
Part 2. Systems of First Order ODEs

2.1 Definition: A system of first order ODEs for the functions x1(t), x2(t), · · · , xn(t), is
a list of equations of the form

G1(t, x1, x2, · · · , xn, x′1, x′2, · · · , x′n) = 0

G2(t, x1, x2, · · · , xn, x′1, x′2, · · · , x′n) = 0

...

Gm(t, x1, x2, · · · , xn, x′1, x′2, · · · , x′n) = 0

We can write the above system in vector form as

G(t, x, x′) = 0

where x = (x1, x2, · · · , xn)T , x′ = (x′,, x
′
2, · · · , x′n)T and G = (G1, G2, · · · , Gm)T . Here, G

is a function G : U ⊆ R2n+1 → Rm, and a solution is a function x : I ⊆ R → Rn, where
I is an interval in R, for which (t, x(t), x′(t)) ∈ U with G(t, x(t), x′(t)) = 0 ∈ Rm for all
t ∈ I. We shall usually consider systems which can be written in the form

x′1 = F1(t, x1, x2, · · · , xn)

x′2 = F2(t, x1, x2, · · · , xn)

...

x′n = Fn(t, x1, x2, · · · , xn)

or, more simply, in vector form as
x′ = F (t, x)

where t ∈ R, x ∈ Rn. A solution is a function x : I ⊆ R→ Rn, where I ⊆ is an interval,
such that x′(t) = F (t, x(t)) for all t ∈ I. An autonomous system is a system which can
be written in vector form as

x′ = F (x).

2.2 Note: Higher order ODEs and systems of higher order ODEs can be converted to
systems of first order ODEs. For example, given the nth order ODE

y(n) = F (t, y, y′, y′′, · · · , y(n−1)),
we can let x1 = y, x2 = y′, x3 = y′′, · · · , xn = y(n−1) and then the given nth order ODE is
equivalent to the system of first order ODEs

x′1 = x2 , x
′
2 = x3 , x

′
n−1 = xn , x

′
n = F (t, x1, x2, · · · , xn).

As another example, given the pair of second order ODEs

G1(t, y1, y2, y
′
1, y
′
2) = 0

G2(t, y1, y2, y
′
1y
′
2) = 0

we can let x1 = y1, x2 = y2, x3 = y′1 and x4 = y′2, and then the given pair of second order
ODEs is equivalent to the system of first order ODEs

x′1 = x3

x′2 = x4

G1(t, x1, x2, x3, x4) = 0

G2(t, x1, x2, x3, x4) = 0.
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2.3 Exercise: An object of mass m hangs at the end of a string of length ` and swings
back and forth under the influence of the downward force of gravitation. Show that the
angle θ = θ(t) between the string and the vertical at time t satisfies the second order ODE

θ′′ = −g
`

sin θ.

Letting ω(t) = θ′(t) (ω is called the angular velocity), this second order DE is equivalent
to the autonomous pair of first order ODEs given by

θ′ = ω ω′ = − g
` sin θ.

2.4 Exercise: A large object of mass M is fixed at the origin. A small object of mass m
begins at the point (x, y) = (x0, y0) with initial velocity (u, v) = (u0, v0), and it moves in
the xy-plane under the influence of gravity. Show that the position (x, y) = (x(t), y(t)) of
the small object satisfies the pair of second order ODEs given by

x′′ =
−GMx

(x2 + y2)3/2
, y′′ =

−GMy

(x2 + y2)3/2
.

Letting u = x′ and v = y′, this is equivalent to the autonomous system of first order ODEs

x′ = u , y′ = v , u′ =
−GMx

(x2 + y2)3/2
, v′ =

−GMy

(x2 + y2)3/2
.

The appropriate initial condition is given by (x(0), y(0), u(0), v(0)) = (x0, y0, u0, v0).

Euler’s Method

2.5 Definition: For a system of first order ODEs, an initial value problem, or IVP,
consists of a system of first order ODEs of the form

x′1 = F1(t, x1, · · · , xn)

...

x′n = Fn(t, x1, · · · , xn)

together with initial conditions of the form x1(s) = c1, x2(s) = c2, · · · , xn(s) = cn where
s ∈ R and each ck ∈ R with (s, c1, · · · , cn) in the domain of F . In vector form, an IVP
consists of a system of the form

x′ = F (t, x)

together with initial conditions of the form x(s) = c with s ∈ R and c ∈ Rn. We can
approximate the solution to the above IVP numerically using the following method, known
as Euler’s method: We choose a small value of ∆t, called the step size. We start at
the point (t0, x1,0, x2,0, · · · , xn,0) = (s, c1, c2, · · · , cn) ∈ Rn+1, and then for k ≥ 0 we let

tk+1 = tk + ∆t and xj,k+1 = xj,k + Fj(tk, x1,k, x2,k, · · · , xn,k) ∆t.

In the case of the IVP given by the pair of ODEs

x′ = F (t, x, y)

y′ = G(t, x, y)

with the initial condition x(s) = b, y(s) = c, we start at (t0, x0, y0) = (s, b, c) then let

tk+1 = tk+∆t , xk+1 = xk+F (tk, xk, yk)∆t , and yk+1 =yk+G(tk, xk, yk)∆t.

2.6 Exercise: Approximate the solution to x′ = 1
y , y′ = 2xy with x(0) = 0, y(0) = 1.
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The Vector Field and the Direction Field of an Autonomous System

2.7 Definition: A vector field on U ⊆ Rn is a function F : U ⊆ Rn → Rn, in other
words, a vector field on U consists of a vector F (x) ∈ Rn at each point x ∈ U ⊆ Rn. For the
autonomous system of ODEs given in vector form by x′ = F (x), where F : U ⊆ Rn → Rn,
the set U (that is the domain of F ) is called the phase space and the function F is called
the associated vector field of the system. When x = x(t) is a solution to the system of
ODEs, it determines a parametric curve, also denoted by x = x(t), and the tangent vector
(or the velocity in the case that t represents time) at the point x = x(t) on this curve is
equal to x′(t) = F (x), so the solution curves follow the vectors in the vector field. The
direction field for an autonomous system consists of a short line segment at each point
in U in the direction of the vector field. The difference between the direction field and the
vector field is simply that the direction field indicates the direction of the solution curves,
while the vector field indicates not only the direction but also the velocity (if we think of
x(t) as the position of a moving object at time t).

In the case of a pair of autonomous equations given by x′ = F (x, y) and y′ = G(x, y),
the phase space is also called the phase plane and the direction field is also called the

slope field, and it consists of a short line segment of slope m = G(x,y)
F (x,y) at each point (x, y).

A picture which shows the direction field (or the vector field), along with a representative
set of solution curves, is called a phase portrait.

2.8 Exercise: Sketch the direction field, and a few solution curves for the autonomous
pair of ODEs given by x′ = 1

y and y′ = 2xy.

Two Solution Methods for Pairs of Autonomous ODEs

2.9 Note: Sometimes we can solve an autonomous pair of ODEs given by x′ = F (x, y)

and y′ = G(x, y) by first solving the DE dy
dx = G(x,y)

F (x,y) for y = y(x), then putting this back

into either one of the two given DEs. Alternatively, sometimes we can first solve the DE
dx
dy = F (x,y)

G(x,y) for x = x(y).

2.10 Exercise: Solve the IVP given by x′ = 1
y and y′ = 2xy with x(0) = 0 and y(0) = 1.

2.11 Note: Sometimes we can solve an autonomous pair of ODEs given by x′ = F (x, y)
and y′ = G(x, y) by using the two equations x′ = F (x, y) and y′ = G(x, y) to eliminate y
and y′ from the equation x′′ = ∂F

∂x x
′ + ∂F

∂y y
′. Alternatively, sometimes we can eliminate x

and x′ from the equation y′′ = ∂G
∂x x

′ + ∂G
∂y y

′.

2.12 Exercise: Solve the IVP given by x′ = xy and y′ = x with x(0) = 1 and y(0) = −1.
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Linear Systems of First Order ODEs

2.13 Definition: A linear system of first order ODEs is a system which can be written
in the form

x′1 = a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1

x′2 = a2,1x1 + a2,2x2 + · · ·+ a2,nxn = b2

...

x′n = an,1x1 + an,2x2 + · · ·+ an,1xn = bn

where each of the terms ak,` and bk is a continuous function of t (defined for t in some
interval I). This system can be written in matrix form as

x′ = Ax+ b.

A homogeneous linear system of first order ODEs can be written in the form

x′ = Ax.

2.14 Theorem: Given an interval I ⊆ R, given continuous functions ak,`, bk : I ⊆ R→ R,
and given s ∈ I and c ∈ Rn, there exists a unique solution x = x(t) to the IVP given by
x′ = Ax+ b with x(s) = c.

2.15 Note: Using the above theorem, one can show that given an interval I ⊆ Rn and
continuous functions ak,`, bk : I ⊆ R → R for 1 ≤ k, ` ≤ n, the set of all solutions to
the homogeneous linear system x′ = Ax is an n-dimensional vector space and the set of
solutions to the linear system x′ = Ax + b is an n-dimensional plane: indeed there exist
independent solutions x1, x2, · · · , xn to the system x′ = Ax and the general solution is given
by x = c1x1 + c2x2 + · · ·+ cnxn where each ck ∈ R, and there exists a particular solution
xp to the system x′ = Ax+b and the general solution is given by x = xp+c1x1+ · · ·+cnxn
where each ck ∈ R.

Reduction of Order for a Homogeneous Linear Pair of ODEs

2.16 Note: Given one solution
(
x1

y1

)
to a homogeneous linear pair of ODEs

(
x′

y′

)
= A

(
x
y

)
,

where the entries of A are continuous functions of t, we can find a second independent
solution

(
x2

y2

)
using the following method, which we call reduction of order. For u = u(t)

and v = v(t) we let (
x
y

)
=
(
x2

y2

)
=
(
1 x1

0 y1

)(
u
v

)
=
(
1
0

)
u+

(
x1

y1

)
v.

Then
(
x′

y′

)
=
(
1
0

)
u′+

(
x1

y1

)
v′+

(x′1
y′1

)
v =

(
1 x1

0 y1

)(
u′

v′

)
+A

(
x1

y1

)
v and A

(
x
y

)
= A

(
1
0

)
u+A

(
x1

y1

)
v,

so we have
(
x′

y′

)
= A

(
x
y

)
when

(
1 x1

0 y1

)(
u′

v′

)
= A

(
1
0

)
u, that is when(

u′

v′

)
=
(
1 x1

0 y1

)−1
A
(
1
0

)
u.

The first entry is a linear first order ODE for u = u(t) and, after solving for u = u(t),
the second entry becomes a simple ODE for v = v(t). Once we have found u = u(t) and
v = v(t), we have obtained our second independent solution

(
x1

y2

)
=
(
1 x1

0 y1

)(
u
v

)
.

2.17 Exercise: Solve
(
x′

y′

)
=
(
t−1 t−2

2 t−1

)(
x
y

)
given that

(
x1

y1

)
=
(
t2

t3

)
is one solution.

4



Variation of Parameters for a Linear System of ODEs

2.18 Note: Let A be an n×n matrix whose entries are continuous functions of t, and let b
be an n×1 column vector whose entries are continuous functions of t. Given n independent
solutions x1, x2, · · · , xn to the homogeneous system of n linear ODEs given by x′ = Ax,
we can find a particular solution xp the the non-homogeneous system x′ = Ax + b, using
the following method, which we call variation of parameters: For functions uk = uk(t),
we let x = xp = x1u1 + x2u2 + · · ·xnun.
We can write this in matrix form as

x = xp = Xu,
where X = (x1, x2 · · · , xn) (this is the n×n matrix whose columns are the functions xk(t))
and u = (u1, · · · , un)T (this is an n×1 column vector whose entries are the functions uk(t)).
Since each xk satisfies x′k = Axk, it follows that X ′ = AX. We have x′ = X ′u + Xu′ =
AXu + Xu′ and we have Ax = AXu, and so in order to obtain x′ = Ax + b we need
Xu′ = b. Thus we need to choose u such that

u′ = X−1b.

The kth entry is a simple ODE which we can solve for uk = uk(t).

2.19 Exercise: Solve
(
x′

y′

)
=
(
t−1 t−2

2 t−1

)(
x
y

)
+
(

3
2t ln t

)
.

Systems of First Order ODEs with Constant Coefficients

2.20 Note: When A is an n × n matrix with constant real entries, we can solve the
homogeneos system of first order ODEs x′ = Ax as follows: we try x = ertu where r ∈ R
and u ∈ Rn. and note that x′ = rertu. We have x′ = Ax when rertu = Aertu, that is
when Au = ru, or equivalently when (A− rI)u = 0. Recall that this occurs when r is an
eigenvalue of A and u is a corresponding eigenvector. The polynomial g(r) = det(A− rI)
of the matrix A is also called the characteristic polynomial of the system of ODEs, and
its roots are the eigenvalues of A.

When r is a real eigenvalue of A and u is a corresponding eigenvector, we obtain the
real-valued solution x = ertu.

When r + is is a complex eigenvalue and u + iv is an associated complex eigenvector,
then r− is is another eigenvalue with eigenvector u− iv, so we obtain two complex-valued
solutions z1 = e(r+is)t(u+ iv) = ert(cos st+ i sin st)(u+ iv) and z2 = e(r+is)t(u− iv), and
these give the two real-valued solutions x1 = z1+z2

2 = 2 Re (z1) = ert
(

cos(st)u− sin(st)v
)

and x2 = z1−z2
2i = 2 Im (z1) = ert

(
cos(st)v + sin(st)u

)
.

In the case that A is diagonalizable, it has n linearly independent eigenvectors and we
obtain n linearly independent solutions. In the case that A is not diagonalizable, there
is still a routine procedure for obtaining n linearly independent solutions. In general, the
procedure is a bit complicated, and we omit the details, but let us explain what to do
in the case that a real eigenvalue r ∈ R has algebraic multiplicity 2 but it only has one
independent eigenvector u ∈ Rn. In this case, we have one solution x1 = ertu and we can
find a second solution as follows: We let x = x2 = tertu+ ertv with v ∈ Rn, and we note
that x′ = (1 + rt)ertu + rertv and Ax = rtertu + ertAv, so that to get x′ = Ax we need
Av = u+ rv, that is

(A− rI)v = u.

We solve this equation for v, then we have two solutions x1 = ertu and x2 = tertu+ ertv.
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2.21 Exercise: Solve each of the following linear homogeneous pairs of first order ODEs
with constant coefficients. In each case, sketch a phase portrait.

(a)

(
x′

y′

)
=

(
1 1
2 0

)(
x
y

)
(b)

(
x′

y′

)
=

(
1 −5
2 −1

)(
x
y

)
(c)

(
x′

y′

)
=

(
3 1
−2 1

)(
x
y

)
(d)

(
x′

y′

)
=

(
1 −2
2 5

)(
x
y

)
2.22 Exercise: Solve each of the following linear homogeneous systems of first order
ODEs with constant coefficients.

(a)

x′

y′

z′

 =

 1 −2 −6
0 2 3
−2 −4 −1

x
y
z

 (b)

x′

y′

z′

 =

 0 1 1
1 0 1
1 1 0

x
y
z


(c)

x′

y′

z′

 =

 2 1 1
2 1 −2
−1 0 −2

x
y
z

 (d)

x′

y′

z′

 =

 8 −5 5
5 −2 5
−6 4 1

x
y
z


2.23 Note: Let A be an n × n matrix with constant real entries, and let b be an n × 1
column vector whose entries are continuous functions of t. Given n independent solutions
to the linear homogeneous system x′ = Ax, we can find a particular solution to the non-
homogeneous system x′ = Ax+ b using the method of variation of parameters (which was
discussed earlier in Note 2.18). Alternatively, it is often easier to find a particular solution
using trial and error, looking for a solution x = xp = xp(t) of an appropriate form,
depending on the form of b. When b is of the form b =

∑m
k=0 ukt

k, where each uk ∈ Rn,
we can try xp =

∑m
k=0 vkt

k, where each vk ∈ Rm (but if, for example, r = 0 is a root

of the characteristic polynomial of multiplicity 1 then we would try xp =
∑m+1

k=0 vkt
k).

When b is of the form b =
∑m

k=0 ukt
kert, we can try xp =

∑m
k=0 vkt

kert (but if, for
example, r is a root of the characteristic polynomial of multiplicity 1 then we would
try xp =

∑m+1
k=0 vkt

kert). When b is of the form b =
∑m

k=0 ukt
kert sin(st), we can try

xp =
∑m

k=0 vkt
kert sin st +

∑m
k=0 wkt

kert cos st. The method of trial and error, using an
educated guess, is called the method of undetermined coefficients.

2.24 Exercise: Solve each of the following linear non-homogeneous systems of ODEs.

(a)

(
x′

y′

)
=

(
1 4
3 2

)(
x
y

)
+

(
5t
3et

)
(b)

(
x′

y′

)
=

(
1 4
3 2

)(
x
y

)
+ e5t

(
5
−2

)
(c)

(
x′

y′

)
=

(
3 2
−1 5

)(
x
y

)
+ e4t

(
−6 sin t
8 cos t

)
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Equilibrium Points of Autonomous Systems

2.25 Definition: Consider the autonomous system of ODEs given by x′ = F (x) where
F : U ⊆ Rn → Rn is continuous. When p ∈ U and the constant function x : R→ U ⊆ Rn

given by x(t) = p for all t is a solution to the system, we say that p is an equilibrium
point and that x is an equilibrium solution of the system. Note that p is an equilibrium
point when F (p) = 0 (since when x(t) = p for all t we have x′ = 0). Given an equilibrium
point p ∈ U , we say that p is stable when it has the property that for all ε > 0 there
exists δ > 0 such that if ‖x(s) − p‖ < δ for some s ∈ R then ‖x(t) − p‖ < ε for all t ≥ s,
and otherwise we say that p is unstable. We say that p is asymptotically stable, or
that p is attracting, when it is stable and there exists δ > 0 such that if ‖x(s) − p‖ < δ
for some s ∈ R then lim

t→∞
x(t) = p.

2.26 Example: When A is an invertible n × n matrix with constant real entries, the
system x′ = Ax has a unique stable point, namely the origin 0. When all the eigenvalues
of A have strictly negative real parts, the point 0 is asymptotically stable (because all
the independent solutions include an exponential decay term ert with r < 0). When all
eigenvalues have real parts which are less than or equal to zero, the point 0 is stable. When
at least one eigenvalue has a positive real part, the point 0 is unstable (because there is a
solution of the form ertu with r > 0). When all the eigenvalues have positive real part, we
can say that the point 0 is repelling.

2.27 Note: Let F : U ⊆ Rn → Rn be twice continuously differentiable with F (p) = 0 so
that p is a stable point for the system x′ = F (x). The function F is approximated near
p by its linearization L : Rn → Rn given by L(x) = DF (p)(x − p), where DF (p) is the
derivative matrix, also called the Jacobian matrix, of F (the k, ` entry of DF (p) is
∂Fk

∂x`
). The autonomous system x′ = F (x) is approximated by the system x′ = L(x) which

can be written as y′ = Ay where y = x − p and A = DF (p). Each solution x = x(t)
to the original system x′ = F (x) is approximated by x(t) ∼= y(t) + p where y = y(t) is
a solution to the system y′ + Ay, which is a linear homogeneous system with constant
coefficients. When all the eigenvalues of A = DF (p) have negative real parts, the point p
is asymptotically stable.

2.28 Exercise: Recall that a population x = x(t) grows exponentially when it satisfies
the ODE x′ = rx for some constant r > 0 (which determines the rate of growth). For a
species which lives in an environment with limited resources, the population growth can
be modelled slightly more realistically using the logistic equation, which is an ODE of the
form x′ = r(1− ax)x for some constant a > 0. The populations x = x(t) and y = y(t) of
two competing species which live in the same environment and compete for resources
can be modelled using a pair of first order ODEs of the form

x′ = r(1− ax− by)x

y′ = s(1− cx− dy)y

for some constants r, s, a, b, c, d > 0. Consider the competing species model

x′ = 1
2

(
1− 1

2x−
1
2y
)
x

y′ = 1
4

(
1− 1

3x−
2
3y
)
y.

Find the equilibrium solutions, and at each equilibrium point, linearize the system and
determine the behaviour of the solution curves near the equilibrium points.

7



Conservative Systems and Hamiltonian Systems

2.29 Definition: Consider a second order ODE y′′ = F (t, y, y′). A conserved quantity
for this ODE is a function H(y, v) with the property that for any solution y = y(t) to the
ODE, the value of H(y(t), y′(t)) is constant. In this case, the fact that H(y(t), y′(t)) is
constant for solutions y = y(t) is called a conservation law for the ODE. More generally,
given a system x′ = F (t, x) of first order ODEs, a conserved quantity of the system is a
function H(x) with the proerty that H(x(t)) is constant for every solution x = x(t) and,
in this case, the fact that H(x(t)) is constant is called a conservation law for the system.

2.30 Exercise: Show that when an object at position x = x(t) experiences a force
F = F (x), which depends on position but not time, if we define the potential energy to
be given by U = U(x) = −

∫
F (x) dx, so that U ′(x) = −F (x), and the kinetic energy

to be given by K = K(v) = 1
2mv

2 where v(t) = x′(t), then then the total energy
E(x, v) = K(v) + U(x) is a conserved quantity for the ODE mx′′ = F (x).

2.31 Exercise: Find a conserved quantity for the ODE θ′′ = − g
` sin θ, which models the

position θ = θ(t) of a pendulum. Sketch some solution curves (in the θω-plane) for the
associated pair of first order ODEs given by θ′ = ω and ω′ = − g

` sin θ, say when ` = g.

2.32 Exercise: Show that for the system given by

x′ = u , y′ = v , u′ = −GMx
(x2+y2)3/2

, v′ = −GMy
(x2+y2)3/2

which models the position (x, y) = (x(t), y(t)) and velocity (u, v) = (x′(t), y′(t)) of a small
object, at time t, orbiting a large object of mass M fixed at the origin, if we define the
potential energy to be given by U(x, y) = − GMm

(x2+y2)1/2
and the kinetic energy to be

given by K(u, v) = 1
2m(u2 + v2), then the total energy E(x, y, u, v) = K(u, v) + U(x, y) is

a conserved quantity for the system.

2.33 Note: For the autonomous system x′ = F (x), where F : U ⊆ Rn → Rn is differen-
tiable, when ∇H(x) .F (x) = 0 for all x ∈ U , it follows that for every solution x = x(t) to
the system x′ = F (x), we have

d
dtH(x(t)) = ∇H(x(t)) .x′(t) = ∇H(x(t)) .F (x(t)) = 0

so that H = H(x) is a conserved quantity.

2.34 Note: In the case of an autonomous pair of linear ODEs given by

x′ = f(x, y) , y′ = g(x, y)

where f, g : U ⊆ R2 → R, one can show that (if the domain U has no holes), if

∇ . (f, g) = ∂f
∂x + ∂g

∂y = 0

then there exists a function H : U ⊆ R2 → R such that

∇H =
(
∂H
∂x ,

∂H
∂y

)
= (−g, f).

For such a function H, we have ∇H . (f, g) = (−g, f) . (f, g) = 0, and hence H is a
conserved quantity. In this case the pair of ODEs is called a Hamiltonian system, and
the conserved quantity H = H(x, y) is called a Hamiltonian for the system.

2.35 Exercise: Find a Hamiltonian for the pair of ODEs x′ = 2y−x+3, y′ = y+4x3−2x.

2.36 Exercise: Find a conserved quantity for the 2nd order ODE x2x′′ = x′, for x = x(t).
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