
Part 1. Review of ODEs

Introduction

1.1 Definition: When A and B are sets, we write f : A → B to indicate that f is a
function from A to B, which means that for every x ∈ A there is a unique corresponding
element y = f(x) ∈ B. The set A is called the domain of the function. A differential
equation, or DE, is an equation which involves a function f : A ⊆ Rn → R and some of
its derivatives. The order of a DE is the highest of the orders of the derivatives which
occur in the equation. A solution to a DE is a function f : U ⊆ A → R, whose domain
is a connected set U , such that the DE holds for all x ∈ U . The general solution to a
DE is the set of all possible solutions. Often, a DE has infinitely many solutions and we
impose some additional constraints, so the a DE has a unique solution which satisfies the
constraints. Sometimes the constraints are initial conditions, and sometimes they are
boundary conditions, as we shall see later. When n = 1, so the DE involves a function
y = f(x) of a single real variable x ∈ R, the DE is called an ordinary differential
equation, or ODE. When n > 1 so that the DE involves a function y = f(x1, x2, · · · , xn)
of two or more variables, the DE is called a partial differential equation, or PDE.

1.2 Example: The equation y′′′ + 2y3y′ = sinx is a third order ODE for y = y(x). The

equation 2xy ∂2u
∂x∂y + x∂u∂y + y ∂u∂x = 0 is a second order PDE for u = u(x, y).

1.3 Exercise: Find a solution of the form y = ax2 + bx+ c to the DE y′′y′ + x2 = y.

1.4 Exercise: Find two distinct constants r1 and r2 such that y = er1x and er2x are both
solutions to the DE y′′ + 3y′ + 2y = 0, show that y = a er1x + b er2x is a solution for any
constants a and b, and then find a solution to the DE with y(0) = 1 and y′(0) = 0.

1



First Order ODEs

1.5 Definition: In general, a first order ODE can be written in the form

G(x, y, y′) = 0

for some function G : A ⊆ R3 → R. The graph of a solution y = y(x) to a first order ODE
is called a solution curve. Given a first order ODE there is often a unique solution curve
y = y(x) which passes through any given point (a, b) in the domain of F , equivalently
there is often a unique solution y = y(x) to the DE with y(a) = b. A first order ODE for
a function y = y(x), together with an additional constraint of the form y(a) = b, is called
an initial value problem, of IVP, and the constraint is called the initial condition.

Direction Fields

1.6 Note: A first order ODE can often be written in the form

y′ = F (x, y)

It is easy to sketch the solution curves to any DE of the form y′ = F (x, y) in the following
way. First choose many points (x, y), and for each point (x, y) find the value of F (x, y).
If y = y(x) is any solution to the DE, so that y′(x) = F (x, y), then F (x, y) is the slope
of the solution curve at the point (x, y). At each point (x, y), draw a short line segment
with slope F (x, y). The resulting picture is called the slope field or the direction field
of the DE. If we choose enough points (x, y) it should be possible to visualize the solution
curves; they follow the direction of the short line segments.

To draw the direction field of the DE y′ = F (x, y) by hand, it helps to first lightly
draw several isoclines; these are the curves F (x, y) = m, where m is a constant. Along
the isocline F (x, y) = m we then draw many short line segments of slope m.

To draw the graph of the solution to the IVP y′ = F (x, y), with y(a) = b, sketch
the direction field for the DE y′ = F (x, y) and then draw the solution curve which passes
through the point (a, b).

1.7 Exercise: Sketch the direction field for the DE y′ = x − y, then sketch the solution
curves through each of the points (0,−2), (0,−1), (0, 0) and (0, 1).

Euler’s Method

1.8 Note: We can approximate the solution to the IVP y′ = F
(
x, y
)

with y(a) = b using
the following method, which is known as Euler’s Method. Pick a small value ∆x, which
we call the step size. Let x0 = a and y0 = b. Having found xk and yk, we let

xk+1 = xk + ∆x

yk+1 = yk + F (xk, yk) ∆x .

The solution curve y = y(x) is then approximated for values x ≥ a by the piecewise linear
curve whose graph has vertices at the points (xk, yk). If we also wish to approximate
the solution for values x ≤ a, we can construct points (xk, yk) with k < 0 by letting
xk−1 = xk −∆x and yk−1 = yk − F (xk, yk) ∆x.

1.9 Exercise: Consider the IVP y′ = x − y with y(0) = 0. Apply Euler’s method with
step size ∆x = 1

2 to approximate the value of y(2).
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Separable First Order ODEs

1.10 Definition: A separable first order ODE is a DE which can be written in the form

y′ = f(x)g(y)

or to be more precise, y′(x) = f(x)g(y(x)), for some continuous functions f(x) and g(y).

1.11 Note: We can solve the separable DE y′ = f(x)g(y) by dividing by g(y) then
integrating both sides, using the Change of Variables Theorem to get∫

dy

g(y)
=

∫
y′(x) dx

g(y(x))
=

∫
f(x) dx.

Equivalently, we can write the DE in the differential form dy
g(y) = f(x) dx and integrate

both sides.

1.12 Exercise: Solve the DE y′ = x2y.

1.13 Exercise: Solve the IVP y′ = y√
x+1

with y(3) = 1.

Linear First Order ODEs

1.14 Definition: A linear first order ODE is a DE which can be written in the form

y′ + py = q,

that is y′(x) + p(x) y(x) = q(x), for some continuous functions p(x) and q(x).

1.15 Note: We can solve the linear DE y′ + py = q as follows. If we can find a function
λ = λ(x) such that λ′ = λ p, then we have (λy)′ = λ y′ + λ′y = λy′ + λ py, and so
multiplying both sides of the DE by λ gives (λy)′ = λq, which we can solve by integrating

to get λy =
∫
λq so that y = 1

λ

∫
λq.. And indeed we can find such a function λ = λ(x)

because the DE λ′ = λp is separable: we write the DE as dλ
λ = p dx and integrate both

sides to get lnλ =
∫
p, that is λ = e

∫
p
. To summarize, in order to solve the DE y′+py = q,

we let λ = e

∫
p

and the solution is given by y = 1
λ

∫
λq. To be more precise, the solution is

y(x) =
1

λ(x)

∫
λ(x)q(x) dx where λ(x) = e

∫
p(x) dx

.

The function λ(x) is called an integrating factor for the linear DE.

1.16 Exercise: Solve the DE y′ − x2y = 0 (by treating it as a linear DE).

1.17 Exercise: Find the solution to the IVP y′ + 2y = e−5x, y(0) = 1.

1.18 Exercise: Find the solution to the IVP y′ − 2xy = x, y(0) = 0.

1.19 Definition: A Bernoulli first order ODE is a DE which can be written in the form
y′ + py = qyr for some 1 6= r ∈ R and some continuous functions p(x) and q(x).

1.20 Note: We can often solve the Bernoulli DE y′ + py = qyr by letting u = y1−r so
that u′ = (1 − r)y−ry′. If w multiply both sides of the DE by (1 − r)y−r, it becomes
(1− r)y−ry′+ (1− r)y1−r = (1− r)q, that is u′+ (1− r)u = (1− r)q, which is a linear DE
for the function u = u(x).
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1.21 Exercise: Solve the IVP y′ + y = x
√
y with y(0) = 4.

1.22 Definition: A homogeneous first order ODE is a DE which can be written in the
form y′ = f

(
y
x

)
for some continuous function f(x).

1.23 Note: We can solve the homogeneous DE y′ = f
(
y
x

)
by letting u = y

x , that is
y = xu, so that y′ = u + xu′. The DE becomes u + xu′ = f(u), that is xu′ = f(u) − u,
which is a separable DE for the function u = u(x).

1.24 Exercise: Solve the IVP y′ = x3+y3

xy2 with y(1) = 2.

1.25 Remark: There are various other kinds of first order ODEs which can be solved. For
example , an exact first order ODE can be written in differential form as ∂u

∂x dx+ ∂u
∂y dy = 0,

that is as du = 0, for some differentiable function u = u(x, y). The solution is then given
by u(x, y) = c. Note that when a = a(x, y) and b = b(x, y) are continuously differentiable
with ∂a

∂y = ∂b
∂y , we can find u = u(x, y) such that ∂u

∂x = a and ∂u
∂y = b, and so the DE

a(x, y) + b(x, y)y′ = 0 is exact. Also, sometimes a DE can be made exact by multiplying
both sides by a suitable function µ = µ(x, y), called an integrating factor.

1.26 Exercise: Solve the IVP (2y + 2xy)y′ + y2 + 1 = 0 with y(0) = 1 by recognizing
that the DE is exact.

1.27 Exercise: Solve the IVP (x2y2 + 1)y′+ xy3 = 0 with y(0) = 1 by first finding an
integrating factor µ=µ(y).
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Second Order ODEs

1.28 Definition: In general, a second order ODE can be written in the form

G(x, y, y′, y′′) = 0

for some function G : A ⊆ R4 → R. The graph of a solution y = y(x) is called a solution
curve. Given a second order ODE, there is often a unique solution curve y = y(x) which
passes through a given point (a, b) with a given slope c = y′(a), equivalently, there is often
a unique solution y = y(x) to the DE with y(a) = b and y′(a) = c. A second order ODE
for a function y = y(x) together with two additional constraints of the form y(a) = b and
y′(a) = c, is called an initial value problem, or IVP, and the two constraints are called
the initial conditions. Sometimes, a given second order ODE has a unique solution
y = y(x), defined for all x in the interval [a, b], which satisfies additional constraints of
the form y(a) = c and y(b) = d. A second order ODE for y = y(x), defined for x ∈ [a, b],
together with constraints of the form y(a) = c and y(b) = d, is called a boundary value
problem, or BVP, and the constraints are called boundary conditions.

Direction Fields and Euler’s Method

1.29 Note: The graph of a differentiable function y = f(x) can be given parametrically
by (x, y) = (x(t), y(t)) = (t, f(t)). The lift of this curve to R3 is given by (x, y, z) =
(x(t), y(t), z(t)) = (t, f(t), f ′(t)). Consider a second order ODE of the form

y′′ = F (x, y, y′).

A solution curve y = f(x) can be given parametrically by (x, y) = (t, f(t)), and its lift is
the curve in R3 given by (x, y, z) = (t, f(t), f ′(t)). At the point (x, y, z) = (t, f(t), f ′(t)),
the tangent vector is (x′, y′, z′) = (1, f ′(t), f ′′(t)) = (1, z, F (x, y, z)). The direction field
of the ODE y′′ = F (x, y, y′) is constructed as follows: at each point (x, y, z) in the domain
of F , we place a short line segment in the direction of the vector (1, z, F (x, y, z)). As
explained above, for any solution y = f(x), the lift of the solution curve is a curve in R3

which follows the direction indicated by direction field.
We can approximate the solution to the IVP y′′ = F (x, y, y′) with y(a) = b and

y′(a) = c, by approximating its lift, using the following method which is called Euler’s
method. We choose a small value ∆x, which we call the step size, we begin at the point
(x0, y0, z0) = (a, b, c), then for each k ≥ 0 we let

(xk+1, yk+1, zk+1) = (xk, yk, zk) + (1, zk, F (xk, yk, zk)∆x

that is
xk+1 = xk + ∆z

yk+1 = yk + zk∆x

zk+1 = zk + F (xk, yk, zk)∆x

The polygonal path in R3 with vertices at (xk, yk, zk) approximates the lift of the solution.
The solution y = f(x) is approximated by the polygonal path in R2 with vertices at
(xk, yk).

1.30 Exercise: Note that y = sinx is the unique solution to the IVP y′′ + y = 0 with
y(0) = 0 and y′(0) = 1. Apply Euler’s Method using step size ∆x = 1

2 to approximate the
solution (which we know to be y = sinx) for 0 ≤ x ≤ 3.
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Substitutions to Reduce the Order

1.31 Note: For a second order ODE of the form G(x, y′, y′′) = 0 (that is for a DE which
does not explicitly involve the dependent variable y), we can let u = u(x) be given by
u(x) = y′(x) so that u′(x) = y′(x), so that we have y′ = u and y′′ = u′, and then the DE
becomes G(x, u, u′) = 0 which is a first order DE for u = u(x).

1.32 Exercise: Solve the IVP y′′ + 2y′ = 6x with y(0) = 1 and y′(0) = 1.

1.33 Exercise: Solve the BVP xy′′ + y′ = 4x with y(1) = y(2) = 1.

1.34 Note: For a second order ODE of the form G(y, y′, y′′) = 0 (that is for a DE which
does not explicitly involve the independent variable x), we can let u = u(y) be given by
u(y(x)) = y′(x) so that u′(y(x))y′(x) = y′′(x), so that we have y′ = u and y′′ = uu′, and
then the DE becomes G(y, u, uu′) = 0, which is a first order DE for the function u = u(y).

1.35 Exercise: Solve the IVP y′′ + 4(y′)2 = 1 with y(0) = 0 and y′(0) = 1.

1.36 Exercise: Solve the IVP y′′ = 4y with y(0) = 1 and y′(0) = 1.

1.37 Exercise: Solve the IVP y2y′′ = y′ with y(0) = 1 and y′(0) = 1.

Second Order Linear ODEs

1.38 Definition: A second order linear ODE is a DE which can be written in the form

ay′′ + by′ + cy = d

for some continuous functions a, b, c, d : I ⊆ R → R with a(x) 6= 0 for all x ∈ I, where I
is an interval in R. This linear DE is called homogeneous when d = 0. Equivalently, a
second order linear ODE is a DE which can be written in the form

y′′ + py′ + qy = r

where p, q, r : I ⊆ R → R are continuous and I is an interval, and this DE is called
homogeneous when r = 0.

1.39 Theorem: Given an interval I ⊆ R, given continuous maps p, q, r : I ⊆ R → R,
and given a ∈ I and b, c ∈ R, there exists a unique solution y = y(x) to the IVP given by
y′′ + py′ + q = r with y(a) = b and y′(a) = c.

Proof: We omit the proof, which is fairly difficult.

1.40 Note: As a consequence of the above theorem, it is not hard to show that given an
interval I ⊆ R and given continuous functions p, q, r : I ⊆ R → R, the set of solutions to
the homogeneous linear DE y′′ + py′ + qy = 0 is a 2-dimensional vector space, and the set
of solutions to the DE y′′ + py′ + qy = r is a 2-dimensional plane. Indeed, there exist two
independent solutions y1, y2 : I → R to the homogeneous DE y′′ + py′ + qy = 0, and the
general solution is given by y = Ay1 + By2 where A,B ∈ R, and there exists a particular
solution yp : I ⊆ R→ R to the DE y′′ + py′ + qy = r, and the general solution is given by
y = yp +Ay1 +By2 where A,B ∈ R.
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Reduction of Order for Second Order Linear Homogeneous ODEs

1.41 Note: Given one solution y = y1(x) to the second order linear homogeneous ODE
y′′+ p(x) + q(x)y = 0, we can often find a second independent solution using the following
method, which is called reduction of order: We let y2(x) = y1(x)u(x) for some function
u = u(x). For y = y2 = y1u, we have y′ = y′1u+ y1u

′ and y′′ = y′′1u+ 2y′1u
′ + y1u

′′, so the
DE becomes

0 = y′′ + p′ + qy = (y′′1u+ 2y′1u
′ + y1u

′′) + p(y′1u+ y1u
′) + q(y1u)

= (y′′1 + py′1 + qy1)u+ (2y′1 + py1)u′ + y1u
′′

= (2y′1 + py1)u′ + y1u
′′

where, at the last stage, we used the fact that y1 satisfies y′′1 +py′1 +qy1 = 0. The resulting
DE y1u

′′ + (2y′1 + py1)u′ = 0 for u = u(x) does not involve u, so we make the substitution
v(x) = u′(x) and the DE becomes y1v

′+(2y′1 +py1)v = 0, which is a first order linear (and
separable) DE for v = v(x). Once we solve for v = v(x), then for u = u(x), we obtain the
second independent solution y2 = y1u.

1.42 Exercise: Solve the IVP 2x2y′′ + 3xy′ − 6y = 0 with y(1) = 3 and y′(1) = 1 given
that = y1 = 1

x2 is one solution to the DE.

1.43 Exercise: Solve the ODE xy′′ − y′ + (1− x)y = 0 for x > 0 given that y = y1 = ex

is one solution.

Variation of Parameters for Second Order Linear Nonhomogeneous ODEs

1.44 Note: Given two independent solutions y = y1(x) and y = y2(x) to the linear
homogeneous DE y′′+p(x)y′+q(x)y = 0 we can often find a particular solution y = yp(x) to
the associated non-homogeneous DE y′′+p(x) y′+q(x) y = r(x) using the following method,
which is known as variation of parameters: We let yp(x) = y1(x)u1(x) + y2(x)u2(x) for
some functions u1(x) and u2(x) which satisfy the conditions

y1u1
′ + y2u2

′ = 0 (1)

y1
′u1
′ + y2

′u2
′ = r (2)

Note that these two equations are linear equations which we can easily solve for the un-
knowns u′1 and u′2, and we can integrate to find such functions u1 = u1(x) and u2 = u2(x).
Note that when y = yp = y1u1 + y2u2 for functions u1 and u2 which satisfy the above
conditions (1) and (2), we have

y = y1u1 + y2u2

y′ = y′1u1 + y1u
′
1 + y′2u2 + y2u

′
2 = y′1u1 + y′2u2

y′′ = y′′1u1 + y′1u
′
1 + y′′2u2 + y′2u

′
2 = y′′1u1 + y′′2u2 + r

and hence

y′′ + py′ + qy = (y′′1u1 + y′2u2 + r) + p(y′1u1 + y′2u2) + q(y1u1 + y2u2)

= (y′′1 + py′1 + qy1)u1 + (y′′2 + py′2 + qy2)u2 + r = r

so that y = yp = y1u1 + y2u2 is indeed a solution to the DE y′′ + py′ + qy = r.

1.45 Exercise: Solve the ODE 2x2y′′ + 3xy′ − 6y = lnx for x > 0.
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Second Order Linear ODEs With Constant Coefficients

1.46 Note: When a, b, c ∈ R with a 6= 0, it is easy to solve the second order linear
homogeneous ODE ay′′ + by′ + cy = 0 as follows: We try y = erx so that y′ = rerx and
y′′ = r2erx. The DE becomes 0 = ay′′ + by′ + cy = (ar2 + br + c)erx. Since erx 6= 0 for
all x, this is equivalent to 0 = g(r) = ar2 + br + c. The polynomial g(r) = ar2 + br + c is
called the characteristic polynomial for the DE ay′′ + by′ + cy = 0.

When g has two distinct real roots r = r1 and r2, we have the two independent solutions

y1 = y1(x) = er1x and y2 = y2(x) = er2x.

When g has one repeated real root r, it is not hard to verify that we have the two inde-
pendent solutions

y1 = y1(x) = erx and y2 = y2(x) = xerx.

When g has a pair of conjugate complex roots r = s ± it, we have the two independent
complex-valued solutions given by z1 = z1(x) = e(s+it)x = esxeitx = esx(cos tx + i sin tx)
and z2 = z2(x) = e(s−it)x = esxe−itx = esx(cos tx − i sin tx), and we can take linear
combinations to get the two independent real-valued solutions

y1 = y1(x) = z1+z2
2 = esx cos tx and y2 = y2(x) = z1−z2

2i = esx sin tx.

1.47 Exercise: Solve the IVP 6y′′ + y′ − 2y = 0 with y(0) = 2 and y′(0) = 1.

1.48 Exercise: Solve the IVP 9y′′ + 12y′ + 4y = 0 with y(0) = 1 and y′(0) = 2.

1.49 Exercise: Solve the IVP y′′ + 4y′ + 5y = 0 with y(0) = 2 and y′(0) = −1.

1.50 Note: Given two independent solutions y1 = y1(x) and y2 = y2(x) to the second
order linear homogeneous ODE ay′′+by′+cy = 0 with constant coefficients a, b, c ∈ R with
a 6= 0, and given a continuous function d = d(x), we can try to find a particular solution
yp = yp(x) to the associated non-homogeneous ODE ay′′ + by′ + cy = d(x) by using the
method of variation of parameters or, often more easily, simply by using trial and error:
when d(x) is a polynomial, we can try letting yp be a polynomial; when d(x) = ekx, we
can try letting yp be a constant multiple of ekx (or sometimes a polynomial multiplied by
ekx); and when d(x) = cos kx or sin kx, we can try letting yp be a linear combination (or
sometimes a polynomial combination) of sin kx and cos kx. The method of trial and error
is sometimes called the method of undetermined coefficients.

1.51 Exercise: Find a particular solution to the linear ODE y′′+ y′− 2y = g(x) for each
of the following functions g(x):

(a) g(x) = 2x2 (b) g(x) = 5e3x (c) g(x) = 5 sinx (d) g(x) = x2e−x

1.52 Exercise: Find a particular solution to each of the following linear ODEs:

(a) y′′ + y′ − 2y = e−2x (b) y′′ + 2y′ + y = e−x (c) y′′ − 2y′ + 10y = 6ex cos 3x

1.53 Exercise: Solve the linear ODE y′′ − 4y′ + 13y = 6 e2x sin 8x cosx.
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