SYDE Advanced Math 2, Solutions for Practice Problem Set 2

1: (a) The substitution u(x) = y'(x) and u'(x) = y''(x) transforms a second order DE of the form y'' = F(y', x) for y = y(x) to the first order DE u' = F(u, x) for u = u(x). Use this substitution to solve the IVP xy'' + y' = 1 with y(1) = 2 and y'(1) = 3.

Solution: Make the substitution y' = u, y'' = u'. The DE becomes xu' + u = 1. This is linear as we can write it as $u' + \frac{1}{x}u = \frac{1}{x}$. An integrating factor is $\lambda = e^{\int \frac{1}{x} dx} = e^{\ln x} = x$, and the solution is given by $u = \frac{1}{x} \int 1 dx = \frac{1}{x}(x+a) = 1 + \frac{a}{x}$. Put in x = 1 and u = y' = 3 to get 3 = 1 + a, so a = 2. Thus the solution is given by $u = 1 + \frac{2}{x}$, that is $y' = 1 + \frac{2}{x}$. Integrate to get $y = \int 1 + \frac{2}{x} dx = x + 2\ln x + b$. Put in x = 1 and y = 2 to get 2 = 1 + b, so b = 1 and the solution to the given IVP is $y = 1 + x + 2\ln x$.

(b) The substitution u(y(x)) = y'(x) and u'(y(x))y'(x) = y''(x) transforms a second order DE of the form y'' = F(y', y) for y = y(x) to the first order DE u u' = F(u, y) for u = u(y). Use this substitution to solve $y y'' + (y')^2 = 0$ with y(1) = 2 and y'(1) = 3.

Solution: Make the substitution y' = u, y'' = u u'. The DE becomes $yu u' + u^2 = 0$. This is linear since we can write it as $u' + \frac{1}{y}u = 0$. An integrating factor is $\lambda = e^{\int \frac{1}{y} dy} = e^{\ln y} = y$ and the solution is $u = \frac{1}{y} \int 0 dy = \frac{a}{y}$. Put in x = 1, y = 2, u = y' = 3 to get $3 = \frac{a}{2}$ so a = 6 and the solution is $u = \frac{6}{y}$, that is $y' = \frac{6}{y}$. This DE is separable since we can write it as yy' = 6. Integrate both sides (with respect to x) to get $\frac{1}{2}y^2 = 6x + c$. Put in x = 1, y = 2 to get 2 = 6 + x so c = -4 and the solution is $\frac{1}{2}y^2 = 6x - 4$, that is $y = \pm \sqrt{12x - 8}$. Since y(1) = 2, we must use the + sign, so $y = \sqrt{12x - 8}$.

2: Consider the IVP y'' = y y' with y(0) = 1 and y'(0) = 1.

(a) Find the exact solution y = f(x) to the given IVP.

Solution: Make the substitution y' = u, y'' = u u', where u = u(y). The DE becomes u u' = yu, that is u' = y. Integrate both sides (with respect to y) to get $u = \frac{1}{2}y^2 + a$. Put in x = 0, y = 1, u = y' = 1 to get $1 = \frac{1}{2} + a$ so $a = \frac{1}{2}$ and the solution is $u = \frac{1}{2}y^2 + \frac{1}{2} = \frac{y^2 + 1}{2}$, that is $y' = \frac{y^2 + 1}{2}$. This is separable as we can write it as $\frac{y'}{y^2 + 1} = \frac{1}{2}$. Integrate (with respect to x) to get $\tan^{-1} y = \frac{1}{2}x + b$. Put in x = 0, y = 1 to get $\frac{\pi}{4} = b$ and so the solution is $\tan^{-1} y = \frac{1}{2}x + \frac{\pi}{4}$, that is $y = f(x) = \tan(\frac{1}{2}x + \frac{\pi}{4})$.

(b) With a calculator, use Euler's method with step size $\Delta x = 0.2$ to approximate f(1).

Solution: The DE can be written as y'' = F(x, y, y') where F(x, y, z) = yz. We let $\Delta x = 0.2$ and start with $x_0 = 0$, $y_0 = 1$ and $z_0 = 1$, and then for $k \ge 0$ we let $x_{k+1} = x_k + \Delta x$, $y_{k+1} = y_k + z_k \Delta x$ and $z_{k+1} = z_k + F(x_k, y_x, z_k) \Delta x = z_k + y_k z_k \Delta x$. We make a table showing the values of x_k , y_k , z_k and $F(x_k, y_k, z_k) = y_k z_k$.

ĸ	x_k	y_k	z_k	$y_k z_k$
0	0.0	1	1	1
1	0.2	1.2	1.2	1.44
2	0.4	1.44	1.488	2.14272
3	0.6	1.7376	1.916544	3.3301869
4	0.8	2.1209088	2.5825814	5.4774196
5	1.0	2.6374251		

Thus $f(1) \cong y^5 \cong 2.6$ (this is not a very good approximation, as you can check using part (a)).

3: Solve the following IVPs.

(a)
$$y'' + 3y' + 2y = 0$$
 with $y(0) = 1, y'(0) = 0$

Solution: The characteristic equation is $r^2 + 3r + 2 = 0$. We solve this to get r = -1, -2 so the general solution to the DE is $y = Ae^{-x} + Be^{-2x}$, and then we have $y' = -Ae^{-x} - 2Be^{-2x}$. To get y(0) = 1 we need A + B = 1 (1), and to get y'(0) = 0 we need -A - 2B = 0 (2). Solve these two equations to get A = 2, B = -1, so the solution to the IVP is $y = 2e^{-x} - e^{-2x}$.

(b)
$$y'' + 4y' + 5y = 0$$
 with $y(0) = 3$, $y'(0) = 1$

Solution: The characteristic equation is $r^2 + 4r + 5 = 0$. Solve this to get $r = -2 \pm i$, so the general solution is $y = Ae^{-2x} \sin x + Be^{-2x} \cos x$, and we have $y' = -2Ae^{-2x} \sin x + Ae^{-2x} \cos x - 2Be^{-2x} \cos x - Be^{-2x} \sin x$. To get y(0) = 3 we need B = 3, and to get y'(0) = 1 we need A - 2B = 1 o A = 7. Thus the solution to the IVP is $y = 7e^{-2x} \sin x + 3e^{-2x} \cos x$.

(c)
$$4y'' - 4y' + y = 0$$
 with $y(1) = 1, y'(1) = 2$

Solution: The characteristic equation is $4r^2 - 4r + 1 = 0$, that is $(2r - 1)^2 = 0$, so $r = \frac{1}{2}$ and the general solution to the DE is $y = Ae^{x/2} + Bxe^{x/2}$, and then $y' = \frac{1}{2}Ae^{x/2} + Be^{x/2} + \frac{1}{2}Bxe^{x/2}$. To get y(1) = 1 we need $Ae^{1/2} + Be^{1/2} = 1$ (1), and to get y'(1) = 2 we need $\frac{1}{2}Ae^{1/2} + \frac{3}{2}Be^{1/2} = 2$ (2). Multiply equation (1) by $\frac{3}{2}$ and subtract equation (2) to get $Ae^{1/2} = -\frac{1}{2}$ so $A = -\frac{1}{2}e^{-1/2}$, and then multiply equation (2) by 2 and subtract equation (1) to get $2Be^{1/2} = 3$ so $B = \frac{3}{2}e^{-1/2}$. Thus the solution to the IVP is $y = -\frac{1}{2}e^{-1/2}e^{x/2} + \frac{3}{2}e^{-1/2}xe^{x/2} = \frac{1}{2}(3x - 1)e^{(x-1)/2}$.

4: Solve the following linear ODEs.

(a)
$$y'' - 2y' + 5y = 10x^2 - 3x$$

Solution: The characteristic equation is $r^2 - 2r + 5 = 0$. Solve this to get $r = 1 \pm 2i$ so the general solution to the associated homogeneous DE is $y = Ae^x \sin 2x + Be^x \cos 2x$. To find a particular solution to the given (non-homogeneous) DE, we try $y = y_p = ax^2 + bx + c$. Then y' = 2ax + b and y'' = 2a. Put these in the DE to get

$$10x^{2} - 3x = y'' - 2y' + 5y$$

= 2a - 4ax - 2b + 5ax² + 5bx + 5c
= 5a x² + (5b - 4a)x + (2a - 2b + 5c).

Equating coefficients gives 5a = 10, 5b - 4a = -3 and 2a - 2b + 5c = 0. Solve these three equations to get a = 2, b = 1 and $c = -\frac{2}{5}$, so we obtain the particular solution $y_p = 2x^2 + x - \frac{2}{5}$. The general solution to the given DE is $y = Ae^x \sin 2x + Be^x \cos 2x + 2x^2 + x - \frac{2}{5}$.

(b)
$$y'' + 2y' - 2y = 3xe^{2x}$$

Solution: The characteristic equation is $r^2 + 2r - 2 = 0$. Solve this to get $r = -1 \pm \sqrt{3}$, so the general solution to the associated homogeneous DE is $y = Ae^{(-1+\sqrt{3})x} + Be^{(-1-\sqrt{3})x}$. To find a particular solution to the given DE, we try $y = y_p = (ax + b)e^{2x}$. Then $y' = (2ax + a + 2b)e^{2x}$ and $y'' = (4ax + 4a + 4b)e^{2x}$. Put these into the DE to get

$$3xe^{2x} = y'' + 2y' - 2y$$

= $(4ax + 4a + 4b)e^{2x} + 2(2ax + a + 2b)e^{2x} - 2(ax + b)e^{2x}$
= $6axe^{2x} + (6a + 6b)e^{2x}$.

Divide both sides by e^{2x} to get 3x = 6ax + (6a + 6b). Equating coefficients gives 6a = 3 and 6a + 6b = 0. Solving these two equations gives $a = \frac{1}{2}$ and $b = -\frac{1}{2}$, so we obtain the particular solution $y_p = (\frac{1}{2}x - \frac{1}{2})e^{2x}$. Thus the general solution to the given DE is $y = Ae^{(-1+\sqrt{3})x} + Be^{-(1+\sqrt{3})x} + \frac{1}{2}(x-1)e^{2x}$. **5:** Solve the following linear ODEs.

(a)
$$2y'' + y' - y + x + e^{-x} = 0$$

Solution: The characteristic equation is $2r^2 + r - 1 = 0$. Solve this to get $r = \frac{1}{2}, -1$, and so the general solution to the associated homogeneous DE is $y = Ae^{x/2} + B^{-x}$. To find a particular solution to the DE 2y'' + y' - y = -x, we try y = ax + b. Then y' = a and y'' = 0. We put these in the DE to get

$$-x = 2y'' + y' - y = a - ax - b = -ax + (a - b).$$

Equating coefficients gives -a = -1 and a - b = 0, so we get a = 1 and b = 1, and we obtain the particular solution y = x + 1. To find a particular solution to the DE $2y'' + y' - y = -e^{-x}$, we try $y = axe^{-x}$. Then $y' = ae^{-x} - axe^{-x}$ and $y'' = -2ae^{-x} + axe^{-x}$. Put these in the DE to get

$$-e^{-x} = 2y'' + y' - y = -4ae^{-x} + 2axe^{-x} + ae^{-x} - axe^{-x} - axe^{-x} = -3ae^{-x}$$

Divide both sides by e^{-x} to get -1 = -3a so $a = \frac{1}{3}$ and we obtain the particular solution $y = \frac{1}{3}xe^{-x}$. A particular solution to the given DE is obtained by adding together these two particular solutions to get $y_p = x + 1 + \frac{1}{3}xe^{-x}$. The general solution to the given DE is $y = Ae^{x/2} + Be^{-x} + x + 1 + \frac{1}{3}xe^{-x}$.

(b)
$$y'' - 6y' + 10y = e^{3x} \sin x$$

Solution: The characteristic equation is $r^2 - 6r + 10 = 0$. Solve this to get $r = 3 \pm i$, so two linearly independent solutions to the associated homogeneous DE are $y_1 = e^{3x} \sin x$ and $y_2 = e^{3x} \cos x$. Note that $y_1' = 3e^{3x} \sin x + e^{3x} \cos x = 3y_1 + y_2$, and $y_2' = 3e^{3x} \cos x - e^{3x} \sin x = -y_1 + 3y_2$. To find a particular solution to the given DE, we try $y = y_p = Axy_1 + Bxy_2$. Then $y' = Ay_1 + Axy_1' + By_2 + Bxy_2'$ and $y'' = 2Ay_1' + Axy_1'' + 2By_2' + Bxy_2''$. Put these in the DE to get

$$y_{1} = e^{3x} \sin x = y'' - 6y' + 10y$$

= $2Ay_{1}' + Axy_{1}'' + 2By_{2}' + Bxy_{2}'' - 6Ay_{1} - 6Axy_{1}' - 6By_{2} - 6Bxy_{2}' + 10Axy_{1} + 10Bxy_{2}$
= $2Ay_{1}' + 2By_{2}' - 6Ay_{1} - 6By_{2} + Ax(y_{1}'' - 6y_{1}' + 10y) + Bx(y_{2}'' - 6y_{2}' + 10y_{2})$
= $2Ay_{1}' + 2By_{2}' - 6Ay_{1} - 6By_{2}$
= $2A(3y_{1} + y_{2}) + 2B(-y_{1} + 3y_{2}) - 6Ay_{1} - 6By_{2}$
= $-2By_{1} + 2Ay_{2}$.

where we used the fact that y_1 and y_2 are solutions to the associated homogeneous DE, and we used the earlier-mentioned identities $y_1' = 3y_1 + y_2$ and $y_2' = -y_1 + 3y_2$. Since y_1 and y_2 are independent, we can equate coefficients to get -2B = 1 and 2A = 0, that is A = 0 and $B = -\frac{1}{2}$, and so we obtain the particular solution $y_p = -\frac{1}{2}xe^{3x}\cos x$. Thus the general solution to the given DE is $y = Ae^{3x}\sin x + Be^{3x}\cos x - \frac{1}{2}xe^{3x}\cos x$.

6: Solve the following IVPs.

(a) 4y'' - y = x with y(0) = 2, y'(0) = 1

Solution: The characteristic equation is $4r^2 - 1 = 0$. Solve this to get $r = \pm \frac{1}{2}$, so the general equation to the associated homogeneous DE is $y = Ae^{x/2} + Be^{-x/2}$. To find a particular solution to the given DE, we try $y = y_p = ax + b$. Then y' = a and y'' = 0. Put these in the DE to get x = 4y'' - y = -ax - b. Equating coefficients gives a = -1 and b = 0, so we obtain the particular solution $y_p = -x$. The general solution to the given DE is $y = Ae^{x/2} + Be^{-x/2} - x$, and then $y' = \frac{1}{2}Ae^{x/2} - \frac{1}{2}Be^{-x/2} - 1$. To get y(0) = 2 we need A + B = 2 (1), and to get y'(0) = 1 we need $\frac{1}{2}A - \frac{1}{2}B - 1 = 1$, that is A - B = 4 (2). Solving these two equations gives A = 3 and B = -1, so the solution to the given IVP is $y = 3e^{x/2} - e^{-x/2} - x$.

(b)
$$y'' - 6y' + 9y = e^{3x}$$
 with $y(0) = 1, y'(0) = 0$

Solution: The characteristic equation is $r^2 - 6r + 9 = 0$. The only solution is r = 3 so the general solution to the associated homogeneous DE is $y = Ae^{3x} + Bxe^{3x}$. To find a particular solution to the given DE, we try $y = y_p = ax^2e^{3x}$. We then have $y' = a(2x + 3x^2)e^{3x}$ and $y'' = a(2 + 12x + 9x^2)e^{3x}$. Put these in the DE to get

$$e^{3x} = y'' - 6y' + 9y = a(2 + 12x + 9x^2)e^{3x} - 6a(2x + 3x^2)e^{3x} + 9ax^2e^{3x} = 2ae^{3x}$$

Divide by e^{3x} to get 1 = 2a, so $a = \frac{1}{2}$ and we obtain the particular solution $y_p = \frac{1}{2}x^2e^{3x}$. The general solution to the given DE is $y = Ae^{3x} + Bxe^{3x} + \frac{1}{2}x^2e^{3x}$, and then $y' = 3Ae^{3x} + Be^{3x} + 3Bxe^{3x} + xe^{3x} + \frac{3}{2}e^{3x}$. To get y(0) = 1 we need A = 1, and to get y'(0) = 0 we need 3A + B = 0 so B = -3. Thus the solution to the given IVP is $y = e^{3x} - 3xe^{3x} + \frac{1}{2}x^2e^{3x}$.

7: Solve the following third-order linear ODEs.

(a)
$$y''' + 2y'' - 5y' - 6y = 0$$

Solution: The characteristic polynomial is $r^3 + 2r^2 - 5r - 6 = (r-2)(r^2 + 4r + 3) = (r-2)(r+1)(r+3)$, and so the general solution to the DE is $y = Ae^{2x} + Be^{-x} + Ce^{-3x}$.

(b)
$$y''' - 3y' + 2y = 2\sin x$$

Solution: The characteristic polynomial is $r^3 - 3r + 2 = (r - 1)(r^2 + r - 2) = (r - 1)^2(r + 2)$, and so the general solution to the associated homogeneous DE is $y = Ae^x + Bxe^x + Ce^{-2x}$. To find a particular solution to the given DE, we try $y = y_p = a \sin x + b \cos x$. We then have $y' = a \cos x - b \sin x$, $y'' = -a \sin x - b \cos x$ and $y''' = -a \cos x + b \sin x$. Put these in the DE to get

$$2\sin x = y''' - 3y' + 2y$$

= $-a\cos x + b\sin x - 3a\cos x + 3b\sin x + 2a\sin x + 2b\cos x$
= $(2a + 4b)\sin x + (-4a + 2b)\cos x$.

Since sin x and cos x are linearly independent, we can equate coefficients to get 2a + 4b = 2 and -4a + 2b = 0. Solving these two equations gives $a = \frac{1}{5}$ and $b = \frac{2}{5}$, and so we have obtained the particular solution $y_p = \frac{1}{5} \sin x + \frac{2}{5} \cos x$. The general solution to the given DE is $y = Ae^x + Bxe^x + Ce^{-2x} + \frac{1}{5} \sin x + \frac{2}{5} \cos x$.