
SYDE Advanced Math 2, Solutions to Assignment 3

1: Consider the system

(
x′

y′

)
=

(
5 3
−3 −1

)(
x
y

)
.

(a) Find the general solution to the system, and find the solution which satisfies x(0) = 1 and y(0) = 1.

Solution: Let A =

(
5 3
−3 −1

)
. The characteristic polynomial of A is g(r) = detA− rI = r2−4r+ = (r−2)2.

The only eigenvalue is r = 2. When r = 2, we have A − rI =

(
3 3
−3 −3

)
∼
(

1 1
0 0

)
. The eigenspace is 1-

dimensional, and an eigenvector is u =

(
−1

1

)
. To find a second independent solution, we solve (A−RI)v = u.

We have (
A− rI

∣∣u) =

(
3 3
−3 −3

∣∣∣∣−1
1

)
∼
(

1 1
0 0

∣∣∣∣− 1
3
0

)
so we find that v =

(
− 1

3
0

)
. The general solution to the given system is(

x
y

)
= ae2t

(
−1

1

)
+ be2t

(
te2t

(
−1

1

)
+ e2t

(
− 1

3
0

))
= e2t

(
−a− bt− 1

3b
a+ bt

)
.

To get y(0) = 1 we need a = 1 and to get x(0) = 1 we need −a− 1
3b = 1 and so b = −3(a+ 1) = −6. Thus

the solution with x(0) = 1 and y(0) = 1 is given by(
x
y

)
= e2t

(
1 + 6t
1− 6t

)
(b) Sketch a phase portrait: show the isocline x′ = 0 and the isoclines y′

x′ = c for c = 1, 0,− 1
3 ,−

1
2 ,−

3
5 ,−1,

show the direction field, and show the solution curves through each of the six points (±1,±1) and (0,±1).

Solution: We have x′ = 0 ⇐⇒ 5x+3y=0, and y′

x′ = c ⇐⇒ −3x−y = 5cx+3cy ⇐⇒ (3c+1)y = −(5c+3)x.
When c = − 1

3 this gives x = 0 and otherwise it gives y = − 5c+3
3c+1x. Specifically, when c = 0 we get y = −3x,

when c = − 1
2 we get y = x, when c = − 3

5 we get y = 0 and when c = −1 we get y = −x. These isoclines are
shown in peach, the direction field is shown in green, and the solution curves are shown in blue.



2: Consider the predator prey model, with the prey species population x = x(t) and the predator species
population y = y(t) satisfying the pair of first order ODEs

x′ = (1− 1
2x−

1
2y)x and y′ = 1

2 (−1 + 2x− y)y .

Find all the equilibrium points, find the solution to the linearized system at each equilibrium point, and
sketch a partial phase portrait which shows the isoclines x′ = 0 and y′ = 0 and shows the behaviour of the
solution curves near each equilibrium point.

Solution: Let F (x, y) =
((

1− 1
2x−

1
2y
)
x , 1

2

(
− 1 + 2x− y)y

)
. The equilibrium points are given by

F (x, y) = (0, 0) ⇐⇒
((
x = 0 or x+ y = 2

)
and

(
y = 0 or 2x− y = 1

))
⇐⇒ (x, y) = (0, 0), (0, 1), (2, 0) or (1, 1).

Note that F (x, y) =
(
x− 1

2x
2 − 1

2xy , −
1
2y + xy − 1

2y
2
)

so we have

A =

(
1− x− 1

2y − 1
2x

y − 1
2 + x− y

)
.

At (0, 0) we have A = DF =

(
1 0
0 − 1

2

)
which has eigenvalues r = 1,− 1

2 with eigenvectors

(
1
0

)
and

(
0
1

)
,

so the general solution to the linearized system at (0, 0) is given by(
x
y

)
= aet

(
1
0

)
+ be−t/2

(
0
1

)
.

At (0,−1) we have A =

(
3
2 0
−1 1

2

)
which has eigenvalues r = 3

2 ,
1
2 . When r = 1

2 and eigenvector is

(
0
1

)
and

when r = 3
2 we have A− rI =

(
0 0
−1 −1

)
∼
(

1 1
0 0

)
so an eigenvector is

(
−1

1

)
. Thus the general solution

to the linearized system at (0,−1) is given by(
x
y

)
= ae3t/2

(
−1

1

)
+ bet/2

(
0
1

)
.

At (2, 0) we have A =

(
−1 −1

0 3
2

)
which has eigenvalues r = −1, 32 . When r = −1 an eigenvector is

(
1
0

)
, and

when r = 3
2 we have A =

(
− 5

2 −1
0 0

)
∼
(

5 2
0 0

)
so an eigenvector is

(
−2

5

)
. The solution to the linearized

system at (2, 0) is (
x
y

)
= ae−t

(
1
0

)
+ be3t/2

(
−2

5

)
At (1, 1) we have a =

(
− 1

2 −
1
2

1 − 1
2

)
. The characteristic polynomial is g(r) = det(A − rI) = r2 + r + 3

4 .

The eigenvalues are r = −1±
√
1−3

2 = −1±
√
2 i

2 . When r = −1+
√
2 i

2 we have A − rI =

(
−
√
2
2 i − 1

2

1
√
2
2 i

)
∼(

2 −
√

2 i
0 0

)
so an eigenvector is

(√
2 i
2

)
. A complex solution is given by

e(−1+
√
2 i)t

(√
2 i
2

)
= e−t/2

(
cos

√
2 t

2
+ i sin

√
2 t

2

)(( 0
2

)
+ i

(√
2

0

))
and the general real solution is given by(

x
y

)
= ae−t/2

(
cos

√
2 t
2

(
0
2

)
− sin

√
2 t
2

(√
2

0

))
+ be−t/2

(
cos

√
2 t
2

(√
2

0

)
+ sin

√
2 t
2

(
0
2

))
.



Here is a phase portrait: the isoclines x′ = 0 and y′ = 0 are shown in pink (except that the solution curves
along the axes are in blue), and solutions to the linearized systems at each equilibrium point are shown in
blue (these curves approximate the actual solution curves, which are not shown). The question only asks
for the portion of the direction field where the solution curves are horizontal or vertical, but we included
the full direction field in green (for interest). We remark that the equilibrium point at (1, 1) is attracting
(or asymptotically stable), the equilibrium points at (0, 0) and (2, 0) are unstable saddle points, and the
equilibrium point at (0,−1) is repelling (this point is not of physical significance since it represents a point
where the predator population is negative).



3: Let x(t) be the height of an object of mass m which is thrown upwards from the ground. If the force of air
resistance is −kx′, then x(t) satisfies the DE mx′′ + kx′ +mg = 0. Suppose that m = 1, k = 1

10 and g = 10
so the DE becomes

x′′ + 1
10x
′ + 10 = 0.

Letting x′ = u and x′′ = u′ we obtain the equivalent pair of first oder ODEs

x′ = u and u′ = − 1
10u− 10.

(a) Note that the given second order ODE does not explicitly involve the variable t. Treating u as a function
of x with x′ = u and x′′ = uu′, the DE becomes uu′ + 1

10u + 10 = 0. Solve this first order ODE to find
u = u(x), and use your solution to find a conserved quantity H = H(x, u) for the given second order ODE
(and for the equivalent pair of ODEs).

Solution: Letting u = u(x) with x′ = u and x′′ = uu′, the DE becomes uu′+ 1
10u+10 = 0. Dividing by u gives

u′+ 1
10 + 10

u = 0, that is u′ = −u+100
10u . This is a separable DE for u = u(x). We write it in differential form as

10u
u+100 du = −dx, that is

(
10− 1000

u+100

)
du = −dx. Integrate both sides to get 10u−1000 ln(u+100) = −x+ c,

that is x+ 10u− 1000 ln(u+ 100) = c. Thus H(x, u) = x+ 10u− ln(u+ 100) is a conserved quantity.

(b) Sketch the slope field for the pair of first order ODEs in the xu-plane for 0 ≤ x ≤ 20 and −20 ≤ u ≤ 20.
On the same grid, by using a calculator to plot points, accurately sketch the curve H(x, u) = c where
c = H(0, 20) (where H is the conserved quantity found in Part (a)).

Solution: The solution curves are vertical when x′ = 0, that is when u = 0, and we have u′

x′ = c when

− 1
10u−10 = cu, that is when u = −10

c− 1
10

= − 100
10c−1 . The isoclines y′

x′ = c are shown in peach for c = ±1,±2±3.

We have H(x, u) = x+10u−1000 ln(u+100), and c = H(0, 20) = 200−1000 ln 120, so the curve H(x, u) = c
is given by x+ 10u− 1000 ln(u+ 100) = 200− 1000 ln 120, that is x = 200− 10u+ 1000 ln u+100

120 . We make a
table of values (for x as a function of u), and plot the curve in blue (notice that it is the curve followed by
the solution satisfying the given initial conditions).

u x

20 0
15 7.44
10 12.99
5 16.47
0 17.68
−5 16.39
−10 12.32
−15 5.16



(c) Given that x(0) = 0 and u(0) = x′(0) = 20, solve the resulting IVP for x = x(t), find the value of t at
which the object reaches its maximum height, and determine whether the object takes longer on the way up
to its maximum height, or on the way back down to the ground.

Solution: The given DE x′′ + 1
10x
′ + 10 = 0 does not involve x, so we let v = v(t) with x′ = v and x′′ = v′.

The DE becomes v′ + 1
10v = −10, which is linear for v = v(t). An integrating factor is λ = e

∫
1
10 dt = et/10,

and the solution is

v(t) = e−t/10
∫
−10 et/10 dt = e−t/10

(
− 100 et/10 + b

)
= b e−t/10 − 100 .

Put in v(0) = x′(0) = 20 to get b− 100 = 20, so b = 120 and we have

x′(t) = v(t) = 120 e−t/10 − 100

x(t) =

∫
120 e−t/10 − 100 dt = −1200 e−t/10 − 100 t+ a

Put in x(0) = 0 to get −1200 + a = 0, so a = 1200 and we have

x(t) = −1200 e−t/10 − 100 t+ 1200 = 1200
(
1− e−t/10

)
− 100 t .

It reaches its maximum height at height when v(t) = 0, and we have

v(t) = 0 =⇒ 120 e−t/10 − 100 = 0 =⇒ e−t/10 = 100
120 = 5

6 =⇒ et/10 = 6
5 =⇒ 1

10 t = ln
(
6
5

)
=⇒ t = 10 ln

(
6
5

)
.

Let t1 = 10 ln 6
5 , the time at which the height is maximum, and consider its position at t2 = 2t1 = 20 ln

(
6
5

)
.

If it takes longer on the way up, then it will land before t = t2 and then x(t2) < 0. If it takes longer on the
way back down, then it will not yet have landed when t = t2 and so we will have x(t2) > 0. We have

x(t2) = 1200
(
1− e−2 ln(6/5)

)
− 2000 ln

(
6
5

)
= 1200

(
1− 25

36

)
− 2000 ln

(
6
5

)
= 100

(
11
3 − 20 ln

(
6
5

))
.

A calculator shows that 20 ln
(
6
5

) ∼= 3.64 < 11
3 , so x(t2) > 0, and so it takes longer on the way back down.



4: An object of mass m, out in space, falls towards the Earth. The force due to gravity is F = −GMm
x2 , where

x is the distance from the center of the Earth to the object, G is the gravitational constant and M is the
mass of the Earth. The position x = x(t) satisfies the second order ODE

x′′ = −GMx2 .

Letting x′ = u and x′′ = u′, we obtain the equivalent pair of first order ODEs

x′ = u and u′ = −GMx2 .

(a) Find a conserved quantity for these DEs by applying the method used in the previous question: treating
u as a function of x with x′ = u and x′′ = u′u, the second order ODE becomes uu′ = −GMx2 . Solve this to
find an implicit equation for u = u(x), and hence find a conserved quantity H = H(x, u).

Solution: We consider u = u(x) with x′ = u and x′′ = uu′. The DE becomes uu′ = −GMx2 . This DE is

separable: we write it as u du = −GMx2 dx and integrate both sides to get 1
2 u

2 = GM
x + c. Thus we obtain

the conserved quantity H(x, u) = 1
2u

2 − GM
x .

(b) Find a conserved quantity for these DEs again, this time using the following method: when f(x, u) = u
and g(x, u) = −GMx2 , we have ∂f

∂x + ∂g
∂u = 0. Find H = H(x, u) such that ∂H

∂x = −g and ∂H
∂u = f .

Solution: To get ∂H
∂x = −g(x, u) = 1

10u+ 10, we need H =
∫
GM
x2 dx = −GMx + k where k = k(u). Then we

have ∂H
∂u = k′(u), so to get ∂H

∂u = f(x, u) = u, we need k =
∫
u du = 1

2u
2 (plus a constant, which we choose

to be 0). Thus we obtain the conserved quantity H(x, u) = k(u)− GM
x + k(u) = 1

2u
2 − GM

x .

(c) Given that x(0) = x0 and x′(0) = 0, use H(x, u) to find u = u(x), with u(x) ≤ 0 for all x ≥ 0.

Solution: When x = x0 and u = 0, we have c = H(x, y) = 1
2u

2 − GM
x = −GMx0

, so the equation H(x, u) = c

becomes 1
2 u

2 = GM
(

1
x −

1
x0

)
, that is u = ±2

√
2GM

√
1
x −

1
x0

. We want u = u(x) ≤ 0, so we must have

u = −
√

2GM
√

1
x −

1
x0
.

(d) Given that x(0) = x0 and x′(0) = 0, use your formula for u = u(x) to find a formula for t = t(x), then
find the time at which x = 1

2x0. Warning: this involves using substitutions to solve a challenging integral.

Solution: Replace u by x′ again to get x′ = −
√

2GM
√

1
x −

1
x0

. This DE is separable as we can write it as

dx√
1
x −

1
x0

= −
√

2GM dt. Integrate both sides to get

∫
dx√
1
x −

1
x0

= −
∫ √

2GM dt = −
√

2GM t+ b1. Let I

be the integral on the left. Make the substitution w2 = x
x0

so
√
x =
√
x0 w and 2x0 u dw = dx to get

I =

∫
dx√
1
x −

1
x0

=

∫ √
x dx√

1− x
x0

=

∫
2x0
√
x0 w

2

√
1− w2

dw.

Now let cos θ = w so that sin θ =
√

1− w2 and − sin θ dθ = dw. Then

I = −
∫

2x0
√
x0 cos2 θ dθ = −x0

√
x0
(
θ + sin θ cos θ

)
+ b2 = −x0

√
x0
(

cos−1 u+ u
√

1− u2
)

+ b2

= −x0
√
x0

(
cos−1

√
x

x0
+

√
x

x0

√
1− x

x0

)
+ b2 .

Since I = −
√

2GM t+ b1, we obtain

−x0
√
x0

(
cos−1

√
x

x0
+

√
x

x0

√
1− x

x0

)
= −
√

2GM t+ b

where b = b1 − b2. Put in t = 0 and x = x0 to get b = 0, and so we have

t =
x0
√
x0√

2GM

(
cos−1

√
x

x0
+

√
x

x0
−
( x
x0

)2)
.

Finally, when x = 1
2 x0 we have t =

x0
√
x0√

2GM

(
π
4 + 1

2

)
=
x0
√
x0 (π + 2)

4
√

2GM
.


