}}{-t^{2}+2 t^{2} \ln t-2 t^{3 / 2}}
$$

