Part 3. Power Series and Fourier Series for ODEs

3.1 Definition: A function $f: U \subseteq \mathbb{R} \to \mathbb{R}$ is analytic at $a \in U$ when there exists R > 0 with $(a-R, a+R) \subseteq U$ such that f(x) is equal to the sum of its Taylor series centred at a for all |x-a| < R, that is when

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$$

for all x with |x - a| < R, where $c_n = \frac{f^{(n)}(a)}{n!}$.

3.2 Example: The functions e^x , $\sin x$, $\cos x$, $\sinh x$, $\cosh x$, are all analytic at 0 with

$$e^{x} = \sum_{n=0}^{\infty} \frac{1}{n!} x^{n} = 1 + x + \frac{1}{2!} x^{2} + \frac{1}{3!} x^{3} + \frac{1}{4!} x^{4} + \cdots$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)!} x^{2n+1} = x = \frac{1}{3!} x^{3} + \frac{1}{5!} x^{5} - \frac{1}{7!} x^{7} + \cdots$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n)!} x^{2n} = 1 - \frac{1}{2!} x^{2} + \frac{1}{4!} x^{4} = \frac{1}{6!} x^{6} + \cdots$$

$$\sinh x = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} x^{2n+1} = x + \frac{1}{3!} x^{3} + \frac{1}{5!} x^{5} + \cdots$$

$$\cosh x = \sum_{n=0}^{\infty} \frac{1}{(2n)!} x^{2n} = 1 + \frac{1}{2} x^{2} + \frac{1}{4!} x^{4} + \cdots$$

for all $x \in \mathbb{R}$, and the functions $\frac{1}{1-x}$ and $(1+x)^p$ where $p \in \mathbb{R}$, are analytic at 0 with

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$$
$$(1+x)^p = \sum_{n=0}^{\infty} {p \choose n} x^n = 1 + px + \frac{p(p-1)}{2!} x^2 + \frac{p(p-1)(p-2)}{3!} x^3 + \cdots$$

for all $x \in \mathbb{R}$ with |x| < 1, where $\binom{p}{0} = 1$ and $\binom{p}{n} = \frac{p(p-1)(p-2)\cdots(p-n+1)}{n!}$.

3.3 Example: Analytic functions can be added, subtracted, multiplied, divided, composed, differentiated and integrated as if they were polynomials. For example, for |x| < 1 we have

$$\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n} = 1 - x^2 + x^4 - x^6 + \cdots$$
$$\arctan x = \sum_{n=-0}^{\infty} \frac{(-1)^n}{(2n+1)} x^{2n+1} = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots$$

3.4 Theorem: If the functions $r(x), p_0(x), p_1(x), \dots, p_{n-1}(x)$ are all analytic at $a \in U$ and are all equal to the sum of their Taylor series for |x - a| < R where R > 0, then for all $b_0, b_1, b_2, \dots, b_{n-1} \in \mathbb{R}$, the unique solution y = y(x) to the IVP given by

$$y^{(n)} = p_{n-1}y^{(n-1)} + \dots + p_1y' + p_0 = r$$
, with
 $y(a) = b_0, y'(a) = b_1, y''(a) = b_2, \dots, y^{(n-1)}(a) = b_{n-1}$

is also analytic at a and equal to the sum of its Taylor series converges for |x - a| < R. Proof: We omit the proof. **3.5 Exercise:** Solve the first order ODE y' = 2y using power series (centred at 0).

3.6 Exercise: Find the Taylor polynomial of degree 5, centred at 0, for the solution to the IVP given by $y' + e^{2x}y = 3x$ with y(0) = 1.

3.7 Exercise: Use power series (centred at 0) to solve the ODE $(1 + x^2)y'' + 3xy' + y = 0$. Find an explicit, closed form, formula for one solution. For an optional challenge, find an explicit, closed form, formula for two independent solutions.

3.8 Exercise: A number of differential equations, which are named after various mathematician's, involve a parameter $k \in \mathbb{R}$, and admit polynomial solutions when the parameter is a positive integer. Solve some of the following ODEs and determine the polynomial solutions (which are named after the same mathematician).

Hermite' Equation: y'' - 2xy' + 2ky = 0Chebyshev's Equation: $(1 - x^2)y'' - xy' + k^2y = 0$ Legendre's Equation: $(1 - x^2)y'' - 2xy' + k(k+1)y = 0$

Frobenius' Method

3.9 Exercise: Solve the **Cauchy-Euler Equation**, which is given by $x^2y'' + kxy' + \ell y = 0$ for x > 0, where $k, \ell \in \mathbb{R}$, by looking for a solution of the form $y(x) = x^r$ or, alternatively, by making the substitution $t = \ln x$.

3.10 Definition: For the second order homogeneous linear ODE y'' + p(x)y' + q(x)y = 0, we say that the point $a \in \mathbb{R}$ is an **ordinary point** of the ODE when p(x) and q(x) are both analytic at a, and otherwise we say that a is a **singular point** of the ODE. For a singular point $a \in \mathbb{R}$, we say that a is a **regular singular point** of the ODE when (x - a)p(x) and $(x - a)^2q(x)$ are both analytic at a, and otherwise we say that a is a **regular singular point** of the ODE when (x - a)p(x) and $(x - a)^2q(x)$ are both analytic at a, and otherwise we say that a is a **regular singular point** of the ODE.

3.11 Theorem: (Frobenius) If (x - a)p(x) and $(x - a)^2q(x)$ are both analytic at a, then the homogeneous linear ODE y'' + p(x)y' + q(x) = 0 has at least one solution of the form $y = y(x) = x^r f(x)$ for some $r \in \mathbb{R}$ and some function f(x) which is analytic at a.

Proof: We omit the proof.

3.12 Note: To solve an ODE y'' + p(x)y' + q(x) = 0, as in the above theorem, we can try $y = x^r f(x)$ with $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$. This method is known as **Frobenius' method**.

3.13 Exercise: Use Frobenius' method to solve the ODE $2x^2y'' - xy' + (1+x)y = 0$. Find explicit, closed form formulas for two independent solutions.

3.14 Exercise: Use Frobenius' method to solve the ODE xy'' + 2y' + xy = 0. Find explicit, closed form formulas for two independent solutions.

3.15 Exercise: Solve Laguerre's Equation, given by xy'' + (1-x)y' + ky = 0 with $k \in \mathbb{R}$, and find the polynomial solutions when $k \in \mathbb{Z}^+$ (which are called Laguerre polynomials).

3.16 Exercise: Solve Bessel's Equation $x^2y'' + xy' + (x^2 - k^2) = 0$, where $k \in \mathbb{R}$.