1: The ODE $(1 - x^2)y'' - 2xy' + k(k+1)y = 0$ is called **Legendre's Equation**. For each integer $k \ge 0$, Legendre's equation has a unique polynomial solution $y = P_k(x)$ with $P_k(1) = 1$. These are called the **Legendre polynomials**. Use power series, centred at 0, to solve the ODE, and find $P_k(x)$ for k = 0, 1, 2, 3, 4.

Solution: Let $y = \sum_{n \ge 0} c_n x^n$ so $y' = \sum_{n \ge 1} n c_n x^{n-1}$ and $y'' = \sum_{n \ge 2} n(n-1)c_n x^{n-2}$. Put these in the DE to get $0 = x'' - x^2 x'' + k(k+1)x$

$$\begin{aligned} & = y - x \ y - 2xy + k(k+1)y \\ &= \sum_{n \ge 2} n(n-1)c_n x^{n-2} - \sum_{n \ge 2} n(n-1)c_n x^n - \sum_{n \ge 1} 2nc_n x^n + \sum_{n \ge 0} k(k+1)c_n x^n \\ &= \sum_{m \ge 0} (m+2)(m+1)c_{m+2} x^m - \sum_{m \ge 2} m(m-1)c_m x^m - \sum_{m \ge 1} 2mc_m x^m + \sum_{m \ge 0} k(k+1)c_m x^m \end{aligned}$$

We equate the coefficients of x^m : When m = 0 we obtain $2 \cdot 1 c_2 + k(k+1) c_0 = 0$ so that $c_2 = -\frac{k(k+1)}{2} c_0$. When m = 1 we obtain $3 \cdot 2 c_3 - 2c_1 + k(k+1) c_1$ so that $c_3 = \frac{2-k(k+1)}{6} c_1$. When $m \ge 2$ we obtain $(m+2)(m+1)c_{m+2} - (m(m-1)+2m-k(k+1))c_m$ so that

$$c_{m+2} = \frac{m(m+1) - k(k+1)}{(m+1)(m+2)} c_m.$$

We can choose $c_0, c_1 \in \mathbb{R}$ to be arbitrary, then c_n is determined from c_{n-2} for all $n \ge 2$ by the recursion formulas. When $c_0 = 1$ and $c_1 = 0$, the recursion formulas imply that $c_n = 0$ for all odd values of n, and the solution is given by $y = y_1(x) = c_0 + c_2 x^2 + c_4 x^4 + \cdots$ with $c_0 = 1$ and $c_{m+2} = \frac{m(m+1)-k(k+1)}{(m+1)(m+2)}c_m$. When $c_0 = 0$ and $c_1 = 1$ we get $y = y_2(x) = c_1 + c_3 x^3 + c_5 x^5 + \cdots$ with $c_1 = 1$ and $c_{m+2} = \frac{m(m+1)-k(k+1)}{(m+1)(m+2)}c_m$. Notice that when $0 \le k \in \mathbb{Z}$, the recursion formula gives $c_{k+2} = 0$ and hence $0 = c_{k+2} = c_{k+4} = c_{k+6} = \cdots$. Thus when k is even the solution $y = y_1(x)$ is a polynomial and when k is odd the solution $y = y_2(x)$ is a polynomial. When k = 0, we have $y_1(x) = 1$ and so $P_0(x) = 1$. When k = 1, we have $y_2(x) = x$ and so $P_1(x) = x$. When k = 2, we have $y_1(x) = c_0 + c_2 x^2$ with $c_0 = 1$ and $c_2 = -\frac{k(k+1)}{2}c_0 = -\frac{2\cdot 3}{2} = -3$ so that $y_1(x) = 1 - 3x^2$. Since $y_1(1) = -2$ we have $P_2(x) = -\frac{1}{2}y_1(x) = \frac{1}{2}(3x^2 - 1)$. When k = 3, we have $y_2(x) = c_1 + c_3 x^3$ with $c_1 = 1$ and $c_3 = \frac{2-k(k+1)}{6}c_1 = \frac{2-3\cdot 4}{6} = -\frac{5}{3}$ so that $y_2(x) = x - \frac{5}{3}x^3$. Since $y_2(1) = -\frac{2}{3}$ we have $P_3(x) = -\frac{3}{2}y_2(x) = \frac{1}{2}(5x^3 - 3x)$. When k = 4, we have $y_1(x) = c_0 + c_2 x^2 + c_4 x^4$ with $c_0 = 1$. $c_2 = -\frac{k(k+1)}{2}c_0 = -\frac{4\cdot 5}{2} = -10$ and $c_4 = \frac{2\cdot 3-k\cdot(k+1)}{3\cdot 4}\cdot c_2 = \frac{2\cdot 3-4\cdot 5}{3\cdot 4}\cdot(-10) = \frac{35}{3}$ so that $y_1(x) = 1 - 10x^2 + \frac{35}{3}x^4$. Since $y_1(1) = \frac{8}{3}$ we have $P_4(x) = \frac{3}{8}y_1(x) = \frac{1}{8}(35x^4 - 30x^2 + 3)$.

2: The ODE $x^2y'' + kxy' + \ell y = 0$ is called the **Cauchy-Euler Equation**. We can solve the Cauchy-Euler equation by letting $y = x^r$ so that $y' = rx^{r-1}$ and $y'' = r(r-1)x^{r-2}$. Putting these in the DE gives $0 = r(r-1)x^r + krx^r + \ell x^r = (r(r-1) + kr + \ell)x^r$, so we see that $y = x^r$ is a solution when r is a root of the polynomial $g(r) = r(r-1) + kr + \ell$.

(a) When g(r) has two real roots r_1 and r_2 , we obtain two independent solutions $y_1(x) = x^{r_1}$ and $y_2(x) = x^{r_2}$. Solve the ODE $x^2y'' - 2xy + 2y = 0$.

Solution: We have $g(r) = r(r-1) + kr + \ell = r(r-1) - 2r + 2 = r^2 - 3r + 2 = (r-1)(r-2)$. The roots are $r_1 = 1$ and $r_2 = 2$, two independent solutions are given by $y_1(x) = x^1$ and $y_2(x) = x^2$, and the general solution is given by $y = ax + bx^2$.

(b) When g(r) has complex roots $r \pm is$, we obtain the complex solutions $z_1(x) = x^{r+is} = e^{(r+is)\ln x} = e^{r\ln x}e^{is\ln x} = x^r\left(\cos(s\ln x) + i\sin(s\ln x)\right)$ and $z_2(x) = x^{r-is} = x^r\left(\cos(s\ln x) - i\sin(s\ln x)\right)$, and hence we obtain the two independent real solutions given by $y_1(x) = \frac{z_1(x) + z_2(x)}{2} = \operatorname{Re}(z_1(x)) = x^r\cos(s\ln x)$ and $y_2(x) = \frac{z_1(x) - z_2(x)}{2i} = \operatorname{Im}(z_1(x)) = x^r\sin(s\ln x)$. Solve the ODE $x^2y'' + 3xy' + 5y = 0$.

Solution: We have $g(r) = r(r-1) + kr + \ell = r(r-1) + 3r + 5 = r^2 + 2r + 5$. The roots are $r = \frac{-2\pm\sqrt{4-20}}{2} = -1\pm 2i$. A complex solution is given by $x^{-1+2i} = e^{(-1+2i)\ln x} = e^{-\ln x}e^{i2\ln x} = \frac{1}{x}\left(\cos(2\ln x) + i\sin(2\ln x)\right)$, and two independent real solutions are given by $y_1(x) = \frac{1}{x}\cos(2\ln x)$ and $y_2(x) = \frac{1}{x}\sin(2\ln x)$. The general solution is given by $y = \frac{a}{x}\cos(2\ln x) + \frac{b}{x}\sin(2\ln x)$.

(c) When g(x) has a repeated real root r we only obtain one solution $y_1(x) = x^r$. Use reduction of order to find a formula for a second independent solution $y = y_2(x)$ of the form $y_2 = y_1 u$.

Solution: We have $g(r) = r(r-1) + kr + \ell = r^2 + (k-1)r + \ell$. This has a repeated real root when its discriminant is zero, that is when $(k-1)^2 = 4\ell$, and its root is $r = -\frac{k-1}{2} = \frac{1-k}{2}$. We have one solution $y = y_1(x) = x^r$. To use reduction of order, we let $y = y_2 = y_1u$ so we have $y' = y'_1u + y_1u'$ and $y'' = y''_1u + 2y'_1u' + y_1u''$. Put this in the DE to get

$$\begin{split} 0 &= x^2 y'' + kxy' + \ell y \\ &= x^2 (y_1''u + 2y_1'u' + y_1u'') + kx(y_1'u + y_1u') + \ell(y_1u) \\ &= (x^2 y_1'' + kxy_1' + \ell y_1)u + (2x^2 y_1' + kxy_1)u' + x^2 y_1u'' \\ &= (2x^2 y_1' + kxy_1)u' + x^2 y_1u'' \ , \text{ since } y_1 \text{ is a solution to the DE} \\ &= (2rx^{r+1} + kx^{r+1})u' + x^{r+2}u'' \ , \text{ since } y_1 = x^r \text{ and } y_1' = rx^{r-1} \\ &= (2r + k)u' + xu'' \ , \text{ after dividing both sides by } x^{r+1} \\ &= u' + xu'' \ , \text{ since } r = \frac{1-k}{2}. \end{split}$$

Letting w = u', the DE becomes xw' + w = 0, that is $w' + \frac{1}{x}w = 0$, which is a linear DE for w = w(x). An integrating factor is $\lambda = e^{\int \frac{1}{x} dx} = e^{\ln x} = x$ and the solution is $w = \frac{1}{x} \int 0 dx = \frac{a}{x}$. which gives $u' = \frac{a}{x}$ and hence $u = a \ln x + b$. We choose a = 1 and b = 0 to get $u = \ln x$ giving the second independent solution

$$y = y_2(x) = y_1(x)u(x) = x^r \ln x.$$

(d) Use the formula from Part (c) to solve the ODE $x^2y'' + 5xy + 4y = 0$.

Solution: We have $g(r) = r(r-1) + kr + \ell = r(r-1) + 5r + 4 = r^2 + 4r + 4 = (r+2)^2$. This has repeated real root r = -2. One solution is given by $y_1(x) = x^r = x^{-2}$ and, b Part (c), a second solution is given b $y_2(x) = x^r \ln x = x^{-2} \ln x$. The general solution is $y = ax^{-2} + bx^{-2} \ln x = \frac{a+b\ln x}{x^2}$.

3: The ODE $x^2y'' + xy' + (x^2 - k^2)y = 0$ is called **Bessel's Equation**. Use Frobenius' method to show that for all $k \ge 0$ there is a nonzero solution of the form $y = J_k(x) = x^k \sum_{n\ge 0} c_{2n}x^{2n}$, and, if k is not an integer, there is a second independent solution of the form $y = J_{-k}(x) = x^{-k} \sum_{n\ge 0} c_{2n}x^{2n}$. These solutions (multiplied by a constant) are called the **Bessel functions of the first kind**.

Solution: Let $k \ge 0$. Let $y = \sum_{n\ge 0} c_n x^{n+r}$ so $y' = \sum_{n\ge 0} (n+r)c_n x^{n+r-1}$ and $y'' = \sum_{n\ge 0} (n+r)(n+r-1)c_n x^{n+r-2}$. Put this into the DE to get

I ut this into the DE to get

$$0 = \sum_{n \ge 0} (n+r)(n+r-1)c_n x^{n+r} + \sum_{n \ge 0} (n+r)c_n x^{n+r} + \sum_{n \ge 0} c_n x^{n+r+2} - \sum_{n \ge 0} k^2 c_n x^{n+r}$$
$$= x^r \Big(\sum_{m \ge 0} \left((m+r)(m+r-1) + (m+r) - k^2 \right) c_m x^m + \sum_{m \ge 2} c_{m-2} x^m \Big)$$
$$= \sum_{m \ge 0} \left((m+r)^2 - k^2 \right) c_m x^m + \sum_{m \ge 2} c_{m-2} x^m$$

We equate coefficients: When m = 0 we get $r^2 - k^2 = 0$ or $c_0 = 0$, that is $r = \pm k$ or c_0 . When m = 1 we get $(r+1)^2 = 0$ or $c_1 = 0$, that is $r = -1 \pm k$, or $c_1 = 0$ (we remark that taking $r = -1 \pm k$, $c_1 = 1$ and $c_0 = 0$ gives the same solution(s) as taking $r = \pm k$, $c_0 = 1$ and $c_1 = 0$, so we shall not consider these cases below). When $m \ge 2$ we get $((m+r)^2 - k^2)c_m + c_{m-2} = 0$ which gives the recursion formula $c_m = \frac{-1}{(m+r)^2 - k^2}c_{m-2}$.

In the case that r = k, the recursion becomes $c_m = \frac{-1}{(m+k)^2 - k^2} c_{m-2} = \frac{-1}{m(m+2k)} c_{m-2}$, so taking $c_0 = 1$ and $c_1 = 0$ gives $c_n = 0$ for all odd values of n and $c_0 = 1$, $c_2 = \frac{-1}{2(2+2k)}$, $c_4 = \frac{1}{4(4+2k)} \cdot \frac{1}{2(2+2k)}$, and $c_6 = \frac{-1}{6(6+2k)} \cdots \frac{1}{4(4+2k)} \cdots \frac{1}{2(2+2k)}$ and so on, so that in general

$$c_{2n} = \frac{-1}{2 \cdot 4 \cdot 6 \cdots (2n)(2+2k)(4+2k)(6+2k) \cdots (2n+2k))} = \frac{(-1)^n}{2^n n! \cdot 2^n (1+k)(2+k)(3+k) \cdots (n+k)} = \frac{(-1)^n}{(2^n n!)^2 \binom{n+k}{n}}$$

where we recall that for $p \in \mathbb{R}$ we have $\binom{p}{0} = 1$ and $\binom{p}{n} = \frac{p(p-1)(p-2)\cdots(p-n+1)}{n!}$. This gives the solution

$$y = J_k(x) = x^k \sum_{n \ge 0} \frac{(-1)^n}{(2^n n!)^2 \binom{n+k}{n}} x^{2n}$$

In the case that r = -k and k is not an integer, the recursion becomes $c_m = \frac{-1}{(m-k)^2 - k^2} c_{m-2} = \frac{-1}{m(m-2k)} c_{m-2}$ (note that if $k \in \mathbb{Z}$ then c_m is not defined for m = 2k), so taking $c_0 = 1$ and $c_1 = 0$ gives $c_n = 0$ for all odd values of n and $c_0 = 1$, $c_2 = \frac{-1}{2(2-2k)}$, $c_4 = \frac{1}{4(4-2k)} \cdot \frac{1}{2(2-2k)}$ and $c_6 = \frac{-1}{6(6-2k)} \cdot \frac{1}{4(4-2k)} \cdot \frac{1}{2(2-2k)}$ and so on, so that in general

$$c_{2n} = \frac{-1}{2 \cdot 4 \cdot 6 \cdots (2n)(2-2k)(4-2k)(6-2k) \cdots (2n-2k))} = \frac{(-1)^n}{2^n n! \cdot 2^n (1-k)(2-k)(3-k) \cdots (n-k)} = \frac{(-1)^n}{(2^n n!)^2 \binom{n-k}{n}}$$

(note that if $k \in \mathbb{Z}$ then $\binom{n-k}{n} = 0$ for $k \ge n$). This gives the solution

$$y = J_{-k}(x) = x^{-k} \sum_{n \ge 0} \frac{(-1)^n}{(2^n n!)^2 \binom{n-k}{n}} x^{2n}.$$

For $k \ge 0$, when k is not an integer, the general solution to Bessel's equation is given by $y = aJ_k(x) + bJ_{-k}(x)$. We remark that when k is an integer there is a (fairly difficult) method which can be used to obtain a second independent solution $y = Y_k(x)$, so that the general solution to Bessel's equation is given by $y = aJ_k(x) + bY_k(x)$. The solutions $y = Y_k(x)$ are called the **Bessel functions of the second kind**.