SYDE Advanced Math 2, Solutions for Practice Problem Set 2

1: (a) The substitution $u(x)=y^{\prime}(x)$ and $u^{\prime}(x)=y^{\prime \prime}(x)$ transforms a second order DE of the form $y^{\prime \prime}=F\left(y^{\prime}, x\right)$ for $y=y(x)$ to the first order $\mathrm{DE} u^{\prime}=F(u, x)$ for $u=u(x)$. Use this substitution to solve the IVP $x y^{\prime \prime}+y^{\prime}=1$ with $y(1)=2$ and $y^{\prime}(1)=3$.
Solution: Make the substitution $y^{\prime}=u, y^{\prime \prime}=u^{\prime}$. The DE becomes $x u^{\prime}+u=1$. This is linear as we can write it as $u^{\prime}+\frac{1}{x} u=\frac{1}{x}$. An integrating factor is $\lambda=e^{\int \frac{1}{x} d x}=e^{\ln x}=x$, and the solution is given by $u=\frac{1}{x} \int 1 d x=\frac{1}{x}(x+a)=1+\frac{a}{x}$. Put in $x=1$ and $u=y^{\prime}=3$ to get $3=1+a$, so $a=2$. Thus the solution is given by $u=1+\frac{2}{x}$, that is $y^{\prime}=1+\frac{2}{x}$. Integrate to get $y=\int 1+\frac{2}{x} d x=x+2 \ln x+b$. Put in $x=1$ and $y=2$ to get $2=1+b$, so $b=1$ and the solution to the given IVP is $y=1+x+2 \ln x$.
(b) The substitution $u(y(x))=y^{\prime}(x)$ and $u^{\prime}(y(x)) y^{\prime}(x)=y^{\prime \prime}(x)$ transforms a second order DE of the form $y^{\prime \prime}=F\left(y^{\prime}, y\right)$ for $y=y(x)$ to the first order DE $u u^{\prime}=F(u, y)$ for $u=u(y)$. Use this substitution to solve $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=0$ with $y(1)=2$ and $y^{\prime}(1)=3$.
Solution: Make the substitution $y^{\prime}=u, y^{\prime \prime}=u u^{\prime}$. The DE becomes $y u u^{\prime}+u^{2}=0$. This is linear since we can write it as $u^{\prime}+\frac{1}{y} u=0$. An integrating factor is $\lambda=e^{\int \frac{1}{y} d y}=e^{\ln y}=y$ and the solution is $u=\frac{1}{y} \int 0 d y=\frac{a}{y}$. Put in $x=1, y=2, u=y^{\prime}=3$ to get $3=\frac{a}{2}$ so $a=6$ and the solution is $u=\frac{6}{y}$, that is $y^{\prime}=\frac{6}{y}$. This DE is separable since we can write it as $y y^{\prime}=6$. Integrate both sides (with respect to x) to get $\frac{1}{2} y^{2}=6 x+c$. Put in $x=1, y=2$ to get $2=6+x$ so $c=-4$ and the solution is $\frac{1}{2} y^{2}=6 x-4$, that is $y= \pm \sqrt{12 x-8}$. Since $y(1)=2$, we must use the $+\operatorname{sign}$, so $y=\sqrt{12 x-8}$.

2: Consider the IVP $y^{\prime \prime}=y y^{\prime}$ with $y(0)=1$ and $y^{\prime}(0)=1$.
(a) Find the exact solution $y=f(x)$ to the given IVP.

Solution: Make the substitution $y^{\prime}=u, y^{\prime \prime}=u u^{\prime}$, where $u=u(y)$. The DE becomes $u u^{\prime}=y u$, that is $u^{\prime}=y$. Integrate both sides (with respect to y) to get $u=\frac{1}{2} y^{2}+a$. Put in $x=0, y=1, u=y^{\prime}=1$ to get $1=\frac{1}{2}+a$ so $a=\frac{1}{2}$ and the solution is $u=\frac{1}{2} y^{2}+\frac{1}{2}=\frac{y^{2}+1}{2}$, that is $y^{\prime}=\frac{y^{2}+1}{2}$. This is separable as we can write it as $\frac{y^{\prime}}{y^{2}+1}=\frac{1}{2}$. Integrate (with respect to x) to get $\tan ^{-1} y=\frac{1}{2} x+b$. Put in $x=0, y=1$ to get $\frac{\pi}{4}=b$ and so the solution is $\tan ^{-1} y=\frac{1}{2} x+\frac{\pi}{4}$, that is $y=f(x)=\tan \left(\frac{1}{2} x+\frac{\pi}{4}\right)$.
(b) With a calculator, use Euler's method with step size $\Delta x=0.2$ to approximate $f(1)$.

Solution: The DE can be written as $y^{\prime \prime}=F\left(x, y, y^{\prime}\right)$ where $F(x, y, z)=y z$. We let $\Delta x=0.2$ and start with $x_{0}=0, y_{0}=1$ and $z_{0}=1$, and then for $k \geq 0$ we let $x_{k+1}=x_{k}+\Delta x, y_{k+1}=y_{k}+z_{k} \Delta x$ and $z_{k+1}=z_{k}+F\left(x_{k}, y_{x}, z_{k}\right) \Delta x=z_{k}+y_{k} z_{k} \Delta x$. We make a table showing the values of x_{k}, y_{k}, z_{k} and $F\left(x_{k}, y_{k}, z_{k}\right)=y_{k} z_{k}$.

k	x_{k}	y_{k}	z_{k}	$y_{k} z_{k}$
0	0.0	1	1	1
1	0.2	1.2	1.2	1.44
2	0.4	1.44	1.488	2.14272
3	0.6	1.7376	1.916544	3.3301869
4	0.8	2.1209088	2.5825814	5.4774196
5	1.0	2.6374251		

Thus $f(1) \cong y^{5} \cong 2.6$ (this is not a very good approximation, as you can check using part (a)).

3: Solve the following IVPs.
(a) $y^{\prime \prime}+3 y^{\prime}+2 y=0$ with $y(0)=1, y^{\prime}(0)=0$

Solution: The characteristic equation is $r^{2}+3 r+2=0$. We solve this to get $r=-1,-2$ so the general solution to the DE is $y=A e^{-x}+B e^{-2 x}$, and then we have $y^{\prime}=-A e^{-x}-2 B e^{-2 x}$. To get $y(0)=1$ we need $A+B=1(1)$, and to get $y^{\prime}(0)=0$ we need $-A-2 B=0(2)$. Solve these two equations to get $A=2$, $B=-1$, so the solution to the IVP is $y=2 e^{-x}-e^{-2 x}$.
(b) $y^{\prime \prime}+4 y^{\prime}+5 y=0$ with $y(0)=3, y^{\prime}(0)=1$

Solution: The characteristic equation is $r^{2}+4 r+5=0$. Solve this to get $r=-2 \pm i$, so the general solution is $y=A e^{-2 x} \sin x+B e^{-2 x} \cos x$, and we have $y^{\prime}=-2 A e^{-2 x} \sin x+A e^{-2 x} \cos x-2 B e^{-2 x} \cos x-B e^{-2 x} \sin x$. To get $y(0)=3$ we need $B=3$, and to get $y^{\prime}(0)=1$ we need $A-2 B=1$ o $A=7$. Thus the solution to the IVP is $y=7 e^{-2 x} \sin x+3 e^{-2 x} \cos x$.
(c) $4 y^{\prime \prime}-4 y^{\prime}+y=0$ with $y(1)=1, y^{\prime}(1)=2$

Solution: The characteristic equation is $4 r^{2}-4 r+1=0$, that is $(2 r-1)^{2}=0$, so $r=\frac{1}{2}$ and the general solution to the DE is $y=A e^{x / 2}+B x e^{x / 2}$, and then $y^{\prime}=\frac{1}{2} A e^{x / 2}+B e^{x / 2}+\frac{1}{2} B x e^{x / 2}$. To get $y(1)=1$ we need $A e^{1 / 2}+B e^{1 / 2}=1$ (1), and to get $y^{\prime}(1)=2$ we need $\frac{1}{2} A e^{1 / 2}+\frac{3}{2} B e^{1 / 2}=2$ (2). Multiply equation (1) by $\frac{3}{2}$ and subtract equation (2) to get $A e^{1 / 2}=-\frac{1}{2}$ so $A=-\frac{1}{2} e^{-1 / 2}$, and then multiply equation (2) by 2 and subtract equation (1) to get $2 B e^{1 / 2}=3$ so $B=\frac{3}{2} e^{-1 / 2}$. Thus the solution to the IVP is $y=-\frac{1}{2} e^{-1 / 2} e^{x / 2}+\frac{3}{2} e^{-1 / 2} x e^{x / 2}=\frac{1}{2}(3 x-1) e^{(x-1) / 2}$.

4: Solve the following linear ODEs.
(a) $y^{\prime \prime}-2 y^{\prime}+5 y=10 x^{2}-3 x$

Solution: The characteristic equation is $r^{2}-2 r+5=0$. Solve this to get $r=1 \pm 2 i$ so the general solution to the associated homogeneous DE is $y=A e^{x} \sin 2 x+B e^{x} \cos 2 x$. To find a particular solution to the given (non-homogeneous) DE, we try $y=y_{p}=a x^{2}+b x+c$. Then $y^{\prime}=2 a x+b$ and $y^{\prime \prime}=2 a$. Put these in the DE to get

$$
\begin{aligned}
10 x^{2}-3 x & =y^{\prime \prime}-2 y^{\prime}+5 y \\
& =2 a-4 a x-2 b+5 a x^{2}+5 b x+5 c \\
& =5 a x^{2}+(5 b-4 a) x+(2 a-2 b+5 c) .
\end{aligned}
$$

Equating coefficients gives $5 a=10,5 b-4 a=-3$ and $2 a-2 b+5 c=0$. Solve these three equations to get $a=2, b=1$ and $c=-\frac{2}{5}$, so we obtain the particular solution $y_{p}=2 x^{2}+x-\frac{2}{5}$. The general solution to the given DE is $y=A e^{x} \sin 2 x+B e^{x} \cos 2 x+2 x^{2}+x-\frac{2}{5}$.
(b) $y^{\prime \prime}+2 y^{\prime}-2 y=3 x e^{2 x}$

Solution: The characteristic equation is $r^{2}+2 r-2=0$. Solve this to get $r=-1 \pm \sqrt{3}$, so the general solution to the associated homogeneous DE is $y=A e^{(-1+\sqrt{3}) x}+B e^{(-1-\sqrt{3}) x}$. To find a particular solution to the given DE, we try $y=y_{p}=(a x+b) e^{2 x}$. Then $y^{\prime}=(2 a x+a+2 b) e^{2 x}$ and $y^{\prime \prime}=(4 a x+4 a+4 b) e^{2 x}$. Put these into the DE to get

$$
\begin{aligned}
3 x e^{2 x} & =y^{\prime \prime}+2 y^{\prime}-2 y \\
& =(4 a x+4 a+4 b) e^{2 x}+2(2 a x+a+2 b) e^{2 x}-2(a x+b) e^{2 x} \\
& =6 a x e^{2 x}+(6 a+6 b) e^{2 x}
\end{aligned}
$$

Divide both sides by $e^{2 x}$ to get $3 x=6 a x+(6 a+6 b)$. Equating coefficients gives $6 a=3$ and $6 a+6 b=0$. Solving these two equations gives $a=\frac{1}{2}$ and $b=-\frac{1}{2}$, so we obtain the particular solution $y_{p}=\left(\frac{1}{2} x-\frac{1}{2}\right) e^{2 x}$. Thus the general solution to the given DE is $y=A e^{(-1+\sqrt{3}) x}+B e^{-(1+\sqrt{3}) x}+\frac{1}{2}(x-1) e^{2 x}$.

5: Solve the following linear ODEs.
(a) $2 y^{\prime \prime}+y^{\prime}-y+x+e^{-x}=0$

Solution: The characteristic equation is $2 r^{2}+r-1=0$. Solve this to get $r=\frac{1}{2},-1$, and so the general solution to the associated homogeneous DE is $y=A e^{x / 2}+B^{-x}$. To find a particular solution to the DE $2 y^{\prime \prime}+y^{\prime}-y=-x$, we try $y=a x+b$. Then $y^{\prime}=a$ and $y^{\prime \prime}=0$. We put these in the DE to get

$$
-x=2 y^{\prime \prime}+y^{\prime}-y=a-a x-b=-a x+(a-b)
$$

Equating coefficients gives $-a=-1$ and $a-b=0$, so we get $a=1$ and $b=1$, and we obtain the particular solution $y=x+1$. To find a particular solution to the DE $2 y^{\prime \prime}+y^{\prime}-y=-e^{-x}$, we try $y=a x e^{-x}$. Then $y^{\prime}=a e^{-x}-a x e^{-x}$ and $y^{\prime \prime}=-2 a e^{-x}+a x e^{-x}$. Put these in the DE to get

$$
-e^{-x}=2 y^{\prime \prime}+y^{\prime}-y=-4 a e^{-x}+2 a x e^{-x}+a e^{-x}-a x e^{-x}-a x e^{-x}=-3 a e^{-x} .
$$

Divide both sides by e^{-x} to get $-1=-3 a$ so $a=\frac{1}{3}$ and we obtain the particular solution $y=\frac{1}{3} x e^{-x}$. A particular solution to the given DE is obtained by adding together these two particular solutions to get $y_{p}=x+1+\frac{1}{3} x e^{-x}$. The general solution to the given DE is $y=A e^{x / 2}+B e^{-x}+x+1+\frac{1}{3} x e^{-x}$.
(b) $y^{\prime \prime}-6 y^{\prime}+10 y=e^{3 x} \sin x$

Solution: The characteristic equation is $r^{2}-6 r+10=0$. Solve this to get $r=3 \pm i$, so two linearly independent solutions to the associated homogeneous DE are $y_{1}=e^{3 x} \sin x$ and $y_{2}=e^{3 x} \cos x$. Note that $y_{1}{ }^{\prime}=3 e^{3 x} \sin x+e^{3 x} \cos x=3 y_{1}+y_{2}$, and $y_{2}{ }^{\prime}=3 e^{3 x} \cos x-e^{3 x} \sin x=-y_{1}+3 y_{2}$. To find a particular solution to the given DE, we try $y=y_{p}=A x y_{1}+B x y_{2}$. Then $y^{\prime}=A y_{1}+A x y_{1}{ }^{\prime}+B y_{2}+B x y_{2}{ }^{\prime}$ and $y^{\prime \prime}=2 A y_{1}{ }^{\prime}+A x y_{1}{ }^{\prime \prime}+2 B y_{2}{ }^{\prime}+B x y_{2}{ }^{\prime \prime}$. Put these in the DE to get

$$
\begin{aligned}
y_{1} & =e^{3 x} \sin x=y^{\prime \prime}-6 y^{\prime}+10 y \\
& =2 A y_{1}{ }^{\prime}+A x y_{1}{ }^{\prime \prime}+2 B y_{2}{ }^{\prime}+B x y_{2}{ }^{\prime \prime}-6 A y_{1}-6 A x y_{1}{ }^{\prime}-6 B y_{2}-6 B x y_{2}{ }^{\prime}+10 A x y_{1}+10 B x y_{2} \\
& =2 A y_{1}{ }^{\prime}+2 B y_{2}{ }^{\prime}-6 A y_{1}-6 B y_{2}+A x\left(y_{1}{ }^{\prime \prime}-6 y_{1}{ }^{\prime}+10 y\right)+B x\left(y_{2}{ }^{\prime \prime}-6 y_{2}{ }^{\prime}+10 y_{2}\right) \\
& =2 A y_{1}{ }^{\prime}+2 B y_{2}{ }^{\prime}-6 A y_{1}-6 B y_{2} \\
& =2 A\left(3 y_{1}+y_{2}\right)+2 B\left(-y_{1}+3 y_{2}\right)-6 A y_{1}-6 B y_{2} \\
& =-2 B y_{1}+2 A y_{2},
\end{aligned}
$$

where we used the fact that y_{1} and y_{2} are solutions to the associated homogeneous DE, and we used the earlier-mentioned identities $y_{1}{ }^{\prime}=3 y_{1}+y_{2}$ and $y_{2}{ }^{\prime}=-y_{1}+3 y_{2}$. Since y_{1} and y_{2} are independent, we can equate coefficients to get $-2 B=1$ and $2 A=0$, that is $A=0$ and $B=-\frac{1}{2}$, and so we obtain the particular solution $y_{p}=-\frac{1}{2} x e^{3 x} \cos x$. Thus the general solution to the given DE is $y=A e^{3 x} \sin x+B e^{3 x} \cos x-\frac{1}{2} x e^{3 x} \cos x$.

6: Solve the following IVPs.
(a) $4 y^{\prime \prime}-y=x$ with $y(0)=2, y^{\prime}(0)=1$

Solution: The characteristic equation is $4 r^{2}-1=0$. Solve this to get $r= \pm \frac{1}{2}$, so the general equation to the associated homogeneous DE is $y=A e^{x / 2}+B e^{-x / 2}$. To find a particular solution to the given DE, we $\operatorname{try} y=y_{p}=a x+b$. Then $y^{\prime}=a$ and $y^{\prime \prime}=0$. Put these in the DE to get $x=4 y^{\prime \prime}-y=-a x-b$. Equating coefficients gives $a=-1$ and $b=0$, so we obtain the particular solution $y_{p}=-x$. The general solution to the given DE is $y=A e^{x / 2}+B e^{-x / 2}-x$, and then $y^{\prime}=\frac{1}{2} A e^{x / 2}-\frac{1}{2} B e^{-x / 2}-1$. To get $y(0)=2$ we need $A+B=2(1)$, and to get $y^{\prime}(0)=1$ we need $\frac{1}{2} A-\frac{1}{2} B-1=1$, that is $A-B=4(2)$. Solving these two equations gives $A=3$ and $B=-1$, so the solution to the given IVP is $y=3 e^{x / 2}-e^{-x / 2}-x$.
(b) $y^{\prime \prime}-6 y^{\prime}+9 y=e^{3 x}$ with $y(0)=1, y^{\prime}(0)=0$

Solution: The characteristic equation is $r^{2}-6 r+9=0$. The only solution is $r=3$ so the general solution to the associated homogeneous DE is $y=A e^{3 x}+B x e^{3 x}$. To find a particular solution to the given DE, we $\operatorname{try} y=y_{p}=a x^{2} e^{3 x}$. We then have $y^{\prime}=a\left(2 x+3 x^{2}\right) e^{3 x}$ and $y^{\prime \prime}=a\left(2+12 x+9 x^{2}\right) e^{3 x}$. Put these in the DE to get

$$
e^{3 x}=y^{\prime \prime}-6 y^{\prime}+9 y=a\left(2+12 x+9 x^{2}\right) e^{3 x}-6 a\left(2 x+3 x^{2}\right) e^{3 x}+9 a x^{2} e^{3 x}=2 a e^{3 x}
$$

Divide by $e^{3 x}$ to get $1=2 a$, so $a=\frac{1}{2}$ and we obtain the particular solution $y_{p}=\frac{1}{2} x^{2} e^{3 x}$. The general solution to the given DE is $y=A e^{3 x}+B x e^{3 x}+\frac{1}{2} x^{2} e^{3 x}$, and then $y^{\prime}=3 A e^{3 x}+B e^{3 x}+3 B x e^{3 x}+x e^{3 x}+\frac{3}{2} e^{3 x}$. To get $y(0)=1$ we need $A=1$, and to get $y^{\prime}(0)=0$ we need $3 A+B=0$ so $B=-3$. Thus the solution to the given IVP is $y=e^{3 x}-3 x e^{3 x}+\frac{1}{2} x^{2} e^{3 x}$.

7: Solve the following third-order linear ODEs.
(a) $y^{\prime \prime \prime}+2 y^{\prime \prime}-5 y^{\prime}-6 y=0$

Solution: The characteristic polynomial is $r^{3}+2 r^{2}-5 r-6=(r-2)\left(r^{2}+4 r+3\right)=(r-2)(r+1)(r+3)$, and so the general solution to the DE is $y=A e^{2 x}+B e^{-x}+C e^{-3 x}$.
(b) $y^{\prime \prime \prime}-3 y^{\prime}+2 y=2 \sin x$

Solution: The characteristic polynomial is $r^{3}-3 r+2=(r-1)\left(r^{2}+r-2\right)=(r-1)^{2}(r+2)$, and so the general solution to the associated homogeneous DE is $y=A e^{x}+B x e^{x}+C e^{-2 x}$. To find a particular solution to the given DE, we try $y=y_{p}=a \sin x+b \cos x$. We then have $y^{\prime}=a \cos x-b \sin x, y^{\prime \prime}=-a \sin x-b \cos x$ and $y^{\prime \prime \prime}=-a \cos x+b \sin x$. Put these in the DE to get

$$
\begin{aligned}
2 \sin x & =y^{\prime \prime \prime}-3 y^{\prime}+2 y \\
& =-a \cos x+b \sin x-3 a \cos x+3 b \sin x+2 a \sin x+2 b \cos x \\
& =(2 a+4 b) \sin x+(-4 a+2 b) \cos x .
\end{aligned}
$$

Since $\sin x$ and $\cos x$ are linearly independent, we can equate coefficients to get $2 a+4 b=2$ and $-4 a+2 b=0$. Solving these two equations gives $a=\frac{1}{5}$ and $b=\frac{2}{5}$, and so we have obtained the particular solution $y_{p}=\frac{1}{5} \sin x+\frac{2}{5} \cos x$. The general solution to the given DE is $y=A e^{x}+B x e^{x}+C e^{-2 x}+\frac{1}{5} \sin x+\frac{2}{5} \cos x$.

