SYDE Advanced Math 2, Solutions for Practice Problem Set 4

: The ODE (1 — 22)y” — 2xy' + k(k + 1)y = 0 is called Legendre’s Equation. For each integer k& > 0,
Legendre’s equation has a unique polynomial solution y = Py (x) with P;(1) = 1. These are called the
Legendre polynomials. Use power series, centred at 0, to solve the ODE, and find Py () for k = 0,1, 2, 3, 4.

Solution: Let y = Y ¢,z soy' = Y. ne,z™ L and y” = 3 n(n — 1)e, 2" 2. Put these in the DE to get
n>0 n>1 n>2

0=y" — 2%y —2zy + k(k+1)y
=Y nn—1c, 2" 2= 3 nn—1ec,a™ — 3 2nep,a™ + > k(k + 1),

n>2 n>2 n>1 n>0
= > (m+2)(m+ Depmgaz™ — > m(m — Depz™ — > 2mea™ + >, k(k+ Depa™
m>0 m>2 m>1 m=0
We equate the coefficients of : When m = 0 we obtain 2-1¢s + k(k 4+ 1) ¢ = 0 so that ¢o = —k(kTH) co.

When m = 1 we obtain 3 -2¢3 — 2¢; + k(k + 1) ¢ so that ¢z = WQ. When m > 2 we obtain
(m+2)(m + 1)cmi2 — (m(m — 1) + 2m — k(k 4 1)) cp, so that

_ m(m+1)—k(k+1)
Cm+2 = (i) (mtz) Cm

We can choose cg,c; € R to be arbitrary, then ¢, is determined from c¢,_o for all n > 2 by the recursion
formulas. When ¢y = 1 and ¢; = 0, the recursion formulas imply that ¢, = 0 for all odd values of n, and

the solution is given by y = y1(x) = co + coz? + c42* + -+ with ¢y = 1 and ¢y 40 = %cm.
When ¢y = 0 and ¢; = 1 we get y = yo(z) = ¢1 +c32® + e’ +-- - with ¢; = 1 and ¢p40 = %cm.

Notice that when 0 < k € Z, the recursion formula gives ciy2 = 0 and hence 0 = g2 = Cprq = Cpy = - -
Thus when k is even the solution y = y;(z) is a polynomial and when k is odd the solution y = yo(z) is
a polynomial. When k = 0, we have y;(z) = 1 and so Po(x) = 1. When k = 1, we have ys(z) = 2 and

so Pi(z) = . When k = 2, we have y;(z) = cg + coz? with ¢y = 1 and ¢; = —@co = —2—;’ = —3s0
that y;(z) = 1 — 32 Since y1(1) = —2 we have P(z) = —1y1(z) = (32> — 1). When k = 3, we have
yo(z) = ¢1 +c323 with ¢ = 1 and ¢3 = 27k(k+1)01 = 2_63'4 = 7% so that ya(z) = x — 323, Since y2(1) = 7%
we have P3(z) = —32ys(z) = 1(52® — 3z). When k = 4, we have y(z) = co + c22” + caz® with ¢g = 1.
ey = — KD o) = —45 = _10and ¢y = %M'CQ = 2345 .(-10) = 25 so that y; (z) = 1—1022+ .

2 0 1
Since y1(1) = § we have Py(z) = 2y1(x) = £(352* — 3022 + 3).



2: The ODE z2y” + kxy’ + ¢y = 0 is called the Cauchy-Euler Equation. We can solve the Cauchy-Euler
equation by letting y = 2" so that ' = ra"~! and 3’ = r(r — 1)2" 2. Putting these in the DE gives
0=r(r—1)a" 4+ krz" + la" = (r(r — 1) 4+ kr + £)z", so we see that y = " is a solution when r is a root of
the polynomial g(r) = r(r — 1) + kr + £.

(a) When g(r) has two real roots r1 and ro, we obtain two independent solutions y; () = 2™ and ya(x) = z".

Solve the ODE 2y — 2xy + 2y = 0.

Solution: We have g(r) =r(r—1)+kr+£€=r(r—1)—2r+2=172—-3r+2 = (r — 1)(r — 2). The roots
are r; = 1 and ro = 2, two independent solutions are given by y;(z) = ! and y»(x) = 22, and the general
solution is given by y = ax + bx?.

(b) When g(r) has complex roots r + is, we obtain the complex solutions z;(z) = z"+% = e(rtis)ine —

ermreisine — g7 (cos(sInx) + isin(sInz)) and 23(z) = 2" = 2" (cos(sInz) — isin(slnz)), and hence

we obtain the two independent real solutions given by y(z) = M = Re(z1(x)) = 2" cos(slnzx) and

ya(x) = M = Im(21(x)) = 2" sin(sInz). Solve the ODE z2y” + 3zy’ + 5y = 0.
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Solution: We have g(r) = r(r —1)+kr+£=1r(r —1)+3r+5 = r2 4+ 2r + 5. The roots are r = —2Ev4=20 V24_20 =
—142i. A complex solution is given by z71+% = e(-1+2)Ine — g=Inzei2inz — 1 (¢o5(2Inz) +isin(2lnz)),
and two independent real solutions are given by y;(z) = 1 cos(2Inz) and y2(x) = L sin(2Inz). The general

solution is given by y = % cos(2Inz) + 2 sin(2Inz).

(¢) When g(z) has a repeated real root r we only obtain one solution y; (z) = z". Use reduction of order to
find a formula for a second independent solution y = ya(z) of the form yo = yju.

Solution: We have g(r) = 7(r — 1) + kr + ¢ = r? + (k — 1)r + £. This has a repeated real root when
its discriminant is zero, that is when (k — 1)? = 4/, and its root is r = —% = % We have one
solution y = y1(z) = 2". To use reduction of order, we let y = yo = y1u so we have y' = yju + y1v’ and

Yy = yfu+ 2y’ + y1u”. Put this in the DE to get
0=z + kay + 4ty
= 2?(y{u+ 2y1u’ + yru”) + ka(yiu + yiu’) + Lyru)
= (2] + kay + tyr)u + (22} + kayy)u' + 2%y
= (22} + kayy)u' + 2®y1u” |, since y; is a solution to the DE
= (2ra" ™ k" + 2" since y; = 2" and g} = ra" !
= (2r + k)u' +2u” , after dividing both sides by z"*!

=u +zu” | since r = 15E.

Letting w = v/, the DE becomes zw’ + w = 0, that is w’ + 2w = 0, which is a linear DE for w = w(z). An

Inz a

integrating factor is A = ef 20 _ ez — 4 and the solution is w = %dex = 2. which gives v’ = % and
hence u = alnz 4+ b. We choose a =1 and b = 0 to get © = Inz giving the second independent solution

y=1y2(x) =y1(x)u(zx) = 2" Inz.

(d) Use the formula from Part (c) to solve the ODE z%y"” + 5zy + 4y = 0.

Solution: We have g(r) =r(r —1) + kr + £ =r(r — 1) + 5r +4 = r? + 4r + 4 = (r + 2)%2. This has repeated
real root 7 = —2. One solution is given by y;(x) = 2" = 72 and, b Part (c), a second solution is given b
yo(z) = 2" Inz = 272 Inx. The general solution is y = axz ™2 + bz 2Inx = “ﬂ;#.



3: The ODE z%y” + zy + (22 — k?)y = 0 is called Bessel’s Equation. Use Frobenlus method to show that
for all & > 0 there is a nonzero solution of the form y = Ji(z) = « Zn>0 Conx®™, and, if k is not an
integer, there is a second independent solution of the form y = J_;(z) = 2~ * Zn>0 conz®™. These solutions
(multiplied by a constant) are called the Bessel functions of the first kind.

Solution: Let k > 0. Lety = 3 cpa™ " soy' = 3 (n47r)c,z™ Landy” = 3 (ntr)(n+r—1)c "2
n>0 n>0 n>0
Put this into the DE to get

0= > (n+r)n+r—1Dc, 2™+ > (n+r)cpz™ + 3 a2 — 3 ke, an

n>0 n>0 n>0 n>0
=" (3 ((mAr)m4r =1+ (mt 1)~ E)ena™ + 3 cpoaa™)
m2>0 m>2
=Y (m+r)?=k)ena™+ Y cpsa™
m>0 m>2

We equate coefficients: When m = 0 we get r?> — k2 =0 or ¢g = 0, that is r = £k or ¢g. When m = 1 we get
(r+1)2=0o0rc; =0, that isr = =14k, or ¢; = 0 (we remark that taking r = =1+ k, ¢; =1 and ¢y = 0
gives the same solution(s) as taking r = £k, ¢p = 1 and ¢; = 0, so we shall not consider these cases below).

When m > 2 we get ((m +7)% — k?)c, + €2 = 0 which gives the recursion formula c,, = m Cm—a.

In the case that r = k, the recursion becomes c¢,, = m C—2 = m(n:ii%) Cm—2, S0 taking ¢y =1
and ¢; = 0 gives ¢, = 0 for all odd values of n and ¢y = 1, co = W’ cy = m . m, and

— 71 DY 1 ... 1 3
€6 = Gk TaT2m SR and so on, so that in general

—1 (=" (="
Con = 206 (2n)) (21 2K) (41 2K) (6+2k)- (2n12K)) — 27nl2n (14K) (2+Kk) B+k)-—(ntk) (2nn!)2(n+k)

where we recall that for p € R we have (5) =1 and (?) = pp=D@=2)-(p=n+l) Thig gives the solution

n:

—J _ .k =" 2n
N N G
In the case that r = —k and k is not an integer, the recursion becomes ¢,, = m C—2 = m(n;il%) Crn—2
(note that if k € Z then c¢,, is not defined for m = 2k) so taking cp =1 and ¢; = O gives cn = 0 for all odd
values of n and cg = 1, cg = and cg = and so on,

-1 _ 1 —1
202—2k) %4 = 1a—2k) " 2(2— 2k) 6(6—2K) " 4(d— 2k) 22— Qk)

so that in general
(=n" _ =n"
27 nl 27 (1—k)(2—F) (3—k)--(n—k) (2nn!)2(n;k)

Con = 2-4~6---(2n))(272k)(4:12k)(672k)~~-(2n72k:))

(note that if k € Z then (" %) = 0 for k > n). This gives the solution

n

=J p(z)=a7" S Caly i—-L
Y k() 2 e (")
For k > 0, when k is not an integer, the general solution to Bessel’s equation is given by y = aJi(z)+bJ_x(z).
We remark that when k is an integer there is a (fairly difficult) method which can be used to obtain
a second independent solution y = Yj(z), so that the general solution to Bessel’s equation is given by
y = aJi(x) + bYy(z). The solutions y = Y (z) are called the Bessel functions of the second kind.



