Part 3. Power Series and Fourier Series for ODEs

3.1 Definition: A function f: U C R — R is analytic at a € U when there exists R > 0
with (a—R,a+R) C U such that f(x) is equal to the sum of its Taylor series centred at a
for all |x — a| < R, that is when
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3.2 Example: The functions e”, sin z, cos x, sinh x, cosh x, are all analytic at 0 with
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for all z € R, and the functions —— and (1 4 x)? where p € R, are analytic at 0 with
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for all # € R with |z| < 1, where (§) =1 and (?) = p(p=1)(p=2)--(p—n+t1)

n!

3.3 Example: Analytic functions can be added, subtracted, multiplied, divided, com-
posed, differentiated and integrated as if they were polynomials. For example, for |z] < 1
we have

1 00
[ = o (e =12t at -l
1
arctanz = _Z ((2n+)1) Il — g — 22+ La® — a4

3.4 Theorem: If the functions r(x),po(z),p1(x), -, pn_1(x) are all analytic at a € U
and are all equal to the sum of their Taylor series for |x — a| < R where R > 0, then for
all by, by,ba, - ,b,—1 € R, the unique solution y = y(x) to the IVP given by

Y =puy ™+ piy +po =7, with
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is also analytic at a and equal to the sum of its Taylor series converges for |x — a| < R.

Proof: We omit the proof.



3.5 Exercise: Solve the first order ODE y’ = 2y using power series (centred at 0).

3.6 Exercise: Find the Taylor polynomial of degree 5, centred at 0, for the solution to
the IVP given by 3’ + €%y = 3x with y(0) = 1.

3.7 Exercise: Use power series (centred at 0) to solve the ODE (1 +x2)y” +3zy' +y = 0.
Find an explicit, closed form, formula for one solution. For an optional challenge, find an
explicit, closed form, formula for two independent solutions.

3.8 Exercise: A number of differential equations, which are named after various mathe-
matician’s, involve a parameter £ € R, and admit polynomial solutions when the parameter
is a positive integer. Solve some of the following ODEs and determine the polynomial so-
lutions (which are named after the same mathematician).

Hermite’ Equation: y' —2xy +2ky =0
Chebyshev’s Equation: (1—2?)y" —ay +k?y=0
Legendre’s Equation: (1 —22)y” — 22y’ +k(k+1)y=0

Frobenius’ Method

3.9 Exercise: Solve the Cauchy-Euler Equation, which is given by 2y +kxy’ +4y = 0
for z > 0, where k, ¢ € R, by looking for a solution of the form y(z) = z” or, alternatively,
by making the substitution ¢ = Inz.

3.10 Definition: For the second order homogeneous linear ODE y" + p(z)y’ + q(z)y = 0,
we say that the point a € R is an ordinary point of the ODE when p(z) and ¢(z) are
both analytic at a, and otherwise we say that a is a singular point of the ODE. For
a singular point a € R, we say that a is a regular singular point of the ODE when
(r — a)p(z) and (x — a)?q(x) are both analytic at a, and otherwise we say that a is an
irregular singular point of the ODE.

3.11 Theorem: (Frobenius) If (x — a)p(x) and (z — a)?q(x) are both analytic at a, then
the homogeneous linear ODE y" + p(z)y’ + q(z) = 0 has at least one solution of the form
y=y(z) = 2" f(x) for some r € R and some function f(x) which is analytic at a.

Proof: We omit the proof.

3.12 Note: To solve an ODE y” + p(z)y’ 4+ q(z) = 0, as in the above theorem, we can try
y =" f(z) with f(z) = Y_,° , cn(x —a)™. This method is known as Frobenius’ method.

3.13 Exercise: Use Frobenius’ method to solve the ODE 2x2%y” — xy’ + (1 + x)y = 0.
Find explicit, closed form formulas for two independent solutions.

3.14 Exercise: Use Frobenius’ method to solve the ODE zy"” + 2y’ + xzy = 0. Find
explicit, closed form formulas for two independent solutions.

3.15 Exercise: Solve Laguerre’s Equation, given by zy” +(1—x)y +ky = 0 with k €R,
and find the polynomial solutions when k€Z* (which are called Laguerre polynomials).

3.16 Exercise: Solve Bessel’s Equation z2y” + 2y’ + (2% — k?) = 0, where k€R.



