Numerical Ranges and Spectral Sets

Vern Paulsen Institute for Quantum Computing Department of Pure Mathematics University of Waterloo Joint with: K.R. Davidson and H. Woerdeman

December 3, 2016

- Numerical Range and Radius
- Crouzeix's Conjecture
- Drury's Result
- Some 70's Hits
- A new/old proof of Drury's result
- Generalizations

• \mathcal{H} -HIlbert space, $B(\mathcal{H})$ -bounded operators on \mathcal{H} ,

•
$$T \in B(\mathcal{H}), ||T|| = \sup\{||Th|| : ||h|| = 1\},\$$

• $W(T) = \{\langle Th, h \rangle : \|h\| \leq 1\}^-$

•
$$w(T) = \sup\{|z|; z \in W(T)\}$$

•
$$w(T) \leq ||T|| \leq 2w(T)$$
,

- $\mathcal{H}^n = \mathcal{H} \oplus \cdots \oplus \mathcal{H}(n \text{ copies}),$
- given a $n \times n$ matrix of polynomials $P = (p_{i,j})$ we set $P(T) = (p_{i,j}(T)) \in B(\mathcal{H}^n)$

▶ given a set
$$K \subseteq \mathbb{C}$$
 we set
 $\|P\|_{K} = \sup\{\|(p_{i,j}(z))\|_{B(\mathbb{C}^{n})} : z \in K\}$

Crouzeix: There exists a universal constant $2 \le K_C \le 11.03$, so that for $T \in B(\mathcal{H})$ and W = W(T), and $P = (p_{i,j})$,

 $\|P(T)\|\leq K_C\|P\|_W.$

Crouzeix's Conjecture: $K_C = 2$. Rumor: Palencia has shown $2 \le K_C \le 1 + \sqrt{2}$. Drury: What if we replace $\|\cdot\|$ in LHS by $w(\cdot)$? **Berger-Stamplfi:** Let $w(T) \le 1$ and let p(0) = 0, then $w(p(T)) \le \|p\|_{\mathbb{D}^{-}}$.

Drury: Let $w(T) \leq 1$, then

$$w(p(T)) \leq rac{5}{4} \|p\|_{\mathbb{D}^-}.$$

DPW: Give a new/old proof and extend to matrices of polynomials.

Ando:
$$w(T) = \frac{1}{2} \min\{||A + B|| : \begin{pmatrix} A & T \\ T^* & B \end{pmatrix} \ge 0\}.$$

Ando-Okubo: If $w(T) \le 1$, then there exists $||C|| \le 1$ such that $T = S^{-1}CS$ with $||S|| ||S^{-1}|| \le 2$.

DPW: If $T = S^{-1}CS$, with $\|C\| \le 1$ and $\|S\| \|S^{-1}\| \le r$, then

$$w(P(T)) \leq \frac{r+r^{-1}}{2} \|P\|_{\mathbb{D}^{-}}.$$

WLOG $r^{-1/2}I \leq S \leq r^{1/2}I$ and ||p|| = 1. By von Neumann's inequality $||p(C)|| \leq 1$. Hence, $\begin{pmatrix} I & p(C) \\ p(C)^* & I \end{pmatrix} \geq 0$. So $\begin{pmatrix} S^{-2} & S^{-1}p(C)S \\ Sp(C)^*S^{-1} & S^2 \end{pmatrix} \geq 0$ Since $S^{-1}p(C)S = p(T) \implies w(p(T)) \leq \frac{1}{2}||S^{-2} + S^2|| \leq \frac{r+r^{-1}}{2}$. Proof for matrix-valued similar, uses matrix-valued version of von Neumann's inequality. Recall that an operator T on \mathcal{H} is said to be of class C_{ρ} if there exists a unitary U on a larger Hilbert space such that

$$T^{n} = \rho P_{\mathcal{H}} U^{n}|_{\mathcal{H}}, \forall n \in \mathbb{N}.$$

DPW: Let T be of class $C_{\rho}, \rho \geq 1$ then

$$w(P(T)) \leq \frac{\rho + \rho^{-1}}{2} \|P\|_{\mathbb{D}^{-}}.$$