Reverse Cholesky Factorizaton

Vern Paulsen (joint with Hugo Woerdeman

CMS Winter Meeting

December 9, 2017

Given $P \in B(\ell^2(\mathbb{N}))$ positive semidefinite, the LU-decomposition, a.k.a., the Cholesky algorithm, yields $P = LL^*$ with L lower triangular.

What about $P = UU^*$ with U upper triangular? Why bother? Answer: UU^* factorizations related to problems in complex analysis.

Szego's Theorem: If $p \ge 0$ on circle, then $p = |f|^2$, *a.e.* with f analytic on disk iff ln(p) integrable.

From this it follows that a Toeplitz operator with symbol p, T_p factors as $T_p = UU^*$ iff ln(p) integrable.

Many multivariable analogues still open.

o.n.b. for $\ell^2(\mathbb{Z}^+)^{\otimes M}$ given by $e_I = e_{i_1} \otimes \cdots \otimes e_{i_M}$ where $I = (i_1, ..., i_M)$. If $P \in B(\ell^2(\mathbb{Z}^+)^{\otimes M})$ write $P = (p_{I,J})$ where $p_{I,J} = \langle Pe_J, e_I \rangle$. $U = (u_{I,J})$ is **M-upper triangular** iff $u_{I,J} = 0$ whenever $\exists K, i_K \leq j_K$ (equivalently, $U \in Alg(\mathbb{Z}^+)^{\otimes M}$ -the tensor product of nest algebras). Set $z^I = z_1^{i_1} \cdots z_M^{i_M}$.

AFMP: If $P = (p_{I,J}) \in B(\ell^2(\mathbb{Z}^+)^{\otimes M})^+$, then $K_P(z, w) = \sum_{I,J} p_{I,J} z^I \overline{w}^J$ is the reproducing kernel for a space of analytic functions on \mathbb{D}^M , denoted $\mathcal{H}(K_P)$.

 $P = UU^*$ with U M-upper iff the polynomials are dense in $\mathcal{H}(K_P)$.

PW: Let $P \in B(\ell^2(\mathbb{Z}^+)^{\otimes M})^+$. If for each J, $p_{I,J}$ is non-zero for only finitely many I, then $P = UU^*$ with U M-upper. **Weak Fejer-Reisz:** Let p be a positive trig polynomial in M variables, then $T_p = UU^*$ with U M-upper.

Proof: Set $\phi_J(z) = (J!) \sum_I p_{I,J} z^I$ (a polynomial), we prove that $\phi_J \in \mathcal{H}(K_P)$ and for $f \in \mathcal{H}(K_P)$,

$$f^{(J)}(0) = \langle f, \phi_J \rangle_{\mathcal{H}(K_P)}.$$

Hence, $f \perp \{ polynomials \} \implies f^{(J)}(0) = 0, \forall J \implies f = 0$

The following extends results of Anoussis-Katsoulis in *Factorisation in nest algebras I, II*:

PW: Let $P \in B(\ell^2(\mathbb{Z}^+)^{\otimes M})^+$. The following are equivalent:

1.
$$P = UU^*$$
 for some $U \in Alg(\mathbb{Z}^+)^{\otimes M}$,

2.
$$Ran(P^{1/2}) = Ran(C)$$
 for some $C \in Alg(\mathbb{Z}^+)^{\otimes M}$

In particular, if P is invertible, then P factors.

$$1 \implies Ran(P^{1/2}) = Ran(U) \text{ by Douglas factorization.}$$

For $2 \implies 1$, AFMP showed that
$$f = \sum_{I} a_{I} z^{I} \in \mathcal{H}(K_{P}) \iff \sum_{I} a_{I} e_{I} \in Ran(P^{1/2}).$$

Now show "polynomials" are dense in $Ran(C)$.

Both our results(and proofs) hold for operator-valued matrices and vector-valued reproducing kernel Hilbert spaces as well.

Thanks!