SYDE Advanced Math 2, Solutions for Practice Problem Set 4

1: The ODE $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+k(k+1) y=0$ is called Legendre's Equation. For each integer $k \geq 0$, Legendre's equation has a unique polynomial solution $y=P_{k}(x)$ with $P_{k}(1)=1$. These are called the Legendre polynomials. Use power series, centred at 0 , to solve the ODE, and find $P_{k}(x)$ for $k=0,1,2,3,4$. Solution: Let $y=\sum_{n \geq 0} c_{n} x^{n}$ so $y^{\prime}=\sum_{n \geq 1} n c_{n} x^{n-1}$ and $y^{\prime \prime}=\sum_{n \geq 2} n(n-1) c_{n} x^{n-2}$. Put these in the DE to get

$$
\begin{aligned}
0 & =y^{\prime \prime}-x^{2} y^{\prime \prime}-2 x y^{\prime}+k(k+1) y \\
& =\sum_{n \geq 2} n(n-1) c_{n} x^{n-2}-\sum_{n \geq 2} n(n-1) c_{n} x^{n}-\sum_{n \geq 1} 2 n c_{n} x^{n}+\sum_{n \geq 0} k(k+1) c_{n} x^{n} \\
& =\sum_{m \geq 0}(m+2)(m+1) c_{m+2} x^{m}-\sum_{m \geq 2} m(m-1) c_{m} x^{m}-\sum_{m \geq 1} 2 m c_{m} x^{m}+\sum_{m \geq 0} k(k+1) c_{m} x^{m}
\end{aligned}
$$

We equate the coefficients of x^{m} : When $m=0$ we obtain $2 \cdot 1 c_{2}+k(k+1) c_{0}=0$ so that $c_{2}=-\frac{k(k+1)}{2} c_{0}$. When $m=1$ we obtain $3 \cdot 2 c_{3}-2 c_{1}+k(k+1) c_{1}$ so that $c_{3}=\frac{2-k(k+1)}{6} c_{1}$. When $m \geq 2$ we obtain $(m+2)(m+1) c_{m+2}-(m(m-1)+2 m-k(k+1)) c_{m}$ so that

$$
c_{m+2}=\frac{m(m+1)-k(k+1)}{(m+1)(m+2)} c_{m} .
$$

We can choose $c_{0}, c_{1} \in \mathbb{R}$ to be arbitrary, then c_{n} is determined from c_{n-2} for all $n \geq 2$ by the recursion formulas. When $c_{0}=1$ and $c_{1}=0$, the recursion formulas imply that $c_{n}=0$ for all odd values of n, and the solution is given by $y=y_{1}(x)=c_{0}+c_{2} x^{2}+c_{4} x^{4}+\cdots$ with $c_{0}=1$ and $c_{m+2}=\frac{m(m+1)-k(k+1)}{(m+1)(m+2)} c_{m}$. When $c_{0}=0$ and $c_{1}=1$ we get $y=y_{2}(x)=c_{1}+c_{3} x^{3}+c_{5} x^{5}+\cdots$ with $c_{1}=1$ and $c_{m+2}=\frac{m(m+1)-k(k+1)}{(m+1)(m+2)} c_{m}$. Notice that when $0 \leq k \in \mathbb{Z}$, the recursion formula gives $c_{k+2}=0$ and hence $0=c_{k+2}=c_{k+4}=c_{k+6}=\cdots$. Thus when k is even the solution $y=y_{1}(x)$ is a polynomial and when k is odd the solution $y=y_{2}(x)$ is a polynomial. When $k=0$, we have $y_{1}(x)=1$ and so $P_{0}(x)=1$. When $k=1$, we have $y_{2}(x)=x$ and so $P_{1}(x)=x$. When $k=2$, we have $y_{1}(x)=c_{0}+c_{2} x^{2}$ with $c_{0}=1$ and $c_{2}=-\frac{k(k+1)}{2} c_{0}=-\frac{2 \cdot 3}{2}=-3$ so that $y_{1}(x)=1-3 x^{2}$. Since $y_{1}(1)=-2$ we have $P_{2}(x)=-\frac{1}{2} y_{1}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$. When $k=3$, we have $y_{2}(x)=c_{1}+c_{3} x^{3}$ with $c_{1}=1$ and $c_{3}=\frac{2-k(k+1)}{6} c_{1}=\frac{2-3 \cdot 4}{6}=-\frac{5}{3}$ so that $y_{2}(x)=x-\frac{5}{3} x^{3}$. Since $y_{2}(1)=-\frac{2}{3}$ we have $P_{3}(x)=-\frac{3}{2} y_{2}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right)$. When $k=4$, we have $y_{1}(x)=c_{0}+c_{2} x^{2}+c_{4} x^{4}$ with $c_{0}=1$. $c_{2}=-\frac{k(k+1)}{2} c_{0}=-\frac{4 \cdot 5}{2}=-10$ and $c_{4}=\frac{2 \cdot 3-k \cdot(k+1)}{3 \cdot 4} \cdot c_{2}=\frac{2 \cdot 3-4 \cdot 5}{3 \cdot 4} \cdot(-10)=\frac{35}{3}$ so that $y_{1}(x)=1-10 x^{2}+\frac{35}{3} x^{4}$. Since $y_{1}(1)=\frac{8}{3}$ we have $P_{4}(x)=\frac{3}{8} y_{1}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right)$.

2: The ODE $x^{2} y^{\prime \prime}+k x y^{\prime}+\ell y=0$ is called the Cauchy-Euler Equation. We can solve the Cauchy-Euler equation by letting $y=x^{r}$ so that $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Putting these in the DE gives $0=r(r-1) x^{r}+k r x^{r}+\ell x^{r}=(r(r-1)+k r+\ell) x^{r}$, so we see that $y=x^{r}$ is a solution when r is a root of the polynomial $g(r)=r(r-1)+k r+\ell$.
(a) When $g(r)$ has two real roots r_{1} and r_{2}, we obtain two independent solutions $y_{1}(x)=x^{r_{1}}$ and $y_{2}(x)=x^{r_{2}}$. Solve the ODE $x^{2} y^{\prime \prime}-2 x y+2 y=0$.
Solution: We have $g(r)=r(r-1)+k r+\ell=r(r-1)-2 r+2=r^{2}-3 r+2=(r-1)(r-2)$. The roots are $r_{1}=1$ and $r_{2}=2$, two independent solutions are given by $y_{1}(x)=x^{1}$ and $y_{2}(x)=x^{2}$, and the general solution is given by $y=a x+b x^{2}$.
(b) When $g(r)$ has complex roots $r \pm i s$, we obtain the complex solutions $z_{1}(x)=x^{r+i s}=e^{(r+i s) \ln x}=$ $e^{r \ln x} e^{i s \ln x}=x^{r}(\cos (s \ln x)+i \sin (s \ln x))$ and $z_{2}(x)=x^{r-i s}=x^{r}(\cos (s \ln x)-i \sin (s \ln x))$, and hence we obtain the two independent real solutions given by $y_{1}(x)=\frac{z_{1}(x)+z_{2}(x)}{2}=\operatorname{Re}\left(z_{1}(x)\right)=x^{r} \cos (s \ln x)$ and $y_{2}(x)=\frac{z_{1}(x)-z_{2}(x)}{2 i}=\operatorname{Im}\left(z_{1}(x)\right)=x^{r} \sin (s \ln x)$. Solve the ODE $x^{2} y^{\prime \prime}+3 x y^{\prime}+5 y=0$.
Solution: We have $g(r)=r(r-1)+k r+\ell=r(r-1)+3 r+5=r^{2}+2 r+5$. The roots are $r=\frac{-2 \pm \sqrt{4-20}}{2}=$ $-1 \pm 2 i$. A complex solution is given by $x^{-1+2 i}=e^{(-1+2 i) \ln x}=e^{-\ln x} e^{i 2 \ln x}=\frac{1}{x}(\cos (2 \ln x)+i \sin (2 \ln x))$, and two independent real solutions are given by $y_{1}(x)=\frac{1}{x} \cos (2 \ln x)$ and $y_{2}(x)=\frac{1}{x} \sin (2 \ln x)$. The general solution is given by $y=\frac{a}{x} \cos (2 \ln x)+\frac{b}{x} \sin (2 \ln x)$.
(c) When $g(x)$ has a repeated real root r we only obtain one solution $y_{1}(x)=x^{r}$. Use reduction of order to find a formula for a second independent solution $y=y_{2}(x)$ of the form $y_{2}=y_{1} u$.

Solution: We have $g(r)=r(r-1)+k r+\ell=r^{2}+(k-1) r+\ell$. This has a repeated real root when its discriminant is zero, that is when $(k-1)^{2}=4 \ell$, and its root is $r=-\frac{k-1}{2}=\frac{1-k}{2}$. We have one solution $y=y_{1}(x)=x^{r}$. To use reduction of order, we let $y=y_{2}=y_{1} u$ so we have $y^{\prime}=y_{1}^{\prime} u+y_{1} u^{\prime}$ and $y^{\prime \prime}=y_{1}^{\prime \prime} u+2 y_{1}^{\prime} u^{\prime}+y_{1} u^{\prime \prime}$. Put this in the DE to get

$$
\begin{aligned}
0 & =x^{2} y^{\prime \prime}+k x y^{\prime}+\ell y \\
& =x^{2}\left(y_{1}^{\prime \prime} u+2 y_{1}^{\prime} u^{\prime}+y_{1} u^{\prime \prime}\right)+k x\left(y_{1}^{\prime} u+y_{1} u^{\prime}\right)+\ell\left(y_{1} u\right) \\
& =\left(x^{2} y_{1}^{\prime \prime}+k x y_{1}^{\prime}+\ell y_{1}\right) u+\left(2 x^{2} y_{1}^{\prime}+k x y_{1}\right) u^{\prime}+x^{2} y_{1} u^{\prime \prime} \\
& =\left(2 x^{2} y_{1}^{\prime}+k x y_{1}\right) u^{\prime}+x^{2} y_{1} u^{\prime \prime}, \text { since } y_{1} \text { is a solution to the DE } \\
& =\left(2 r x^{r+1}+k x^{r+1}\right) u^{\prime}+x^{r+2} u^{\prime \prime}, \text { since } y_{1}=x^{r} \text { and } y_{1}^{\prime}=r x^{r-1} \\
& =(2 r+k) u^{\prime}+x u^{\prime \prime}, \text { after dividing both sides by } x^{r+1} \\
& =u^{\prime}+x u^{\prime \prime}, \text { since } r=\frac{1-k}{2} .
\end{aligned}
$$

Letting $w=u^{\prime}$, the DE becomes $x w^{\prime}+w=0$, that is $w^{\prime}+\frac{1}{x} w=0$, which is a linear DE for $w=w(x)$. An integrating factor is $\lambda=e^{\int \frac{1}{x} d x}=e^{\ln x}=x$ and the solution is $w=\frac{1}{x} \int 0 d x=\frac{a}{x}$. which gives $u^{\prime}=\frac{a}{x}$ and hence $u=a \ln x+b$. We choose $a=1$ and $b=0$ to get $u=\ln x$ giving the second independent solution

$$
y=y_{2}(x)=y_{1}(x) u(x)=x^{r} \ln x
$$

(d) Use the formula from Part (c) to solve the ODE $x^{2} y^{\prime \prime}+5 x y+4 y=0$.

Solution: We have $g(r)=r(r-1)+k r+\ell=r(r-1)+5 r+4=r^{2}+4 r+4=(r+2)^{2}$. This has repeated real root $r=-2$. One solution is given by $y_{1}(x)=x^{r}=x^{-2}$ and, b Part (c), a second solution is given b $y_{2}(x)=x^{r} \ln x=x^{-2} \ln x$. The general solution is $y=a x^{-2}+b x^{-2} \ln x=\frac{a+b \ln x}{x^{2}}$.

3: The ODE $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-k^{2}\right) y=0$ is called Bessel's Equation. Use Frobenius' method to show that for all $k \geq 0$ there is a nonzero solution of the form $y=J_{k}(x)=x^{k} \sum_{n \geq 0} c_{2 n} x^{2 n}$, and, if k is not an integer, there is a second independent solution of the form $y=J_{-k}(x)=x^{-k} \sum_{n \geq 0} c_{2 n} x^{2 n}$. These solutions (multiplied by a constant) are called the Bessel functions of the first kind.
Solution: Let $k \geq 0$. Let $y=\sum_{n \geq 0} c_{n} x^{n+r}$ so $y^{\prime}=\sum_{n \geq 0}(n+r) c_{n} x^{n+r-1}$ and $y^{\prime \prime}=\sum_{n \geq 0}(n+r)(n+r-1) c_{n} x^{n+r-2}$. Put this into the DE to get

$$
\begin{aligned}
0 & =\sum_{n \geq 0}(n+r)(n+r-1) c_{n} x^{n+r}+\sum_{n \geq 0}(n+r) c_{n} x^{n+r}+\sum_{n \geq 0} c_{n} x^{n+r+2}-\sum_{n \geq 0} k^{2} c_{n} x^{n+r} \\
& =x^{r}\left(\sum_{m \geq 0}\left((m+r)(m+r-1)+(m+r)-k^{2}\right) c_{m} x^{m}+\sum_{m \geq 2} c_{m-2} x^{m}\right) \\
& =\sum_{m \geq 0}\left((m+r)^{2}-k^{2}\right) c_{m} x^{m}+\sum_{m \geq 2} c_{m-2} x^{m}
\end{aligned}
$$

We equate coefficients: When $m=0$ we get $r^{2}-k^{2}=0$ or $c_{0}=0$, that is $r= \pm k$ or c_{0}. When $m=1$ we get $(r+1)^{2}=0$ or $c_{1}=0$, that is $r=-1 \pm k$, or $c_{1}=0$ (we remark that taking $r=-1 \pm k, c_{1}=1$ and $c_{0}=0$ gives the same solution(s) as taking $r= \pm k, c_{0}=1$ and $c_{1}=0$, so we shall not consider these cases below). When $m \geq 2$ we get $\left((m+r)^{2}-k^{2}\right) c_{m}+c_{m-2}=0$ which gives the recursion formula $c_{m}=\frac{-1}{(m+r)^{2}-k^{2}} c_{m-2}$.

In the case that $r=k$, the recursion becomes $c_{m}=\frac{-1}{(m+k)^{2}-k^{2}} c_{m-2}=\frac{-1}{m(m+2 k)} c_{m-2}$, so taking $c_{0}=1$ and $c_{1}=0$ gives $c_{n}=0$ for all odd values of n and $c_{0}=1, c_{2}=\frac{-1}{2(2+2 k)}, c_{4}=\frac{1}{4(4+2 k)} \cdot \frac{1}{2(2+2 k)}$, and $c_{6}=\frac{-1}{6(6+2 k)} \cdots \frac{1}{4(4+2 k)} \cdots \frac{1}{2(2+2 k)}$ and so on, so that in general

$$
c_{2 n}=\frac{-1}{2 \cdot 4 \cdot 6 \cdots(2 n))(2+2 k)(4+2 k)(6+2 k) \cdots(2 n+2 k))}=\frac{(-1)^{n}}{2^{n} n!\cdot 2^{n}(1+k)(2+k)(3+k) \cdots(n+k)}=\frac{(-1)^{n}}{\left(2^{n} n!\right)^{2}\binom{n+k}{n}}
$$

where we recall that for $p \in \mathbb{R}$ we have $\binom{p}{0}=1$ and $\binom{p}{n}=\frac{p(p-1)(p-2) \cdots(p-n+1)}{n!}$. This gives the solution

$$
y=J_{k}(x)=x^{k} \sum_{n \geq 0} \frac{(-1)^{n}}{\left(2^{n} n!\right)^{2}\binom{n+k}{n}} x^{2 n} .
$$

In the case that $r=-k$ and k is not an integer, the recursion becomes $c_{m}=\frac{-1}{(m-k)^{2}-k^{2}} c_{m-2}=\frac{-1}{m(m-2 k)} c_{m-2}$ (note that if $k \in \mathbb{Z}$ then c_{m} is not defined for $m=2 k$), so taking $c_{0}=1$ and $c_{1}=0$ gives $c_{n}=0$ for all odd values of n and $c_{0}=1, c_{2}=\frac{-1}{2(2-2 k)}, c_{4}=\frac{1}{4(4-2 k)} \cdot \frac{1}{2(2-2 k)}$ and $c_{6}=\frac{-1}{6(6-2 k)} \cdots \frac{1}{4(4-2 k)} \cdots \frac{1}{2(2-2 k)}$ and so on, so that in general

$$
c_{2 n}=\frac{-1}{2 \cdot 4 \cdot 6 \cdots(2 n))(2-2 k)(4-2 k)(6-2 k) \cdots(2 n-2 k))}=\frac{(-1)^{n}}{2^{n} n!\cdot 2^{n}(1-k)(2-k)(3-k) \cdots(n-k)}=\frac{(-1)^{n}}{\left(2^{n} n!\right)^{2}\binom{n-k}{n}}
$$

(note that if $k \in \mathbb{Z}$ then $\binom{n-k}{n}=0$ for $k \geq n$). This gives the solution

$$
y=J_{-k}(x)=x^{-k} \sum_{n \geq 0} \frac{(-1)^{n}}{\left(2^{n} n!\right)^{2}\binom{n-k}{n}} x^{2 n} .
$$

For $k \geq 0$, when k is not an integer, the general solution to Bessel's equation is given by $y=a J_{k}(x)+b J_{-k}(x)$. We remark that when k is an integer there is a (fairly difficult) method which can be used to obtain a second independent solution $y=Y_{k}(x)$, so that the general solution to Bessel's equation is given by $y=a J_{k}(x)+b Y_{k}(x)$. The solutions $y=Y_{k}(x)$ are called the Bessel functions of the second kind.

