Part 3. Power Series and Fourier Series for ODEs

3.1 Definition: A function $f: U \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is analytic at $a \in U$ when there exists $R>0$ with $(a-R, a+R) \subseteq U$ such that $f(x)$ is equal to the sum of its Taylor series centred at a for all $|x-a|<R$, that is when

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

for all x with $|x-a|<R$, where $c_{n}=\frac{f^{(n)}(a)}{n!}$.
3.2 Example: The functions $e^{x}, \sin x, \cos x, \sinh x, \cosh x$, are all analytic at 0 with

$$
\begin{aligned}
e^{x} & =\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\frac{1}{4!} x^{4}+\cdots \\
\sin x & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}=x=\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\frac{1}{7!} x^{7}+\cdots \\
\cos x & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}=1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}=\frac{1}{6!} x^{6}+\cdots \\
\sinh x & =\sum_{n=0}^{\infty} \frac{1}{(2 n+1)!} x^{2 n+1}=x+\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}+\cdots \\
\cosh x & =\sum_{n=0}^{\infty} \frac{1}{(2 n)!} x^{2 n}=1+\frac{1}{2} x^{2}+\frac{1}{4!} x^{4}+\cdots
\end{aligned}
$$

for all $x \in \mathbb{R}$, and the functions $\frac{1}{1-x}$ and $(1+x)^{p}$ where $p \in \mathbb{R}$, are analytic at 0 with

$$
\begin{aligned}
\frac{1}{1-x} & =\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots \\
(1+x)^{p} & =\sum_{n=0}^{\infty}\binom{p}{n} x^{n}=1+p x+\frac{p(p-1)}{2!} x^{2}+\frac{p(p-1)(p-2)}{3!} x^{3}+\cdots
\end{aligned}
$$

for all $x \in \mathbb{R}$ with $|x|<1$, where $\binom{p}{0}=1$ and $\binom{p}{n}=\frac{p(p-1)(p-2) \cdots(p-n+1)}{n!}$.
3.3 Example: Analytic functions can be added, subtracted, multiplied, divided, composed, differentiated and integrated as if they were polynomials. For example, for $|x|<1$ we have

$$
\begin{aligned}
\frac{1}{1+x^{2}} & =\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}=1-x^{2}+x^{4}-x^{6}+\cdots \\
\arctan x & =\sum_{n=-0}^{\infty} \frac{(-1)^{n}}{(2 n+1)} x^{2 n+1}=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\frac{1}{7} x^{7}+\cdots
\end{aligned}
$$

3.4 Theorem: If the functions $r(x), p_{0}(x), p_{1}(x), \cdots, p_{n-1}(x)$ are all analytic at $a \in U$ and are all equal to the sum of their Taylor series for $|x-a|<R$ where $R>0$, then for all $b_{0}, b_{1}, b_{2}, \cdots, b_{n-1} \in \mathbb{R}$, the unique solution $y=y(x)$ to the IVP given by

$$
\begin{aligned}
& y^{(n)}=p_{n-1} y^{(n-1)}+\cdots+p_{1} y^{\prime}+p_{0}=r, \text { with } \\
& y(a)=b_{0}, y^{\prime}(a)=b_{1}, y^{\prime \prime}(a)=b_{2}, \cdots, y^{(n-1)}(a)=b_{n-1}
\end{aligned}
$$

is also analytic at a and equal to the sum of its Taylor series converges for $|x-a|<R$.
Proof: We omit the proof.
3.5 Exercise: Solve the first order ODE $y^{\prime}=2 y$ using power series (centred at 0).
3.6 Exercise: Find the Taylor polynomial of degree 5, centred at 0, for the solution to the IVP given by $y^{\prime}+e^{2 x} y=3 x$ with $y(0)=1$.
3.7 Exercise: Use power series (centred at 0) to solve the ODE $\left(1+x^{2}\right) y^{\prime \prime}+3 x y^{\prime}+y=0$. Find an explicit, closed form, formula for one solution. For an optional challenge, find an explicit, closed form, formula for two independent solutions.
3.8 Exercise: A number of differential equations, which are named after various mathematician's, involve a parameter $k \in \mathbb{R}$, and admit polynomial solutions when the parameter is a positive integer. Solve some of the following ODEs and determine the polynomial solutions (which are named after the same mathematician).

$$
\begin{array}{lr}
\text { Hermite' Equation: } & y^{\prime \prime}-2 x y^{\prime}+2 k y=0 \\
& \text { Chebyshev's Equation: }
\end{array} \quad\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+k^{2} y=0
$$

Frobenius' Method

3.9 Exercise: Solve the Cauchy-Euler Equation, which is given by $x^{2} y^{\prime \prime}+k x y^{\prime}+\ell y=0$ for $x>0$, where $k, \ell \in \mathbb{R}$, by looking for a solution of the form $y(x)=x^{r}$ or, alternatively, by making the substitution $t=\ln x$.
3.10 Definition: For the second order homogeneous linear ODE $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$, we say that the point $a \in \mathbb{R}$ is an ordinary point of the ODE when $p(x)$ and $q(x)$ are both analytic at a, and otherwise we say that a is a singular point of the ODE. For a singular point $a \in \mathbb{R}$, we say that a is a regular singular point of the ODE when $(x-a) p(x)$ and $(x-a)^{2} q(x)$ are both analytic at a, and otherwise we say that a is an irregular singular point of the ODE.
3.11 Theorem: (Frobenius) If $(x-a) p(x)$ and $(x-a)^{2} q(x)$ are both analytic at a, then the homogeneous linear ODE $y^{\prime \prime}+p(x) y^{\prime}+q(x)=0$ has at least one solution of the form $y=y(x)=x^{r} f(x)$ for some $r \in \mathbb{R}$ and some function $f(x)$ which is analytic at a.
Proof: We omit the proof.
3.12 Note: To solve an ODE $y^{\prime \prime}+p(x) y^{\prime}+q(x)=0$, as in the above theorem, we can try $y=x^{r} f(x)$ with $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$. This method is known as Frobenius' method.
3.13 Exercise: Use Frobenius' method to solve the ODE $2 x^{2} y^{\prime \prime}-x y^{\prime}+(1+x) y=0$. Find explicit, closed form formulas for two independent solutions.
3.14 Exercise: Use Frobenius' method to solve the ODE $x y^{\prime \prime}+2 y^{\prime}+x y=0$. Find explicit, closed form formulas for two independent solutions.
3.15 Exercise: Solve Laguerre's Equation, given by $x y^{\prime \prime}+(1-x) y^{\prime}+k y=0$ with $k \in \mathbb{R}$, and find the polynomial solutions when $k \in \mathbb{Z}^{+}$(which are called Laguerre polynomials).
3.16 Exercise: Solve Bessel's Equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-k^{2}\right)=0$, where $k \in \mathbb{R}$.

