
SYDE Advanced Math 2, Solutions for Practice Problem Set 1

1: (a) Verify that y = x sinx is a solution of the ODE y (y′′ + y) = x sin 2x.

Solution: We have y′ = sinx+ x cosx and y′′ = cosx+ cosx− x sinx = 2 cosx− x sinx and so

y (y′′ + y) = (x sinx)(2 cosx− x sinx+ x sinx)

= (x sinx)(2 cosx)

= x(2 sinx cosx)

= x sin 2x .

(b) Find all the solutions of the form y = ax2 + bx+ c to the ODE
(
y′(x)

)2
+ 4x = 3y(x) + x2 + 1.

Solution: For y = ax2 + bx+ c we have y′ = 2ax+ b, so(
y′(x)

)2
+ 4x = 3y(x) + x2 + 1 ⇐⇒

(
y′(x)

)2
+ 4x− 3y(x)− x2 − 1 = 0

⇐⇒ (2ax+ b)2 + 4x− 3(ax2 + bx+ c)− x2 − 1 = 0

⇐⇒ (4a2 − 3a− 1)x2 + (4ab+ 4− 3b)x+ (b2 − 3c− 1) = 0

⇐⇒ 4a2 − 3a− 1 = 0 , 4ab+ 4 = 3b , and b2 = 3c+ 1

From 4a2 − 3a − 1 = 0 we get (4a + 1)(a − 1) = 0 and so a = − 1
4 or a = 1. When = − 1

4 , the equation
4ab+ 4 = 3b gives −1 + 4 = 3b so b = 1, and then the equation b2 = 3c+ 1 gives 1 = 3c+ 1 so c = 0. When
a = 1, 4ab+ 4 = 3b gives 4b+ 4 = 3b so b = −4 and then b2 = 3c+ 1 gives 16 = 3c+ 1 so c = 5. Thus there
are two solutions, and they are y = − 1

4x
2 + x and y = x2 − 4x+ 5.



2: Consider the IVP y′ = sin
(
π(x+ y)

)
with y(−1) = 1.

(a) Sketch the direction field for the given ODE for −2 ≤ x ≤ 2 and −2 ≤ y ≤ 2 and, on the same grid,
sketch the solution curves which pass through each of the points (−1, 1), (0, 0) and (0,−1).

Solution: We have y′ = 0 when sin
(
π(x + y)

)
= 0, that is when π(x + y) = kπ for some integer k, or

equivalently when x+ y = k for some integer k. Similarly, we have y′ = 1 when x+ y = k + 1
2 , and y′ = −1

when x+ y = k − 1
2 , and y′ = 1

2 when x+ y = k + 1
6 or k + 5

6 , and y′ = − 1
2 when x+ y = k − 1

6 or k − 5
6 .

The isoclines y′ = 0,±1 are shown in yellow, the direction field is shown in green, and the solution curves
are shown in blue.

(b) Using a calculator, apply Euler’s method with step size ∆x = 0.2 to approximate the value of f(0) where
y = f(x) is the solution to the given IVP.

Solution: We let x0 = −1 and y0 = 1, then for k ≥ 0 we set xk+1 = xk + ∆x and yk+1 = yk + F (xk, yk)∆x,
where F (x, y) = sin

(
π(x+ +y)

)
. We make a table listing the values of xk, yk and F (xk, yk).

k xk yk F (xk, yk) = xk − yk2

0 −1 1 0
1 −0.8 1 0.5877852524
2 −0.6 1.1117557050 0.9984792328
3 −0.4 1.317252897 0.2570396643
4 −0.2 1.368660830 −0.5054156715
5 0 1.267577696

Thus we have f(0) ∼= y5 ∼= 1.3.



3: Solve each of the following ODEs.

(a) x y′ + y =
√
x.

Solution: This DE is linear since we can write it in the form y′ + 1
x y = x−1/2. An integrating factor is

λ = e
∫

1
x dx = eln x = x and so the solution is y = 1

x

∫
x ·x−1/2 dx = 1

x

∫
x1/2 dx = 1

x

(
2
3 x

3/2 + c
)

= 2
3

√
x+

c

x
.

(b)
√
x y′ = 1 + y2.

Solution: This DE is separable. We can write it as
dy

1 + y2
= x−1/2 dx and then integrate both sides to get

tan−1 y = 2x1/2 + c, that is y = tan
(
2
√
x+ c

)
.

(c) y′ = x(y2 − 1).

Solution: This DE is separable since (when y 6= ±1) we can write it as
y′

y2 − 1
= x. Integrate both sides,

noting that
1

y2 − 1
=

1
2

y − 1
−

1
2

y + 1
, to get

1
2 ln

∣∣∣∣y − 1

y + 1

∣∣∣∣ = 1
2x

2 + c , where c ∈ R

ln

∣∣∣∣y − 1

y + 1

∣∣∣∣ = x2 + 2c∣∣∣∣y − 1

y + 1

∣∣∣∣ = ex
2+2c = e2cex

2

y − 1

y + 1
= ±e2cex

2

= aex
2

, where a = ±e2c

y − 1 = yaex
2

+ aex
2

y(1− aex
2

) = 1 + aex
2

y =
1 + aex

2

1− aex2 .

Taking a = 0 gives the solution y = 1, so the general solution is y = −1 or y =
1 + aex

2

1− aex2 with a ∈ R.



4: Solve each of the following IVPs.

(a) x y′ = y2 + y with y(1) = 1.

Solution: This DE is separable since we can write it as
y′

y2 + y
=

1

x
. Integrate both sides, using partial

fractions for the integral on the left, to get∫
1

y
− 1

y + 1
dy =

∫
1

x
dx

ln y − ln(y + 1) = lnx+ c

ln

(
y

y + 1

)
= lnx+ c

y

y + 1
= eln x+c = a x ,

where a = ln c. Put in y(1) = 1 to get 1
2 , so we have

y

y + 1
=

x

2
so 2y = x(y + 1) = xy + x, that is

y(2− x) = x, so the solution to the IVP is y =
x

2− x
for x < 2.

(b) x y′ + 2y = lnx with y(1) = 0.

Solution: This DE is linear since we can write it as y′ + 2
x y = 1

x lnx. An integrating factor is given by

λ = e

∫
2
x dx

= e2 ln x = x2 and so the solution is y =
1

x2

∫
x lnx dx. We integrate by parts using u = lnx

and dv = x dx so that du = 1
x dx and v = 1

2 x
2 to get

y =
1

x2

∫
x lnx dx

=
1

x2

(
1
2x

2 lnx−
∫

1
2 x dx

)
=

1

x2

(
1
2 x

2 lnx− 1
4 x

2 + c
)

=
c

x2
+ 1

2 lnx− 1
4

Put in y(1) = 0 to get 0 = c − 1
4 , so we have c = 1

4 and the solution to the IVP is y = 1
4

( 1

x2
+ 2 lnx − 1

)
for x > 0.

(c) y′ + xy = x3 with y(0) = 1.

Solution: This DE is linear. An integrating factor is λ = e
∫
x dx = e

1
2x

2

. The solution to the DE is

y = e−
1
2x

2

∫
x3e

1
2x

2

dx .

Integrate by parts using u = x2, du = 2x dx, v = e
1
2x

2

, dv = xe
1
2x

2

to get

y = e−
1
2x

2

(
x2e

1
2x

2

−
∫

2xe
1
2x

2

dx

)
= e−

1
2x

2
(
x2e

1
2x

2

− 2e
1
2x

2

+ c
)

= x2 − 2 + ce−
1
2x

2

.

To get y(0) = 1 we need −2 + c = 1 so c = 3. Thus the solution to the IVP is

y = x2 − 2 + 3e−
1
2x

2

for all x .



5: Solve each of the following IVPs.

(a) y′ =
x+ 2

y − 1
with y(1) = −2.

Solution: This DE is separable since we can write it as (y − 1)y′ = (x+ 2). Integrate both sides to get

1
2y

2 − y = 1
2x

2 + 2x+ c

y2 − 2y = x2 + 4x+ 2c

(y − 1)2 − 1 = x2 + 4x+ 2c

y = −1±
√
x2 + 4x+ 2c+ 1 .

To get y(1) = −2 we need 1 ±
√

6 + 2c = −2 so we must use the - sign and we must take c = 3
2 . Thus the

solution to the IVP is

y = 1−
√
x2 + 4x+ 4 = 1−

√
(x+ 2)2 = 1− (x+ 2) = −(x+ 1) for x > −2 .

(b) y′ + y tanx = sin2 x with y(0) = 1.

Solution: This DE is linear. An integrating factor is λ = e
∫

tan x dx = eln(sec x) = secx =
1

cosx
and the

solution to the DE is

y = cosx

∫
sin2 x

cosx
dx = cosx

∫
1− cos2 x

cosx
dx = cosx

∫
secx− cosx dx

= cosx
(

ln
∣∣ secx+ tanx

∣∣− sinx+ c
)
.

To get y(0) = 1 we need c = 1, so the solution to the IVP is

y = cosx
(

ln
∣∣ secx+ tanx

∣∣− sinx+ 1
)

for − π
2 < x < π

2 .

(c) y′ =
y

x+ y2
with y(3) = 1.

Solution: We interchange the rolls of x and y, and solve this DE for x = x(y). We have

x′(y) =
1

y′(x)
=
x+ y2

y

This DE is linear since we can write it as x′ − 1
y x = y. An integrating factor is λ = e

∫
− 1

y dy = e− ln y = 1
y

and the solution is

x = y

∫
1 dy = y(y + c) for y > 0 .

To get y(3) = 1 (that is to get x(1) = 3) we need 2 = 1 + c so c = 2, and so the solution is

x = y(y + 2) = (y + 1)2 − 1 .

Solve this for y = y(x) to get y = −1±
√
x+ 1. Note that to satisfy y(3) = 1 we need to use the + sign, so

y = −1 +
√
x+ 1 for x > 0 .



6: A Bernoulli DE is a DE which can be written in the form y′ + py = qyn for some continuous functions p
and q and some integer n. The substitution u = y1−n can be used to transform the above Bernoulli DE for
y = y(x) into the linear DE u′ + p(1− n)u = q(1− n) for u = u(x).

(a) Solve the IVP y′ + y = x y3, with y(0) = 2.

Solution: Let u = y−2 so u′ = −2y−3 y′, and multiply both sides of the DE y′ + y = x y3 by −2y−3 to get
−2y−3 y′ − 2y−2 = −2x, that is

u′ − 2u = −2x .

This is a linear DE for u = u(x). An integrating factor is I = e
∫
−2 dx = e−2x, and the general solution is

u = e2x
∫
−2x e−2x dx. Integrate by parts using u = x, du = dx, v = e−2x and dv = −2e−2x dx to get

u = e2x
(
x e−2x −

∫
e−2x dx

)
= e2x

(
x e−2x + 1

2 e
−2x + c

)
= x+ 1

2 + c e2x ,

that is y−2 = x+ 1
2 + c e2x. To get y(0) = 2 we need 1

4 = 1
2 + c so c = − 1

4 and so we have

y−2 = x+ 1
2 −

1
4 e

2x =⇒ y =
(
x+ 1

2 −
1
4 e

2x
)−1/2

=
2√

4x+ 2− e2x
,

for those values of x for which 4x+ 2 > e2x.

(b) Solve the IVP xy y′ + y2 = 1 with y(1) = 2.

Solution: This is a Bernoulli DE since we can write it as y′ + 1
x y = 1

x y
−1. We let u = y2 so u′ = 2y y′.

Multiply both sides of the DE by 2y to get 2y y′ + 2
x y

2 = 2
x , that is

u′ + 2
x u = 2

x .

This DE is linear. An integrating factor is λ = e
∫

2
x dx = e2 ln x = x2, and the solution to the DE is

u = x−2
∫

2x dx = x−2
(
x2 + c

)
= 1 +

c

x2
,

that is y2 = 1+
c
x2 , so

y = ±
√

1 +
c

x2
.

To get y(1) = 2 we need ±
√

1 + c = 2, so we must use the + sign and take c = 3. Thus

y =

√
1 +

3

x2
=

√
x2 + 3

x
for x > 0 .



7: A homogeneous first order DE is a DE which can be written in the form y′ = F
(
y
x

)
for some continuous

function F . The substitution u = y
x can be used to transform the above homogeneous DE for y = y(x) into

the separable DE xu′ = F (u)− u for u = u(x).

(a) Solve the IVP y′ =
x2 + 3y2

2xy
with y(1) = 2.

Solution: This DE is homogeneous since we can write it as y′ =
1 + 3

(
y
x

)2
2
(
y
x

) . Let u = y
x so y = xu and

y′ = u+ xu′. Then we can write the DE as u+ xu′ =
1 + 3u2

2u
, that is xu′ =

1 + 3u2

2u
− u =

1 + u2

2u
. This is

separable, as we can write it as
2u du

1 + u2
=
dx

x
. Integrate both sides to get

ln(1 + u2) = ln |x|+ c =⇒ 1 + u2 = ax (where a = ±ec) =⇒ u = ±
√
ax− 1

=⇒ y

x
= ±
√
ax− 1 =⇒ y = ±x

√
ax− 1 .

To get y(1) = 2, we need 2 = ±
√
a− 1, so we need to use the + sign and we need a− 1 = 4 so a = 5. Thus

y = x
√

5x− 1 for x > 1
5 .

(b) Solve the IVP y′ =
y2 + 2xy

x2
with y(1) = 1.

Solution: This DE is homogeneous since we can write it as y′ =
(
y
x

)2
+ 2

(
y
x

)
. Make the substitution u = y

x
so y = xu and y′ = u+ xy′, then the DE becomes u+ xu′ = u2 + u, that is xu′ = u2 + 2u. This new DE is
separable since we can write it as 1

u2+u u
′ = 1

x . Integrate both sides (with respect to x) to get∫
du

u2 + u
=

∫
dx

x

ln
u

u+ 1
= lnx+ a

u

u+ 1
= bx ,

where b = ea. To get y(1) = 1, we put in x = 1 and y = 1 so u = y
x = 1 to get 1

2 = b, thus the solution is
given by

u

u+ 1
=
x

2
=⇒ 2u = ux+ x =⇒ (2− x)u = x =⇒ u =

x

2− x
=⇒ y

x
=

x

2− x
=⇒ y =

x2

2− x
for 0 < x < 2.


