1: Find the $5^{\text {th }}$ Taylor polynomial, centred at 0 , for the solution to the IVP $y^{\prime \prime}+2 y^{\prime}+e^{x} y=\sin x$ with $y(0)=2$ and $y^{\prime}(0)=1$.

2: Use the Power Series Method to solve the ODE $y^{\prime \prime}+(x-1) y^{\prime}+y=0$. Find two linearly independent power series solutions, centred at 0 , one satisfying the initial conditions $y(0)=1, y^{\prime}(0)=0$, and the other satisfying $y(0)=0, y^{\prime}(0)=1$. For each solution, state the recurrence relation for the coefficients, and find the $5^{\text {th }}$ Taylor polynomial centred at 0 .

3: Use Frobenius' Method to solve the ODE $4 x y^{\prime \prime}+2 y^{\prime}=y$. Find two linearly independent series solutions, centred at 0 . For each solution, solve the recurrence relation to obtain an explicit formula for the $n^{\text {th }}$ coefficient, then find a closed form formula for the solution.

4: Use Frobenius' Method to solve the ODE $3 x^{2} y^{\prime \prime}+x(x-1) y^{\prime}+y=0$. Find two linearly independent series solutions, centred at 0 . For each solution, solve the recurrence relation to obtain an explicit formula for the $n^{\text {th }}$ coefficient. Find a closed form formula for one of the two solutions.

