SYDE Advanced Math 2, Solutions for Practice Problem Set 3

1: (a) Solve the system $\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right)\binom{x}{y}$ and draw the direction field and some solution curves.
Solution: Let $A=\left(\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right)$. Then $\operatorname{det}(A-r I)=\operatorname{det}\left(\begin{array}{cc}1-r & 2 \\ 1 & -r\end{array}\right)=r^{2}-r-2=(r+1)(r-2)$.
When $r=-1$ we have $A-r I=\left(\begin{array}{ll}2 & 2 \\ 1 & 1\end{array}\right) \sim\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ and so an eigenvector is $\mathbf{u}=\binom{1}{-1}$.
When $r=2$ we have $A-r I=\left(\begin{array}{cc}-1 & 2 \\ 1 & -2\end{array}\right) \sim\left(\begin{array}{cc}1 & -2 \\ 0 & 0\end{array}\right)$ so an eigenvector is $\mathbf{v}=\binom{2}{1}$.
The solution to the system is

$$
\binom{x}{y}=a e^{-t}\binom{1}{-1}+b e^{2 t}\binom{2}{1} .
$$

To sketch the direction field, note that the isoclines are given by $m=\frac{y^{\prime}}{x^{\prime}}=\frac{x}{x+2 y}$, that is $m x+2 m y=x$, or equivalently $y=\frac{1-m}{2 m} x$. This is the line through $(0,0)$ with slope $\frac{1-m}{2 m}$. Some isoclines are shown in yellow, the direction field is shown in green, and some solution curves are shown in blue.

(b) Solve the system $\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right)\binom{x}{y}$ and draw the direction field and some solution curves.

Solution: Let $A=\left(\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right)$. Then $\operatorname{det}(A-r I)=\operatorname{det}\left(\begin{array}{cc}1-r & 2 \\ -2 & 1-r\end{array}\right)=r^{2}-2 r+5=(r-1)^{2}+4$. The eigenvalues are $r=1 \pm 2 i$.
When $r=1+2 i$ we have $A-r I=\left(\begin{array}{cc}-2 i & 2 \\ -2 & -2 i\end{array}\right) \sim\left(\begin{array}{cc}-i & 1 \\ 0 & 0\end{array}\right)$ so an eigenvector is $\mathbf{u}=\binom{1}{i}$.
A complex solution is

$$
\binom{z}{w}=e^{(1+2 i) t}\binom{1}{i}=e^{t}(\cos 2 t+i \sin 2 t)\binom{1}{i}=e^{t}\binom{\cos 2 t+i \sin 2 t}{-\sin 2 t+i \cos 2 t} .
$$

Two independent real solutions are obtained from the real and imaginary parts of the above complex solution. The general solution is

$$
\binom{x}{y}=a e^{t}\binom{\cos 2 t}{-\sin 2 t}+b e^{t}\binom{\sin 2 t}{\cos 2 t} .
$$

The isoclines are given by $m=\frac{y^{\prime}}{x^{\prime}}=\frac{-2 x+y}{x+2 y}$, that is $m x+2 m y=-2 x+y$, or equivalently $y=\frac{2+m}{1-2 m} x$.
This is the line through $(0,0)$ of slope $\frac{2+m}{1-2 m}$. Some isoclines are shown in yellow, the slope field is shown in green, and some solution curves are shown in blue.

2: (a) Find the solution to the system $\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}1 & -2 \\ 2 & -3\end{array}\right)\binom{x}{y}$ with $\binom{x(0)}{y(0)}=\binom{2}{1}$.
Solution: Let $A=\left(\begin{array}{ll}1 & -2 \\ 2 & -3\end{array}\right)$. Then $\operatorname{det}(A-r I)=\operatorname{det}\left(\begin{array}{cc}1-r & -2 \\ 2 & -3-r\end{array}\right)=r^{2}+2 r+1=(r+1)^{2}$.
When $r=-1$ we have $A-r I=\left(\begin{array}{cc}2 & -2 \\ 2 & -2\end{array}\right) \sim\left(\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right)$ so an eigenvector is $\mathbf{u}=\binom{1}{1}$.
Note also that when $\mathbf{v}=\binom{1}{0}$ we have $(A-r I) \mathbf{v}=\left(\begin{array}{ll}2 & -2 \\ 2 & -2\end{array}\right)\binom{1}{0}=\binom{2}{2}=2 \mathbf{u}$.
Thus the general solution to the system is

$$
\binom{x}{y}=a e^{-t}\binom{1}{1}+b e^{-t}\binom{1}{0}+b t e^{-t}\binom{2}{2}
$$

To get $x(0)=2$ we need $2=a+b$ and to get $y(0)=1$ we need $1=a$, so we must take $a=1$ and $b=1$, and we obtain the solution

$$
\binom{x}{y}=e^{-t}\binom{2}{1}+t e^{-t}\binom{2}{2}
$$

(b) Find the solution to the system $\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}1 & -2 \\ 4 & 5\end{array}\right)\binom{x}{y}$ with $\binom{x(0)}{y(0)}=\binom{1}{2}$.

Solution: Let $A=\left(\begin{array}{cc}1 & -2 \\ 4 & 5\end{array}\right)$. Then $\operatorname{det}(A-r I)=\operatorname{det}\left(\begin{array}{cc}1-r & -2 \\ 4 & 5-r\end{array}\right)=r^{2}-6 r+13=(r-3)^{2}+4$,
The eigenvalues are $r=3 \pm 2 i$.
When $r=3+2 i$ we have $A-r I=\left(\begin{array}{cc}-2-2 i & -2 \\ 4 & 2-2 i\end{array}\right) \sim\left(\begin{array}{cc}2 & 1-i \\ 0 & 0\end{array}\right)$ so an eigenvector is $\mathbf{u}=\binom{1-i}{-2}$.
A complex solution is

$$
\binom{z}{w}=e^{(3+2 i) t}\binom{1-i}{-2}=e^{3 t}(\cos 2 t+i \sin 2 t)\binom{1-i}{-2}=e^{3 t}\binom{(\cos 2 t+\sin 2 t)+i(\sin 2 t-\cos 2 t)}{-2 \cos 2 t-2 i \sin 2 t}
$$

Two independent real solutions are given by the real and imaginary parts of this complex solution, so the general solution to the system is

$$
\binom{x}{y}=a e^{3 t}\binom{\sin 2 t+\cos 2 t}{-2 \cos 2 t}+b e^{3 t}\binom{\sin 2 t-\cos 2 t}{-2 \sin 2 t}
$$

To get $x(0)=1$ we need $1=a-b$ and to get $y(0)=2$ we need $2=-2 a$, so we must have $a=-1$ and $b=-2$, and so the solution is

$$
\binom{x}{y}=-e^{3 t}\binom{\sin 2 t+\cos 2 t}{-2 \cos 2 t}-2 e^{3 t}\binom{\sin 2 t-\cos 2 t}{-2 \sin 2 t}=e^{3 t}\binom{\cos 2 t-3 \sin 2 t}{4 \sin 2 t+2 \cos 2 t}
$$

3: (a) Solve the system $\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right)\binom{x}{y}+\binom{6 t+1}{e^{t}}$.
Solution: First we solve the associated homogeneous system. Let $A=\left(\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right)$.
Then $\operatorname{det}(A-r I)=\operatorname{det}\left(\begin{array}{cc}1-r & 2 \\ -1 & 4-r\end{array}\right)=r^{2}-5 r+6=(r-2)(r-3)$ so the eigenvalues are $r=2,3$.
When $r=2$ we have $A-r I=\left(\begin{array}{cc}-1 & 2 \\ -1 & 2\end{array}\right) \sim\left(\begin{array}{cc}1 & -2 \\ 0 & 0\end{array}\right)$ so an eigenvector is $\mathbf{u}=\binom{2}{1}$.
When $r=3$ we have $A-r I=\left(\begin{array}{cc}-2 & 2 \\ -1 & 1\end{array}\right) \sim\left(\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right)$ so an eigenvector is $\mathbf{v}=\binom{1}{1}$.
Thus the general solution to the homogeneous system is

$$
\binom{x}{y}=a e^{2 t}\binom{2}{1}+b e^{3 t}\binom{1}{1} .
$$

We shall find a particular solution to the given non-homogeneous system using variation of parameters.
We try $\binom{x_{p}}{y_{p}}=X\binom{r}{s}$ where $X=\left(\begin{array}{cc}2 e^{2 t} & e^{3 t} \\ e^{2 t} & e^{3 t}\end{array}\right)$. Putting this in the non-homogeneous system gives

$$
\begin{aligned}
\binom{r^{\prime}}{s^{\prime}} & =\left(\begin{array}{ll}
2 e^{2 t} & e^{3 t} \\
e^{2 t} & e^{3 t}
\end{array}\right)^{-1}\binom{6 t+1}{e^{t}}=e^{-5 t}\left(\begin{array}{cc}
e^{3 t} & -e^{3 t} \\
-e^{2 t} & 2 e^{2 t}
\end{array}\right)\binom{6 t+1}{e^{t}} \\
& =e^{-5 t}\binom{(6 t+1) e^{3 t}-e^{4 t}}{-(6 t+1) e^{2 t}+2 e^{3 t}}=\binom{(6 t+1) e^{-2 t}-e^{-t}}{-(6 t+1) e^{-3 t}+2 e^{-2 t}} .
\end{aligned}
$$

We integrate (using integration by parts) to obtain

$$
\begin{aligned}
& r=\int(6 t+1) e^{-2 t}-e^{-t} d t=-\frac{1}{2}(6 t+1) e^{-2 t}-\frac{3}{2} e^{-2 t}+e^{-t}=-(3 t+2) e^{-2 t}+e^{-t}, \text { and } \\
& s=\int-(6 t+1) e^{-3 t}+2 e^{-2 t} d t=\frac{1}{3}(6 t+1) e^{-3 t}+\frac{2}{3} e^{-3 t}-e^{-t}=(2 t+1) e^{-3 t}-e^{-2 t} .
\end{aligned}
$$

Thus we obtain the particular solution

$$
\binom{x_{p}}{y_{p}}=\left(\begin{array}{cc}
2 e^{2 t} & e^{3 t} \\
e^{2 t} & e^{3 t}
\end{array}\right)\binom{-(3 t+2) e^{-2 t}+e^{-t}}{(2 t+1) e^{-3 t}-e^{-2 t}}=\binom{-2(3 t+2)+2 e^{t}+(2 t+1)-e^{t}}{-(3 t+2)+e^{t}+(2 t+1)-e^{t}}=\binom{-4 t-3+e^{t}}{-t-1} .
$$

The general solution to the given system is

$$
\binom{x}{y}=a e^{2 t}\binom{2}{1}+b e^{3 t}\binom{1}{1}+\binom{-4 t-3+e^{t}}{-t-1} .
$$

(b) Solve the system $\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}3 & -4 \\ 5 & -1\end{array}\right)\binom{x}{y}+\binom{1}{5 e^{3 t}-4}$.

Solution: First we solve the associated homogeneous system. Let $A=\left(\begin{array}{cc}3 & -4 \\ 5 & -1\end{array}\right)$.
Then $\operatorname{det}(A-r I)=\operatorname{det}\left(\begin{array}{cc}3-r & -4 \\ 5 & -1-r\end{array}\right)=r^{2}-2 r+17=(r-1)^{2}+16$, so the eigenvalues are $r=1 \pm 4 i$.
When $r=1+4 i$ we have $A-r I=\left(\begin{array}{cc}2-4 i & -4 \\ 5 & -2-4 i\end{array}\right) \sim\left(\begin{array}{cc}1-2 i & -2 \\ 0 & 0\end{array}\right)$ so an eigenvector is $\mathbf{u}=\binom{2}{1-2 i}$.
A complex solution is

$$
\binom{z}{w}=e^{(1+4 i) t}\binom{2}{1-2 i}=e^{t}(\cos 4 t+i \sin 4 t)\binom{2}{1-2 i}=e^{t}\binom{2 \cos 4 t+i \sin 4 t}{(2 \sin 4 t+\cos 4 t)+i(\sin 4 t-2 \cos 4 t)}
$$

so the general solution to the associated homogeneous system is

$$
\binom{x}{y}=a e^{t}\binom{2 \cos 4 t}{2 \sin 4 t+\cos 4 t}+b e^{t}\binom{2 \sin 4 t}{\sin 4 t-2 \cos 4 t} .
$$

We shall find a particular solution to the non-homogeneous system using the method of undetermined coefficients. We try $\binom{x_{p}}{y_{p}}=\binom{c}{d}+e^{3 t}\binom{r}{s}$. Put this into the system of DEs. The left side is

$$
L S=\binom{x_{p}{ }^{\prime}}{y_{p}{ }^{\prime}}=\binom{3 r e^{3 t}}{3 s e^{3 t}}
$$

and the right side is

$$
\begin{aligned}
R S & =\left(\begin{array}{ll}
3 & -4 \\
5 & -1
\end{array}\right)\binom{x_{p}}{y_{p}}+\binom{1}{5 e^{3 t}-4}=\left(\begin{array}{ll}
3 & -4 \\
5 & -1
\end{array}\right)\binom{c+r e^{3 t}}{d+s e^{3 t}}+\binom{1}{5 e^{3 t}-4} \\
& =\binom{3 c+3 r e^{3 t}-4 d-4 s e^{3 t}+1}{5 c+5 p e^{3 t}-d-q e^{3 t}+5 e^{3 t}-4} .
\end{aligned}
$$

In order to have $L S=R S$ we need $3 r e^{3 t}=3 c+3 r e^{3 t}-4 d-4 s e^{3 t}+1=0$, that is $(3 c-4 d+1)+(-4 s) e^{3 t}=0$, and $3 s e^{3 t}=5 c+5 r e^{3 t}-d-s e^{3 t}+5 e^{3 t}-4$, that is $(5 c-d-4)+(5 r-4 s+5) e^{3 t}=0$. Since 1 and $e^{3 t}$ are linearly independent, the coefficients must all vanish, so we have $3 c-4 d+1=0,5 c-d-4=0,-4 s=0$ and $5 r-4 s+5=0$. The first two of these equations give $c=1$ and $d=1$ and the second two give $r=-1$ and $s=0$. Thus we obtain the particular solution

$$
\binom{x_{p}}{y_{p}}=\binom{1}{1}+e^{3 t}\binom{-1}{0} .
$$

The general solution to the given system is

$$
\binom{x}{y}=a e^{t}\binom{2 \cos 4 t}{2 \sin 4 t+\cos 4 t}+b e^{t}\binom{2 \sin 4 t}{\sin 4 t-2 \cos 4 t}+\binom{1}{1}+e^{3 t}\binom{-1}{0}
$$

4: Find the solution to the system $\left(\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right)=\left(\begin{array}{lll}2 & -2 & 1 \\ 1 & -1 & 1 \\ 2 & -4 & 3\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ with $\left(\begin{array}{l}x(0) \\ y(0) \\ z(0)\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$.
Solution: Let $A=\left(\begin{array}{lll}2 & -2 & 1 \\ 1 & -1 & 1 \\ 2 & -4 & 3\end{array}\right)$. Then

$$
\begin{aligned}
\operatorname{det}(A-r I) & =\operatorname{det}\left(\begin{array}{ccc}
2-r & -2 & 1 \\
1 & -1-r & 1 \\
2 & -4 & 3-r
\end{array}\right) \\
& =-(r-2)(r-3)(r+1)-4-4-4(r-2)-2(r-3)+2(r+1) \\
& =-(r-2)(r-3)(r+1)-4 r+8=-(r-2)((r-3)(r+1)+4) \\
& =-(r-2)\left(r^{2}-2 r+1\right)=-(r-2)(r-1)^{2} .
\end{aligned}
$$

When $r=2$ we have

$$
A-r I=\left(\begin{array}{ccc}
0 & -2 & 1 \\
1 & -3 & 1 \\
2 & -4 & 1
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & -3 & 1 \\
0 & -2 & 1 \\
0 & 2 & -1
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & -3 & 1 \\
0 & 1 & -\frac{1}{2} \\
0 & 2 & -1
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 0 & -\frac{1}{2} \\
0 & 1 & -\frac{1}{2} \\
0 & 0 & 0
\end{array}\right)
$$

so an eigenvector is $\mathbf{u}=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$. When $r=1$ we have

$$
A-r I=\left(\begin{array}{lll}
1 & -2 & 1 \\
1 & -2 & 1 \\
2 & -4 & 2
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & -2 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

so we have the two independent eigenvectors $\mathbf{v}=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$ and $\mathbf{w}=\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$. Thus the general solution to the system is

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=a e^{2 t}\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)+b e^{t}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)+c e^{t}\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right) .
$$

To get $x(0)=1$ we need $a+b+2 c=1$, to get $y(0)=2$ we need $a+0 b+c=2$, and to get $z(0)=1$ we need $2 a-b+0 c=1$. We solve these three equations:

$$
\left(\begin{array}{ccc|c}
1 & 1 & 2 & 1 \\
1 & 0 & 1 & 2 \\
2 & -1 & 0 & 1
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 1 & 2 & 1 \\
0 & 1 & 1 & -1 \\
0 & 3 & 4 & 1
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 0 & 1 & 2 \\
0 & 1 & 1 & -1 \\
0 & 0 & 1 & 4
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 0 & 0 & -2 \\
0 & 1 & 0 & -5 \\
0 & 0 & 1 & 4
\end{array}\right)
$$

Thus $a=-2, b=-5$ and $c=4$, so the solution is

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=-2 e^{2 t}\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)-5 e^{t}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)+4 e^{t}\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)=-2 e^{2 t}\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)+e^{t}\left(\begin{array}{l}
3 \\
4 \\
5
\end{array}\right) .
$$

5: Solve the system $\left(\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right)=\left(\begin{array}{ccc}1 & 1 & -2 \\ -2 & -2 & 2 \\ 3 & 2 & -3\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)+e^{-2 t}\left(\begin{array}{c}-1 \\ 2 \\ 2\end{array}\right)$.
Solution: Let $A=\left(\begin{array}{ccc}1 & 1 & -2 \\ -2 & -2 & 2 \\ 3 & 2 & -3\end{array}\right)$. Then

$$
\begin{aligned}
\operatorname{det}(A-r I) & =\operatorname{det}\left(\begin{array}{ccc}
1-r & 1 & -2 \\
-2 & -2-r & 2 \\
3 & 2 & -3-r
\end{array}\right) \\
& =-(r-1)(r+2)(r+3)+6+8+4(r-1)-2(r+3)-6(r+2) \\
& =-(r-1)(r+2)(r+3)-4 r-8=-(r+2)((r-1)(r+3)+4) \\
& =-(r+2)\left(r^{2}+2 r+1\right)=-(r+2)(r+1)^{2} .
\end{aligned}
$$

When $r=-2$ we have

$$
A-r I=\left(\begin{array}{ccc}
3 & 1 & -2 \\
-2 & 0 & 2 \\
3 & 2 & -1
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 1 & 0 \\
-2 & 0 & 2 \\
3 & 2 & -1
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 2 & 2 \\
0 & 1 & 1
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

so an eigenvector is $\mathbf{u}=\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$. When $r=-1$ we have

$$
A-r I=\left(\begin{array}{ccc}
2 & 1 & -2 \\
-2 & -1 & 2 \\
3 & 2 & -2
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 1 & 0 \\
-2 & -1 & 2 \\
3 & 2 & -2
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 2 \\
0 & 1 & 2
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

so one eigenvector is $\mathbf{v}=\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right)$. We look for a vector \mathbf{w} such that $(A-r I) \mathbf{w}=\mathbf{v}$:

$$
\left(\begin{array}{ccc|c}
2 & 1 & -2 & 2 \\
-2 & -1 & 2 & -2 \\
3 & 2 & -2 & 1
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 1 & 0 & -1 \\
-2 & -1 & 2 & -2 \\
3 & 2 & -2 & 1
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 1 & 0 & -1 \\
0 & 1 & 2 & -4 \\
0 & 1 & 2 & -4
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 0 & -2 & 3 \\
0 & 1 & 2 & -4 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

and we obtain $\mathbf{w}=\left(\begin{array}{c}3 \\ -4 \\ 0\end{array}\right)$. Thus the general solution to the associated homogeneous system is

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=a e^{-2 t}\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)+b e^{-t}\left(\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right)+c e^{-t}\left(\begin{array}{c}
3 \\
-4 \\
0
\end{array}\right)+c t e^{-t}\left(\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right)
$$

To find a particular solution to the given non-homogeneous system, we use the method of undetermined coefficients. We try $\mathbf{x}=e^{-2 t} \mathbf{p}+t e^{-2 t} \mathbf{q}$, where $\mathbf{x}=\left(x_{p}, y_{p}, z_{p}\right)^{T}$ and \mathbf{p} and \mathbf{q} are vectors in \mathbb{R}^{3}. We put \mathbf{x} into the non-homogeneous system of DEs. The left side is

$$
L S=\mathbf{x}^{\prime}=-2 e^{-2 t} \mathbf{p}+e^{-2 t} \mathbf{q}-2 t e^{-2 t} \mathbf{q}=e^{-2 t}(-2 \mathbf{p}+\mathbf{q})+t e^{-2 t}(-2 \mathbf{q})
$$

and, writing $\mathbf{b}=(-1,2,2)^{T}$, the right side is

$$
R S=A \mathbf{x}+e^{-2 t} \mathbf{b}=A\left(e^{-2 t} \mathbf{p}+t e^{-2 t} \mathbf{q}\right)+e^{-2 t} \mathbf{b}=e^{-2 t}(A \mathbf{p}+\mathbf{b})+t e^{-2 t} A \mathbf{q}
$$

To get $L S=R S$ we need $-2 \mathbf{p}+\mathbf{q}=A \mathbf{p}+\mathbf{b}$ and $-2 \mathbf{q}=A \mathbf{q}$. Note that $-2 \mathbf{q}=A \mathbf{q} \Longleftrightarrow(A+2 I) \mathbf{q}=0$ so \mathbf{q} must be an eigenvector of $r=-2$, and so we must have $\mathbf{q}=k \mathbf{u}$ for some $k \in \mathbb{R}$. Also, note that $-2 \mathbf{p}+\mathbf{q}=A \mathbf{p}+\mathbf{b} \Longleftrightarrow(A+2 I) \mathbf{p}=\mathbf{q}-\mathbf{b}$, so we solve this to find \mathbf{p} :

$$
\begin{gathered}
\left(\begin{array}{ccc|c}
3 & 1 & -2 & k+1 \\
-2 & 0 & 2 & -k-2 \\
3 & 2 & -1 & k-2
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 1 & 0 & -1 \\
-2 & 0 & 2 & -k-2 \\
3 & 2 & -1 & k-2
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 1 & 0 & -1 \\
0 & 2 & 2 & -k-4 \\
0 & 1 & 1 & -k-1
\end{array}\right) \\
\\
\sim\left(\begin{array}{ccc|c}
1 & 1 & 0 & -1 \\
0 & 1 & 1 & -k-1 \\
0 & 2 & 2 & -k-4
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 0 & -1 & k \\
0 & 1 & 1 & -k-1 \\
0 & 0 & 0 & k-2
\end{array}\right)
\end{gathered}
$$

To get a solution, we must take $k=2$ and we have $\mathbf{q}=k \mathbf{u}=\left(\begin{array}{c}2 \\ -2 \\ 2\end{array}\right)$, and $\mathbf{p}=\left(\begin{array}{c}k \\ -k-1 \\ k-2\end{array}\right)=\left(\begin{array}{c}2 \\ -3 \\ 0\end{array}\right)$. Thus we obtain the particular solution

$$
\left(\begin{array}{l}
x_{p} \\
y_{p} \\
z_{p}
\end{array}\right)=e^{-2 t}\left(\begin{array}{c}
2 \\
-3 \\
0
\end{array}\right)+t e^{-2 t}\left(\begin{array}{c}
2 \\
-2 \\
2
\end{array}\right)
$$

The general solution to the given (non-hommogeneous) system is

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=a e^{-2 t}\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)+b e^{-t}\left(\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right)+c e^{-t}\left(\begin{array}{c}
3 \\
-4 \\
0
\end{array}\right)+c t e^{-t}\left(\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right)+e^{-2 t}\left(\begin{array}{c}
2 \\
-3 \\
0
\end{array}\right)+t e^{-2 t}\left(\begin{array}{c}
2 \\
-2 \\
2
\end{array}\right) .
$$

