
Part 3. Power Series and Fourier Series for ODEs

3.1 Definition: A function f : U ⊆ R→ R is analytic at a ∈ U when there exists R > 0
with (a−R, a+R) ⊆ U such that f(x) is equal to the sum of its Taylor series centred at a
for all |x− a| < R, that is when

f(x) =
∞∑

n=0
cn(x− a)n

for all x with |x− a| < R, where cn = f(n)(a)
n! .

3.2 Example: The functions ex, sinx, cosx, sinhx, coshx, are all analytic at 0 with

ex =
∞∑

n=0

1
n!x

n = 1 + x + 1
2!x

2 + 1
3!x

3 + 1
4!x

4 + · · ·

sinx =
∞∑

n=0

(−1)n
(2n+1)!x

2n+1 = x = 1
3!x

3 + 1
5!x

5 − 1
7!x

7 + · · ·

cosx =
∞∑

n=0

(−1)n
(2n)! x

2n = 1− 1
2!x

2 + 1
4!x

4 = 1
6!x

6 + · · ·

sinhx =
∞∑

n=0

1
(2n+1)!x

2n+1 = x + 1
3!x

3 + 1
5!x

5 + · · ·

coshx =
∞∑

n=0

1
(2n)!x

2n = 1 + 1
2x

2 + 1
4!x

4 + · · ·

for all x ∈ R, and the functions 1
1−x and (1 + x)p where p ∈ R, are analytic at 0 with

1

1− x
=
∞∑

n=0
xn = 1 + x + x2 + x3 + · · ·

(1 + x)p =
∞∑

n=0

(
p
n

)
xn = 1 + px + p(p−1)

2! x2 + p(p−1)(p−2)
3! x3 + · · ·

for all x ∈ R with |x| < 1, where
(
p
0

)
= 1 and

(
p
n

)
= p(p−1)(p−2)···(p−n+1)

n! .

3.3 Example: Analytic functions can be added, subtracted, multiplied, divided, com-
posed, differentiated and integrated as if they were polynomials. For example, for |x| < 1
we have

1

1 + x2
=
∞∑

n=0
(−1)nx2n = 1− x2 + x4 − x6 + · · ·

arctanx =
∞∑

n=−0

(−1)n
(2n+1)x

2n+1 = x− 1
3x

3 + 1
5x

5 − 1
7x

7 + · · ·

3.4 Theorem: If the functions r(x), p0(x), p1(x), · · · , pn−1(x) are all analytic at a ∈ U
and are all equal to the sum of their Taylor series for |x − a| < R where R > 0, then for
all b0, b1, b2, · · · , bn−1 ∈ R, the unique solution y = y(x) to the IVP given by

y(n) = pn−1y
(n−1) + · · ·+ p1y

′ + p0 = r , with

y(a) = b0, y
′(a) = b1, y

′′(a) = b2, · · · , y(n−1)(a) = bn−1

is also analytic at a and equal to the sum of its Taylor series converges for |x− a| < R.

Proof: We omit the proof.
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3.5 Exercise: Solve the first order ODE y′ = 2y using power series (centred at 0).

3.6 Exercise: Find the Taylor polynomial of degree 5, centred at 0, for the solution to
the IVP given by y′ + e2xy = 3x with y(0) = 1.

3.7 Exercise: Use power series (centred at 0) to solve the ODE (1+x2)y′′+3xy′+y = 0.
Find an explicit, closed form, formula for one solution. For an optional challenge, find an
explicit, closed form, formula for two independent solutions.

3.8 Exercise: A number of differential equations, which are named after various mathe-
matician’s, involve a parameter k ∈ R, and admit polynomial solutions when the parameter
is a positive integer. Solve some of the following ODEs and determine the polynomial so-
lutions (which are named after the same mathematician).

Hermite’ Equation: y′′ − 2xy′ + 2ky = 0
Chebyshev’s Equation: (1− x2)y′′ − xy′ + k2y = 0
Legendre’s Equation: (1− x2)y′′ − 2xy′ + k(k + 1)y = 0

Frobenius’ Method

3.9 Exercise: Solve the Cauchy-Euler Equation, which is given by x2y′′+kxy′+`y = 0
for x > 0, where k, ` ∈ R, by looking for a solution of the form y(x) = xr or, alternatively,
by making the substitution t = lnx.

3.10 Definition: For the second order homogeneous linear ODE y′′+ p(x)y′+ q(x)y = 0,
we say that the point a ∈ R is an ordinary point of the ODE when p(x) and q(x) are
both analytic at a, and otherwise we say that a is a singular point of the ODE. For
a singular point a ∈ R, we say that a is a regular singular point of the ODE when
(x − a)p(x) and (x − a)2q(x) are both analytic at a, and otherwise we say that a is an
irregular singular point of the ODE.

3.11 Theorem: (Frobenius) If (x− a)p(x) and (x− a)2q(x) are both analytic at a, then
the homogeneous linear ODE y′′ + p(x)y′ + q(x) = 0 has at least one solution of the form
y = y(x) = xrf(x) for some r ∈ R and some function f(x) which is analytic at a.

Proof: We omit the proof.

3.12 Note: To solve an ODE y′′+ p(x)y′+ q(x) = 0, as in the above theorem, we can try
y = xrf(x) with f(x) =

∑∞
n=0 cn(x−a)n. This method is known as Frobenius’ method.

3.13 Exercise: Use Frobenius’ method to solve the ODE 2x2y′′ − xy′ + (1 + x)y = 0.
Find explicit, closed form formulas for two independent solutions.

3.14 Exercise: Use Frobenius’ method to solve the ODE xy′′ + 2y′ + xy = 0. Find
explicit, closed form formulas for two independent solutions.

3.15 Exercise: Solve Laguerre’s Equation, given by xy′′+(1−x)y′+ky = 0 with k∈R,
and find the polynomial solutions when k∈Z+ (which are called Laguerre polynomials).

3.16 Exercise: Solve Bessel’s Equation x2y′′ + xy′ + (x2 − k2) = 0, where k∈R.
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