SYDE Advanced Math 2, Solutions for Practice Problem Set 1

1: (a) Verify that $y=x \sin x$ is a solution of the ODE $y\left(y^{\prime \prime}+y\right)=x \sin 2 x$.
Solution: We have $y^{\prime}=\sin x+x \cos x$ and $y^{\prime \prime}=\cos x+\cos x-x \sin x=2 \cos x-x \sin x$ and so

$$
\begin{aligned}
y\left(y^{\prime \prime}+y\right) & =(x \sin x)(2 \cos x-x \sin x+x \sin x) \\
& =(x \sin x)(2 \cos x) \\
& =x(2 \sin x \cos x) \\
& =x \sin 2 x
\end{aligned}
$$

(b) Find all the solutions of the form $y=a x^{2}+b x+c$ to the $\operatorname{ODE}\left(y^{\prime}(x)\right)^{2}+4 x=3 y(x)+x^{2}+1$. Solution: For $y=a x^{2}+b x+c$ we have $y^{\prime}=2 a x+b$, so

$$
\begin{aligned}
\left(y^{\prime}(x)\right)^{2}+4 x & =3 y(x)+x^{2}+1 \Longleftrightarrow\left(y^{\prime}(x)\right)^{2}+4 x-3 y(x)-x^{2}-1=0 \\
& \Longleftrightarrow(2 a x+b)^{2}+4 x-3\left(a x^{2}+b x+c\right)-x^{2}-1=0 \\
& \Longleftrightarrow\left(4 a^{2}-3 a-1\right) x^{2}+(4 a b+4-3 b) x+\left(b^{2}-3 c-1\right)=0 \\
& \Longleftrightarrow 4 a^{2}-3 a-1=0,4 a b+4=3 b, \text { and } b^{2}=3 c+1
\end{aligned}
$$

From $4 a^{2}-3 a-1=0$ we get $(4 a+1)(a-1)=0$ and so $a=-\frac{1}{4}$ or $a=1$. When $=-\frac{1}{4}$, the equation $4 a b+4=3 b$ gives $-1+4=3 b$ so $b=1$, and then the equation $b^{2}=3 c+1$ gives $1=3 c+1$ so $c=0$. When $a=1,4 a b+4=3 b$ gives $4 b+4=3 b$ so $b=-4$ and then $b^{2}=3 c+1$ gives $16=3 c+1$ so $c=5$. Thus there are two solutions, and they are $y=-\frac{1}{4} x^{2}+x$ and $y=x^{2}-4 x+5$.

2: Consider the IVP $y^{\prime}=\sin (\pi(x+y))$ with $y(-1)=1$.
(a) Sketch the direction field for the given ODE for $-2 \leq x \leq 2$ and $-2 \leq y \leq 2$ and, on the same grid, sketch the solution curves which pass through each of the points $(-1,1),(0,0)$ and $(0,-1)$.

Solution: We have $y^{\prime}=0$ when $\sin (\pi(x+y))=0$, that is when $\pi(x+y)=k \pi$ for some integer k, or equivalently when $x+y=k$ for some integer k. Similarly, we have $y^{\prime}=1$ when $x+y=k+\frac{1}{2}$, and $y^{\prime}=-1$ when $x+y=k-\frac{1}{2}$, and $y^{\prime}=\frac{1}{2}$ when $x+y=k+\frac{1}{6}$ or $k+\frac{5}{6}$, and $y^{\prime}=-\frac{1}{2}$ when $x+y=k-\frac{1}{6}$ or $k-\frac{5}{6}$. The isoclines $y^{\prime}=0, \pm 1$ are shown in yellow, the direction field is shown in green, and the solution curves are shown in blue.

(b) Using a calculator, apply Euler's method with step size $\Delta x=0.2$ to approximate the value of $f(0)$ where $y=f(x)$ is the solution to the given IVP.
Solution: We let $x_{0}=-1$ and $y_{0}=1$, then for $k \geq 0$ we set $x_{k+1}=x_{k}+\Delta x$ and $y_{k+1}=y_{k}+F\left(x_{k}, y_{k}\right) \Delta x$, where $F(x, y)=\sin (\pi(x++y))$. We make a table listing the values of x_{k}, y_{k} and $F\left(x_{k}, y_{k}\right)$.

k	x_{k}	y_{k}	$F\left(x_{k}, y_{k}\right)=x_{k}-y_{k}{ }^{2}$
0	-1	1	0
1	-0.8	1	0.5877852524
2	-0.6	1.1117557050	0.9984792328
3	-0.4	1.317252897	0.2570396643
4	-0.2	1.368660830	-0.5054156715
5	0	1.267577696	

Thus we have $f(0) \cong y_{5} \cong 1.3$.

3: Solve each of the following ODEs.
(a) $x y^{\prime}+y=\sqrt{x}$.

Solution: This DE is linear since we can write it in the form $y^{\prime}+\frac{1}{x} y=x^{-1 / 2}$. An integrating factor is $\lambda=e^{\int \frac{1}{x} d x}=e^{\ln x}=x$ and so the solution is $y=\frac{1}{x} \int x \cdot x^{-1 / 2} d x=\frac{1}{x} \int x^{1 / 2} d x=\frac{1}{x}\left(\frac{2}{3} x^{3 / 2}+c\right)=\frac{2}{3} \sqrt{x}+\frac{c}{x}$. (b) $\sqrt{x} y^{\prime}=1+y^{2}$.

Solution: This DE is separable. We can write it as $\frac{d y}{1+y^{2}}=x^{-1 / 2} d x$ and then integrate both sides to get $\tan ^{-1} y=2 x^{1 / 2}+c$, that is $y=\tan (2 \sqrt{x}+c)$.
(c) $y^{\prime}=x\left(y^{2}-1\right)$.

Solution: This DE is separable since (when $y \neq \pm 1$) we can write it as $\frac{y^{\prime}}{y^{2}-1}=x$. Integrate both sides, noting that $\frac{1}{y^{2}-1}=\frac{\frac{1}{2}}{y-1}-\frac{\frac{1}{2}}{y+1}$, to get

$$
\begin{aligned}
& \frac{1}{2} \ln \left|\frac{y-1}{y+1}\right|=\frac{1}{2} x^{2}+c, \text { where } c \in \mathbb{R} \\
& \ln \left|\frac{y-1}{y+1}\right|=x^{2}+2 c \\
&\left|\frac{y-1}{y+1}\right|=e^{x^{2}+2 c}=e^{2 c} e^{x^{2}} \\
& \frac{y-1}{y+1}= \pm e^{2 c} e^{x^{2}}=a e^{x^{2}}, \text { where } a= \pm e^{2 c} \\
& y-1=y a e^{x^{2}}+a e^{x^{2}} \\
& y\left(1-a e^{x^{2}}\right)=1+a e^{x^{2}} \\
& y=\frac{1+a e^{x^{2}}}{1-a e^{x^{2}}} .
\end{aligned}
$$

Taking $a=0$ gives the solution $y=1$, so the general solution is $y=-1$ or $y=\frac{1+a e^{x^{2}}}{1-a e^{x^{2}}}$ with $a \in \mathbb{R}$.

4: Solve each of the following IVPs.
(a) $x y^{\prime}=y^{2}+y$ with $y(1)=1$.

Solution: This DE is separable since we can write it as $\frac{y^{\prime}}{y^{2}+y}=\frac{1}{x}$. Integrate both sides, using partial fractions for the integral on the left, to get

$$
\begin{aligned}
\int \frac{1}{y}-\frac{1}{y+1} d y & =\int \frac{1}{x} d x \\
\ln y-\ln (y+1) & =\ln x+c \\
\ln \left(\frac{y}{y+1}\right) & =\ln x+c \\
\frac{y}{y+1} & =e^{\ln x+c}=a x
\end{aligned}
$$

where $a=\ln c$. Put in $y(1)=1$ to get $\frac{1}{2}$, so we have $\frac{y}{y+1}=\frac{x}{2}$ so $2 y=x(y+1)=x y+x$, that is $y(2-x)=x$, so the solution to the IVP is $y=\frac{x}{2-x}$ for $x<2$.
(b) $x y^{\prime}+2 y=\ln x$ with $y(1)=0$.

Solution: This DE is linear since we can write it as $y^{\prime}+\frac{2}{x} y=\frac{1}{x} \ln x$. An integrating factor is given by $\lambda=e^{\int \frac{2}{x} d x}=e^{2 \ln x}=x^{2}$ and so the solution is $y=\frac{1}{x^{2}} \int x \ln x d x$. We integrate by parts using $u=\ln x$ and $d v=x d x$ so that $d u=\frac{1}{x} d x$ and $v=\frac{1}{2} x^{2}$ to get

$$
\begin{aligned}
y & =\frac{1}{x^{2}} \int x \ln x d x \\
& =\frac{1}{x^{2}}\left(\frac{1}{2} x^{2} \ln x-\int \frac{1}{2} x d x\right) \\
& =\frac{1}{x^{2}}\left(\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}+c\right) \\
& =\frac{c}{x^{2}}+\frac{1}{2} \ln x-\frac{1}{4}
\end{aligned}
$$

Put in $y(1)=0$ to get $0=c-\frac{1}{4}$, so we have $c=\frac{1}{4}$ and the solution to the IVP is $y=\frac{1}{4}\left(\frac{1}{x^{2}}+2 \ln x-1\right)$ for $x>0$.
(c) $y^{\prime}+x y=x^{3}$ with $y(0)=1$.

Solution: This DE is linear. An integrating factor is $\lambda=e^{\int x d x}=e^{\frac{1}{2} x^{2}}$. The solution to the DE is

$$
y=e^{-\frac{1}{2} x^{2}} \int x^{3} e^{\frac{1}{2} x^{2}} d x
$$

Integrate by parts using $u=x^{2}, d u=2 x d x, v=e^{\frac{1}{2} x^{2}}, d v=x e^{\frac{1}{2} x^{2}}$ to get

$$
y=e^{-\frac{1}{2} x^{2}}\left(x^{2} e^{\frac{1}{2} x^{2}}-\int 2 x e^{\frac{1}{2} x^{2}} d x\right)=e^{-\frac{1}{2} x^{2}}\left(x^{2} e^{\frac{1}{2} x^{2}}-2 e^{\frac{1}{2} x^{2}}+c\right)=x^{2}-2+c e^{-\frac{1}{2} x^{2}}
$$

To get $y(0)=1$ we need $-2+c=1$ so $c=3$. Thus the solution to the IVP is

$$
y=x^{2}-2+3 e^{-\frac{1}{2} x^{2}} \text { for all } x
$$

5: Solve each of the following IVPs.
(a) $y^{\prime}=\frac{x+2}{y-1}$ with $y(1)=-2$.

Solution: This DE is separable since we can write it as $(y-1) y^{\prime}=(x+2)$. Integrate both sides to get

$$
\begin{gathered}
\frac{1}{2} y^{2}-y=\frac{1}{2} x^{2}+2 x+c \\
y^{2}-2 y=x^{2}+4 x+2 c \\
(y-1)^{2}-1=x^{2}+4 x+2 c \\
y=-1 \pm \sqrt{x^{2}+4 x+2 c+1}
\end{gathered}
$$

To get $y(1)=-2$ we need $1 \pm \sqrt{6+2 c}=-2$ so we must use the $-\operatorname{sign}$ and we must take $c=\frac{3}{2}$. Thus the solution to the IVP is

$$
y=1-\sqrt{x^{2}+4 x+4}=1-\sqrt{(x+2)^{2}}=1-(x+2)=-(x+1) \text { for } x>-2
$$

(b) $y^{\prime}+y \tan x=\sin ^{2} x$ with $y(0)=1$.

Solution: This DE is linear. An integrating factor is $\lambda=e^{\int \tan x d x}=e^{\ln (\sec x)}=\sec x=\frac{1}{\cos x}$ and the solution to the DE is

$$
\begin{aligned}
y & =\cos x \int \frac{\sin ^{2} x}{\cos x} d x=\cos x \int \frac{1-\cos ^{2} x}{\cos x} d x=\cos x \int \sec x-\cos x d x \\
& =\cos x(\ln |\sec x+\tan x|-\sin x+c)
\end{aligned}
$$

To get $y(0)=1$ we need $c=1$, so the solution to the IVP is

$$
y=\cos x(\ln |\sec x+\tan x|-\sin x+1) \text { for }-\frac{\pi}{2}<x<\frac{\pi}{2}
$$

(c) $y^{\prime}=\frac{y}{x+y^{2}}$ with $y(3)=1$.

Solution: We interchange the rolls of x and y, and solve this DE for $x=x(y)$. We have

$$
x^{\prime}(y)=\frac{1}{y^{\prime}(x)}=\frac{x+y^{2}}{y}
$$

This DE is linear since we can write it as $x^{\prime}-\frac{1}{y} x=y$. An integrating factor is $\lambda=e^{\int-\frac{1}{y} d y}=e^{-\ln y}=\frac{1}{y}$ and the solution is

$$
x=y \int 1 d y=y(y+c) \text { for } y>0
$$

To get $y(3)=1$ (that is to get $x(1)=3$) we need $2=1+c$ so $c=2$, and so the solution is

$$
x=y(y+2)=(y+1)^{2}-1
$$

Solve this for $y=y(x)$ to get $y=-1 \pm \sqrt{x+1}$. Note that to satisfy $y(3)=1$ we need to use the + sign, so

$$
y=-1+\sqrt{x+1} \text { for } x>0
$$

6: A Bernoulli DE is a DE which can be written in the form $y^{\prime}+p y=q y^{n}$ for some continuous functions p and q and some integer n. The substitution $u=y^{1-n}$ can be used to transform the above Bernoulli DE for $y=y(x)$ into the linear $\mathrm{DE} u^{\prime}+p(1-n) u=q(1-n)$ for $u=u(x)$.
(a) Solve the IVP $y^{\prime}+y=x y^{3}$, with $y(0)=2$.

Solution: Let $u=y^{-2}$ so $u^{\prime}=-2 y^{-3} y^{\prime}$, and multiply both sides of the DE $y^{\prime}+y=x y^{3}$ by $-2 y^{-3}$ to get $-2 y^{-3} y^{\prime}-2 y^{-2}=-2 x$, that is

$$
u^{\prime}-2 u=-2 x
$$

This is a linear DE for $u=u(x)$. An integrating factor is $I=e^{\int-2 d x}=e^{-2 x}$, and the general solution is $u=e^{2 x} \int-2 x e^{-2 x} d x$. Integrate by parts using $u=x, d u=d x, v=e^{-2 x}$ and $d v=-2 e^{-2 x} d x$ to get

$$
u=e^{2 x}\left(x e^{-2 x}-\int e^{-2 x} d x\right)=e^{2 x}\left(x e^{-2 x}+\frac{1}{2} e^{-2 x}+c\right)=x+\frac{1}{2}+c e^{2 x}
$$

that is $y^{-2}=x+\frac{1}{2}+c e^{2 x}$. To get $y(0)=2$ we need $\frac{1}{4}=\frac{1}{2}+c$ so $c=-\frac{1}{4}$ and so we have

$$
y^{-2}=x+\frac{1}{2}-\frac{1}{4} e^{2 x} \Longrightarrow y=\left(x+\frac{1}{2}-\frac{1}{4} e^{2 x}\right)^{-1 / 2}=\frac{2}{\sqrt{4 x+2-e^{2 x}}}
$$

for those values of x for which $4 x+2>e^{2 x}$.
(b) Solve the IVP $x y y^{\prime}+y^{2}=1$ with $y(1)=2$.

Solution: This is a Bernoulli DE since we can write it as $y^{\prime}+\frac{1}{x} y=\frac{1}{x} y^{-1}$. We let $u=y^{2}$ so $u^{\prime}=2 y y^{\prime}$. Multiply both sides of the DE by $2 y$ to get $2 y y^{\prime}+\frac{2}{x} y^{2}=\frac{2}{x}$, that is

$$
u^{\prime}+\frac{2}{x} u=\frac{2}{x} .
$$

This DE is linear. An integrating factor is $\lambda=e^{\int \frac{2}{x} d x}=e^{2 \ln x}=x^{2}$, and the solution to the DE is

$$
u=x^{-2} \int 2 x d x=x^{-2}\left(x^{2}+c\right)=1+\frac{c}{x^{2}}
$$

that is $y^{2}=1_{+} \frac{c}{x^{2}}$, so

$$
y= \pm \sqrt{1+\frac{c}{x^{2}}}
$$

To get $y(1)=2$ we need $\pm \sqrt{1+c}=2$, so we must use the $+\operatorname{sign}$ and take $c=3$. Thus

$$
y=\sqrt{1+\frac{3}{x^{2}}}=\frac{\sqrt{x^{2}+3}}{x} \text { for } x>0
$$

7: A homogeneous first order DE is a DE which can be written in the form $y^{\prime}=F\left(\frac{y}{x}\right)$ for some continuous function F. The substitution $u=\frac{y}{x}$ can be used to transform the above homogeneous DE for $y=y(x)$ into the separable DE $x u^{\prime}=F(u)-u$ for $u=u(x)$.
(a) Solve the IVP $y^{\prime}=\frac{x^{2}+3 y^{2}}{2 x y}$ with $y(1)=2$.

Solution: This DE is homogeneous since we can write it as $y^{\prime}=\frac{1+3\left(\frac{y}{x}\right)^{2}}{2\left(\frac{y}{x}\right)}$. Let $u=\frac{y}{x}$ so $y=x u$ and $y^{\prime}=u+x u^{\prime}$. Then we can write the DE as $u+x u^{\prime}=\frac{1+3 u^{2}}{2 u}$, that is $x u^{\prime}=\frac{1+3 u^{2}}{2 u}-u=\frac{1+u^{2}}{2 u}$. This is separable, as we can write it as $\frac{2 u d u}{1+u^{2}}=\frac{d x}{x}$. Integrate both sides to get

$$
\begin{aligned}
\ln \left(1+u^{2}\right)=\ln |x|+c & \Longrightarrow 1+u^{2}=a x\left(\text { where } a= \pm e^{c}\right) \Longrightarrow u= \pm \sqrt{a x-1} \\
& \Longrightarrow \frac{y}{x}= \pm \sqrt{a x-1} \Longrightarrow y= \pm x \sqrt{a x-1}
\end{aligned}
$$

To get $y(1)=2$, we need $2= \pm \sqrt{a-1}$, so we need to use the $+\operatorname{sign}$ and we need $a-1=4$ so $a=5$. Thus

$$
y=x \sqrt{5 x-1} \text { for } x>\frac{1}{5}
$$

(b) Solve the IVP $y^{\prime}=\frac{y^{2}+2 x y}{x^{2}}$ with $y(1)=1$.

Solution: This DE is homogeneous since we can write it as $y^{\prime}=\left(\frac{y}{x}\right)^{2}+2\left(\frac{y}{x}\right)$. Make the substitution $u=\frac{y}{x}$ so $y=x u$ and $y^{\prime}=u+x y^{\prime}$, then the DE becomes $u+x u^{\prime}=u^{2}+u$, that is $x u^{\prime}=u^{2}+2 u$. This new DE is separable since we can write it as $\frac{1}{u^{2}+u} u^{\prime}=\frac{1}{x}$. Integrate both sides (with respect to x) to get

$$
\begin{aligned}
\int \frac{d u}{u^{2}+u} & =\int \frac{d x}{x} \\
\ln \frac{u}{u+1} & =\ln x+a \\
\frac{u}{u+1} & =b x,
\end{aligned}
$$

where $b=e^{a}$. To get $y(1)=1$, we put in $x=1$ and $y=1$ so $u=\frac{y}{x}=1$ to get $\frac{1}{2}=b$, thus the solution is given by

$$
\frac{u}{u+1}=\frac{x}{2} \Longrightarrow 2 u=u x+x \Longrightarrow(2-x) u=x \Longrightarrow u=\frac{x}{2-x} \Longrightarrow \frac{y}{x}=\frac{x}{2-x} \Longrightarrow y=\frac{x^{2}}{2-x}
$$

for $0<x<2$.

