SYDE Advanced Math 2, Practice Problem Set 1

1: (a) Verify that $y = x \sin x$ is a solution of the ODE $y(y'' + y) = x \sin 2x$.

(b) Find all the solutions of the form $y = ax^2 + bx + c$ to the ODE $(y'(x))^2 + 4x = 3y(x) + x^2 + 1$.

2: Consider the IVP $y' = \sin(\pi(x+y))$ with y(-1) = 1.

(a) Sketch the direction field for the given ODE for $-2 \le x \le 2$ and $-2 \le y \le 2$ and, on the same grid, sketch the solution curves which pass through each of the points (-1, 1), (0, 0) and (0, -1).

(b) Using a calculator, apply Euler's method with step size $\Delta x = 0.2$ to approximate the value of f(0) where y = f(x) is the solution to the given IVP.

3: Solve each of the following ODEs.

(a) $xy' + y = \sqrt{x}$. (b) $\sqrt{x}y' = 1 + y^2$. (c) $y' = x(y^2 - 1)$.

4: Solve each of the following IVPs.

(a) x y' = y² + y with y(1) = 1.
(b) x y' + 2y = ln x with y(1) = 0.
(c) y' + xy = x³ with y(0) = 1.

5: Solve each of the following IVPs.

(a)
$$y' = \frac{x+2}{y-1}$$
 with $y(1) = -2$.
(b) $y' + y \tan x = \sin^2 x$ with $y(0) =$
(c) $y' = \frac{y}{x+y^2}$ with $y(3) = 1$.

6: A Bernoulli DE is a DE which can be written in the form $y' + py = qy^n$ for some continuous functions p and q and some integer n. The substitution $u = y^{1-n}$ can be used to transform the above Bernoulli DE for y = y(x) into the linear DE u' + p(1-n)u = q(1-n) for u = u(x).

1.

- (a) Solve the IVP $y' + y = x y^3$, with y(0) = 2.
- (b) Solve the IVP $xyy' + y^2 = 1$ with y(1) = 2.
- 7: A homogeneous first order DE is a DE which can be written in the form $y' = F\left(\frac{y}{x}\right)$ for some continuous function F. The substitution $u = \frac{y}{x}$ can be used to transform the above homogeneous DE for y = y(x) into the separable DE xu' = F(u) u for u = u(x).

(a) Solve the IVP
$$y' = \frac{x^2 + 3y^2}{2xy}$$
 with $y(1) = 2$.

(b) Solve the IVP
$$y' = \frac{y^2 + 2xy}{x^2}$$
 with $y(1) = 1$.