
SYDE Advanced Math 2, Solutions for Practice Problem Set 4

1: The ODE (1 − x2)y′′ − 2xy′ + k(k + 1)y = 0 is called Legendre’s Equation. For each integer k ≥ 0,
Legendre’s equation has a unique polynomial solution y = Pk(x) with Pk(1) = 1. These are called the
Legendre polynomials. Use power series, centred at 0, to solve the ODE, and find Pk(x) for k = 0, 1, 2, 3, 4.

Solution: Let y =
∑
n≥0

cnx
n so y′ =

∑
n≥1

ncnx
n−1 and y′′ =

∑
n≥2

n(n− 1)cnx
n−2. Put these in the DE to get

0 = y′′ − x2y′′ − 2xy′ + k(k + 1)y

=
∑
n≥2

n(n− 1)cnx
n−2 −

∑
n≥2

n(n− 1)cnx
n −

∑
n≥1

2ncnx
n +

∑
n≥0

k(k + 1)cnx
n

=
∑
m≥0

(m+ 2)(m+ 1)cm+2x
m −

∑
m≥2

m(m− 1)cmx
m −

∑
m≥1

2mcmx
m +

∑
m≥0

k(k + 1)cmx
m

We equate the coefficients of xm: When m = 0 we obtain 2 · 1 c2 + k(k + 1) c0 = 0 so that c2 = −k(k+1)
2 c0.

When m = 1 we obtain 3 · 2 c3 − 2c1 + k(k + 1) c1 so that c3 = 2−k(k+1)
6 c1. When m ≥ 2 we obtain

(m+ 2)(m+ 1)cm+2 −
(
m(m− 1) + 2m− k(k + 1)

)
cm so that

cm+2 = m(m+1)−k(k+1)
(m+1)(m+2) cm.

We can choose c0, c1 ∈ R to be arbitrary, then cn is determined from cn−2 for all n ≥ 2 by the recursion
formulas. When c0 = 1 and c1 = 0, the recursion formulas imply that cn = 0 for all odd values of n, and

the solution is given by y = y1(x) = c0 + c2x
2 + c4x

4 + · · · with c0 = 1 and cm+2 = m(m+1)−k(k+1)
(m+1)(m+2) cm.

When c0 = 0 and c1 = 1 we get y = y2(x) = c1 +c3x
3 +c5x

5 + · · · with c1 = 1 and cm+2 = m(m+1)−k(k+1)
(m+1)(m+2) cm.

Notice that when 0 ≤ k ∈ Z, the recursion formula gives ck+2 = 0 and hence 0 = ck+2 = ck+4 = ck+6 = · · ·.
Thus when k is even the solution y = y1(x) is a polynomial and when k is odd the solution y = y2(x) is
a polynomial. When k = 0, we have y1(x) = 1 and so P0(x) = 1. When k = 1, we have y2(x) = x and

so P1(x) = x. When k = 2, we have y1(x) = c0 + c2x
2 with c0 = 1 and c2 = −k(k+1)

2 c0 = − 2·3
2 = −3 so

that y1(x) = 1 − 3x2. Since y1(1) = −2 we have P2(x) = − 1
2y1(x) = 1

2 (3x2 − 1). When k = 3, we have

y2(x) = c1 + c3x
3 with c1 = 1 and c3 = 2−k(k+1)

6 c1 = 2−3·4
6 = − 5

3 so that y2(x) = x− 5
3x

3. Since y2(1) = − 2
3

we have P3(x) = − 3
2y2(x) = 1

2 (5x3 − 3x). When k = 4, we have y1(x) = c0 + c2x
2 + c4x

4 with c0 = 1.

c2 = −k(k+1)
2 c0 = − 4·5

2 = −10 and c4 = 2·3−k·(k+1)
3·4 ·c2 = 2·3−4·5

3·4 ·(−10) = 35
3 so that y1(x) = 1−10x2+ 35

3 x
4.

Since y1(1) = 8
3 we have P4(x) = 3

8y1(x) = 1
8 (35x4 − 30x2 + 3).



2: The ODE x2y′′ + kxy′ + `y = 0 is called the Cauchy-Euler Equation. We can solve the Cauchy-Euler
equation by letting y = xr so that y′ = rxr−1 and y′′ = r(r − 1)xr−2. Putting these in the DE gives
0 = r(r − 1)xr + krxr + `xr =

(
r(r − 1) + kr + `

)
xr, so we see that y = xr is a solution when r is a root of

the polynomial g(r) = r(r − 1) + kr + `.

(a) When g(r) has two real roots r1 and r2, we obtain two independent solutions y1(x) = xr1 and y2(x) = xr2 .
Solve the ODE x2y′′ − 2xy + 2y = 0.

Solution: We have g(r) = r(r − 1) + kr + ` = r(r − 1) − 2r + 2 = r2 − 3r + 2 = (r − 1)(r − 2). The roots
are r1 = 1 and r2 = 2, two independent solutions are given by y1(x) = x1 and y2(x) = x2, and the general
solution is given by y = ax+ bx2.

(b) When g(r) has complex roots r ± is, we obtain the complex solutions z1(x) = xr+is = e(r+is) ln x =
er ln xeis ln x = xr

(
cos(s lnx) + i sin(s lnx)

)
and z2(x) = xr−is = xr

(
cos(s lnx) − i sin(s lnx)

)
, and hence

we obtain the two independent real solutions given by y1(x) = z1(x)+z2(x)
2 = Re(z1(x)) = xr cos(s lnx) and

y2(x) = z1(x)−z2(x)
2i = Im(z1(x)) = xr sin(s lnx). Solve the ODE x2y′′ + 3xy′ + 5y = 0.

Solution: We have g(r) = r(r− 1) + kr+ ` = r(r− 1) + 3r+ 5 = r2 + 2r+ 5. The roots are r = −2±
√
4−20

2 =

−1± 2i. A complex solution is given by x−1+2i = e(−1+2i) ln x = e− ln xei 2 ln x = 1
x

(
cos(2 lnx) + i sin(2 lnx)

)
,

and two independent real solutions are given by y1(x) = 1
x cos(2 lnx) and y2(x) = 1

x sin(2 lnx). The general

solution is given by y = a
x cos(2 lnx) + b

x sin(2 lnx).

(c) When g(x) has a repeated real root r we only obtain one solution y1(x) = xr. Use reduction of order to
find a formula for a second independent solution y = y2(x) of the form y2 = y1u.

Solution: We have g(r) = r(r − 1) + kr + ` = r2 + (k − 1)r + `. This has a repeated real root when
its discriminant is zero, that is when (k − 1)2 = 4`, and its root is r = −k−1

2 = 1−k
2 . We have one

solution y = y1(x) = xr. To use reduction of order, we let y = y2 = y1u so we have y′ = y′1u + y1u
′ and

y′′ = y′′1u+ 2y′1u
′ + y1u

′′. Put this in the DE to get

0 = x2y′′ + kxy′ + `y

= x2(y′′1u+ 2y′1u
′ + y1u

′′) + kx(y′1u+ y1u
′) + `(y1u)

= (x2y′′1 + kxy′1 + `y1)u+ (2x2y′1 + kxy1)u′ + x2y1u
′′

= (2x2y′1 + kxy1)u′ + x2y1u
′′ , since y1 is a solution to the DE

= (2rxr+1 + kxr+1)u′ + xr+2u′′ , since y1 = xr and y′1 = rxr−1

= (2r + k)u′ + xu′′ , after dividing both sides by xr+1

= u′ + xu′′ , since r = 1−k
2 .

Letting w = u′, the DE becomes xw′ + w = 0, that is w′ + 1
xw = 0, which is a linear DE for w = w(x). An

integrating factor is λ = e
∫

1
xdx = eln x = x and the solution is w = 1

x

∫
0 dx = a

x . which gives u′ = a
x and

hence u = a lnx+ b. We choose a = 1 and b = 0 to get u = lnx giving the second independent solution

y = y2(x) = y1(x)u(x) = xr lnx.

(d) Use the formula from Part (c) to solve the ODE x2y′′ + 5xy + 4y = 0.

Solution: We have g(r) = r(r − 1) + kr + ` = r(r − 1) + 5r + 4 = r2 + 4r + 4 = (r + 2)2. This has repeated
real root r = −2. One solution is given by y1(x) = xr = x−2 and, b Part (c), a second solution is given b
y2(x) = xr lnx = x−2 lnx. The general solution is y = ax−2 + bx−2 lnx = a+b ln x

x2 .



3: The ODE x2y′′ + xy′ + (x2 − k2)y = 0 is called Bessel’s Equation. Use Frobenius’ method to show that
for all k ≥ 0 there is a nonzero solution of the form y = Jk(x) = xk

∑
n≥0 c2nx

2n, and, if k is not an

integer, there is a second independent solution of the form y = J−k(x) = x−k
∑

n≥0 c2nx
2n. These solutions

(multiplied by a constant) are called the Bessel functions of the first kind.

Solution: Let k ≥ 0. Let y =
∑
n≥0

cnx
n+r so y′ =

∑
n≥0

(n+r)cnx
n+r−1 and y′′ =

∑
n≥0

(n+r)(n+r−1)cnx
n+r−2.

Put this into the DE to get

0 =
∑
n≥0

(n+ r)(n+ r − 1)cnx
n+r +

∑
n≥0

(n+ r)cnx
n+r +

∑
n≥0

cnx
n+r+2 −

∑
n≥0

k2cnx
n+r

= xr
( ∑

m≥0

(
(m+ r)(m+ r − 1) + (m+ r)− k2

)
cmx

m +
∑
m≥2

cm−2x
m
)

=
∑
m≥0

(
(m+ r)2 − k2

)
cmx

m +
∑
m≥2

cm−2x
m

We equate coefficients: When m = 0 we get r2− k2 = 0 or c0 = 0, that is r = ±k or c0. When m = 1 we get
(r + 1)2 = 0 or c1 = 0, that is r = −1± k, or c1 = 0 (we remark that taking r = −1± k, c1 = 1 and c0 = 0
gives the same solution(s) as taking r = ±k, c0 = 1 and c1 = 0, so we shall not consider these cases below).
When m ≥ 2 we get ((m+ r)2 − k2)cm + cm−2 = 0 which gives the recursion formula cm = −1

(m+r)2−k2 cm−2.

In the case that r = k, the recursion becomes cm = −1
(m+k)2−k2 cm−2 = −1

m(m+2k) cm−2, so taking c0 = 1

and c1 = 0 gives cn = 0 for all odd values of n and c0 = 1, c2 = −1
2(2+2k) , c4 = 1

4(4+2k) ·
1

2(2+2k) , and

c6 = −1
6(6+2k) · · ·

1
4(4+2k) · · ·

1
2(2+2k) and so on, so that in general

c2n = −1
2·4·6···(2n))(2+2k)(4+2k)(6+2k)···(2n+2k)) = (−1)n

2nn!·2n(1+k)(2+k)(3+k)···(n+k) = (−1)n

(2nn!)2
(

n+k
n

)
where we recall that for p ∈ R we have

(
p
0

)
= 1 and

(
p
n

)
= p(p−1)(p−2)···(p−n+1)

n! . This gives the solution

y = Jk(x) = xk
∑
n≥0

(−1)n

(2nn!)2
(

n+k
n

) x2n.
In the case that r = −k and k is not an integer, the recursion becomes cm = −1

(m−k)2−k2 cm−2 = −1
m(m−2k) cm−2

(note that if k ∈ Z then cm is not defined for m = 2k), so taking c0 = 1 and c1 = 0 gives cn = 0 for all odd
values of n and c0 = 1, c2 = −1

2(2−2k) , c4 = 1
4(4−2k) ·

1
2(2−2k) and c6 = −1

6(6−2k) · · ·
1

4(4−2k) · · ·
1

2(2−2k) and so on,

so that in general

c2n = −1
2·4·6···(2n))(2−2k)(4−2k)(6−2k)···(2n−2k)) = (−1)n

2nn!·2n(1−k)(2−k)(3−k)···(n−k) = (−1)n

(2nn!)2
(

n−k
n

)
(note that if k ∈ Z then

(
n−k
n

)
= 0 for k ≥ n). This gives the solution

y = J−k(x) = x−k
∑
n≥0

(−1)n

(2nn!)2
(

n−k
n

) x2n.
For k ≥ 0, when k is not an integer, the general solution to Bessel’s equation is given by y = aJk(x)+bJ−k(x).
We remark that when k is an integer there is a (fairly difficult) method which can be used to obtain
a second independent solution y = Yk(x), so that the general solution to Bessel’s equation is given by
y = aJk(x) + bYk(x). The solutions y = Yk(x) are called the Bessel functions of the second kind.


