SYDE Advanced Math 2, Practice Problem Set 4

1: The ODE $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+k(k+1) y=0$ is called Legendre's Equation. For each integer $k \geq 0$, Legendre's equation has a unique polynomial solution $y=P_{k}(x)$ with $P_{k}(1)=1$. These are called the Legendre polynomials. Use power series, centred at 0 , to solve the ODE, and find $P_{k}(x)$ for $k=0,1,2,3,4$.

2: The ODE $x^{2} y^{\prime \prime}+k x y^{\prime}+\ell y=0$ is called the Cauchy-Euler Equation. We can solve the Cauchy-Euler equation by letting $y=x^{r}$ so that $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Putting these in the DE gives $0=r(r-1) x^{r}+k r x^{r}+\ell x^{r}=(r(r-1)+k r+\ell) x^{r}$, so we see that $y=x^{r}$ is a solution when r is a root of the polynomial $g(r)=r(r-1)+k r+\ell$.
(a) When $g(r)$ has two real roots r_{1} and r_{2}, we obtain two independent solutions $y_{1}(x)=x^{r_{1}}$ and $y_{2}(x)=x^{r_{2}}$. Use this to solve the ODE $x^{2} y^{\prime \prime}-2 x y+2 y=0$.
(b) When $g(r)$ has complex roots $r \pm i s$, we obtain the complex solutions $z_{1}(x)=x^{r+i s}=e^{(r+i s) \ln x}=$ $e^{r \ln x} e^{i s \ln x}=x^{r}(\cos (s \ln x)+i \sin (s \ln x))$ and $z_{2}(x)=x^{r-i s}=x^{r}(\cos (s \ln x)-i \sin (s \ln x))$, and hence we obtain the two independent real solutions given by $y_{1}(x)=\frac{z_{1}(x)+z_{2}(x)}{2}=\operatorname{Re}\left(z_{1}(x)\right)=x^{r} \cos (s \ln x)$ and $y_{2}(x)=\frac{z_{1}(x)-z_{2}(x)}{2 i}=\operatorname{Im}\left(z_{1}(x)\right)=x^{r} \sin (s \ln x)$. Use this to solve the ODE $x^{2} y^{\prime \prime}+3 x y^{\prime}+5 y=0$.
(c) When $g(x)$ has a repeated real root r we only obtain one solution $y_{1}(x)=x^{r}$. Use reduction of order to find a formula for a second independent solution $y=y_{2}(x)$ of the form $y_{2}(x)=y_{1}(x) u(x)$.
(d) Use the formula found in Part (c) to solve the ODE $x^{2} y^{\prime \prime}+5 x y+4 y=0$.

3: The ODE $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-k^{2}\right) y=0$ is called Bessel's Equation. Use Frobenius' method to show that for all $k \geq 0$ there is a nonzero solution of the form $y=J_{k}(x)=x^{k} \sum_{n \geq 0} c_{2 n} x^{2 n}$ and, if k is not an integer, there is a second independent solution of the form $y=J_{-k}(x)=x^{-k} \sum_{n \geq 0} c_{2 n} x^{2 n}$. These solutions (multiplied by various constants) are called the Bessel functions of the first kind.

