SYDE Advanced Math 2, Practice Problem Set 1

1: (a) Verify that $y=x \sin x$ is a solution of the ODE $y\left(y^{\prime \prime}+y\right)=x \sin 2 x$.
(b) Find all the solutions of the form $y=a x^{2}+b x+c$ to the $\operatorname{ODE}\left(y^{\prime}(x)\right)^{2}+4 x=3 y(x)+x^{2}+1$.

2: Consider the IVP $y^{\prime}=\sin (\pi(x+y))$ with $y(-1)=1$.
(a) Sketch the direction field for the given ODE for $-2 \leq x \leq 2$ and $-2 \leq y \leq 2$ and, on the same grid, sketch the solution curves which pass through each of the points $(-1,1),(0,0)$ and $(0,-1)$.
(b) Using a calculator, apply Euler's method with step size $\Delta x=0.2$ to approximate the value of $f(0)$ where $y=f(x)$ is the solution to the given IVP.

3: Solve each of the following ODEs.
(a) $x y^{\prime}+y=\sqrt{x}$.
(b) $\sqrt{x} y^{\prime}=1+y^{2}$.
(c) $y^{\prime}=x\left(y^{2}-1\right)$.

4: Solve each of the following IVPs.
(a) $x y^{\prime}=y^{2}+y$ with $y(1)=1$.
(b) $x y^{\prime}+2 y=\ln x$ with $y(1)=0$.
(c) $y^{\prime}+x y=x^{3}$ with $y(0)=1$.

5: Solve each of the following IVPs.
(a) $y^{\prime}=\frac{x+2}{y-1}$ with $y(1)=-2$.
(b) $y^{\prime}+y \tan x=\sin ^{2} x$ with $y(0)=1$.
(c) $y^{\prime}=\frac{y}{x+y^{2}}$ with $y(3)=1$.

6: A Bernoulli DE is a DE which can be written in the form $y^{\prime}+p y=q y^{n}$ for some continuous functions p and q and some integer n. The substitution $u=y^{1-n}$ can be used to transform the above Bernoulli DE for $y=y(x)$ into the linear DE $u^{\prime}+p(1-n) u=q(1-n)$ for $u=u(x)$.
(a) Solve the IVP $y^{\prime}+y=x y^{3}$, with $y(0)=2$.
(b) Solve the IVP $x y y^{\prime}+y^{2}=1$ with $y(1)=2$.

7: A homogeneous first order DE is a DE which can be written in the form $y^{\prime}=F\left(\frac{y}{x}\right)$ for some continuous function F. The substitution $u=\frac{y}{x}$ can be used to transform the above homogeneous DE for $y=y(x)$ into the separable DE $x u^{\prime}=F(u)-u$ for $u=u(x)$.
(a) Solve the IVP $y^{\prime}=\frac{x^{2}+3 y^{2}}{2 x y}$ with $y(1)=2$.
(b) Solve the IVP $y^{\prime}=\frac{y^{2}+2 x y}{x^{2}}$ with $y(1)=1$.

