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Overview

In the math model for QM, a quantum system A is affiliated with a
Hilbert space HA whose unit vectors represent the possible states
of the quantum system and that measurements are represented by
operators on this space.
Given two separate quantum systems A and B, with state spaces
HA and HB , the usual axioms say that their joint state space is
given by HA ⊗HB and that if A has a measurement operator P
and B has Q then their joint measurement is represented by
P ⊗ Q. This is called the tensor product model.
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A second axiomatic model for how two separate quantum systems
behave assumes that there is just a single Hilbert space H and
that the measurement operators for A and B must commute. This
is called the commuting model.
We will show that catalytic production of entanglement is possible
in the commuting model but not in the tensor product model....
and that this can be related to Connes embedding conjecture.
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Tensor products and Schmidt coefficients

Given HA with onb {es : s ∈ S} and HB with onb {ft : t ∈ T},
then HA ⊗HB has onb {es ⊗ ft : (s, t) ∈ S × T}. So every vector
x =

∑
s,t xs,tes ⊗ ft . Writing the matrix (xs,t) = UDV in its

singular value decomposition leads to

x =
∑
i

αiui ⊗ vi , {ui}, {vi}, orthonormal ,

with αi ≥ 0, αi ≥ αi+1 and
∑

i α
2
i = ‖x‖2. The αi ’s are called the

Schmidt coefficients of x.
Note: Independent of the particular bases, uniquely determined by
x.
x is called separable iff x = h ⊗ k iff (xs,t) rank one.
x is called entangled if it is not separable.

Vern Paulsen UWaterloo



Note that if x ∈ HA ⊗HB has Schmidt coefficients as above and
we have unitaries UA ∈ B(HA) and UB ∈ B(HB), then

(UA ⊗ UB)x =
∑
i

αi (Uaui )⊗ (UBvi ),

and so has the same Schmidt coefficients.
Thus we have preservation of Schmidt coefficients by local
unitaries.
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The entangled vector B = 1√
2

(e0 ⊗ e0 + e1 ⊗ e1) ∈ C2 ⊗ C2 is

called the Bell state. Suppose that ψ ∈ RA ⊗RB is a unit vector
with Schmidt coefficients as above. Can we find unitaries
UA ∈ B(C2 ⊗RA) and UB ∈ B(RB ⊗ C2) such that

(UA⊗UB)(e0⊗ψ⊗ e0) =
1√
2

(
e0⊗ψ⊗ e0 + e1⊗ψ⊗ e1

)
∼ B⊗ψ?

NO! Because the Schmidt coefficients of the image vector are

α1√
2
,
α1√

2
,
α2√

2
, .....

violates preservation of Schmidt coefficients.
This is summarized by saying that catalytic production of a Bell
state is impossible with local unitaries.
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Embezzlement of A Bell State

Van Dam and Hayden showed that, in a certain sense, one can
appear to produce entanglement by local methods. They called
this embezzlement.
They showed that given any ε > 0 there are finite dimensional
Hilbert spaces, unit vectors ψ,ψε ∈ RA ⊗RB and unitaries, UA on
C2 ⊗RA and UB on HB ⊗ C2 such that,

(UA ⊗ UB)(e0 ⊗ ψ ⊗ e0) =
1√
2

(e0 ⊗ ψε ⊗ e0 + e1 ⊗ ψε ⊗ e1),

with ‖ψ − ψε‖ < ε
Van Dam and Hayden even gave lower bounds on the dimensions
of the spaces as a function of ε, which they showed tend to +∞.
This left people puzzled about what does happen in the limit.
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The Commuting Operator Framework

We no longer require that the resource space have a bipartite
structure.
Instead, we only ask for a resource space R, and unitaries, UA on
C2 ⊗R and UB on R⊗ C2 such that (UA ⊗ id2) commutes with
(id2 ⊗ UB) on C2 ⊗R⊗ C2.

HB

R

HA

UB

UA
≡

UB

UA
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Given a commuting operator framework, we say that ψ ∈ R is a
catalyst vector for perfect embezzlement of a Bell state in a
commuting operator framework provided that

(UA⊗ idB)(idA⊗UB)(e0⊗ψ⊗e0) =
1√
2

(
e0⊗ψ⊗e0 +e1⊗ψ⊗e1

)
.

Theorem (CLP)

Perfect embezzlement of a Bell state is possible in a commuting
operator framework.

In the rest of this talk, I want to outline the proof and show why
the fact that perfect embezzlement is possible in this commuting
framework but not possible in a tensor product framework is
closely related to the Tsirelson conjectures and to Connes’
embedding conjecture.
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Suppose that HA = Cn and identify Cn ⊗R = R⊕ · · · ⊕ R(n
times). Using this identification, we write UA = (Ui ,j) where
Ui ,j ∈ B(R), 0 ≤ i , j ≤ n − 1. Similarly, if HB = Cm, then we may
identify UB = (Vk,l) where Vk,l ∈ B(R), 0 ≤ k , l ≤ m − 1.

Lemma
(UA ⊗ idB) commutes with (idA ⊗ UB) if and only if
Ui ,jVk,l = Vk,lUi ,j and U∗i ,jVk,l = Vk,lU

∗
i ,j for all i , j , k, l .

This last condition is called *-commuting.
Thus, we see that having commuting operator frameworks as
above is exactly the same as having operator matrices UA = (Ui ,j)
and UB = (Vk,l) that yield unitaries and whose entries pairwise
*-commute.
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The C*-algebra Unc(n)

L. Brown introduced a C*-algebra denoted Unc(n). It has n2

generators ui ,j and the ”universal” property that whenever there
are n2 operators Ui ,j on a Hilbert space R such that (Ui ,j) defines
a unitary operator on Cn ⊗R then there is a *-homomorphism
π : Unc(n)→ B(R) with π(ui ,j) = Ui ,j .
Thus, a representation of Unc(n)⊗max Unc(m) corresponds to
operators Ui ,j ,Vk,l where the Ui ,j ’s *-commute with the Vk,l ’s
such that (Ui ,j) and (Vk,l) are unitary operator matrices.
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Theorem (CLP)

Perfect embezzlement of a Bell state is possible in a commuting
operator framework if and only if there is a state s on
Unc(2)⊗max Unc(2) satisfying s(u00 ⊗ v00) = s(u10 ⊗ v10) = 1/

√
2

and s(u00 ⊗ v10) = s(u10 ⊗ v00) = 0.

To prove, take the GNS representation of any such state then
ψ = [1] is a catalyst vector for perfect embezzlement of a state in
a commuting operator framework.

Corollary

The van Dam–Hayden approximate embezzlement results imply
that there exists a state on Unc(2)⊗min Unc(2) satisfying the
above equations. Hence, the conditions of the above result are met
and perfect embezzlement of a state is possible in a commuting
operator framework.
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The representation of Unc(2)⊗min Unc(2) given by the Corollary
can not decompose as a spatial tensor product of a representation
of each factor or else we would contradict the fact that perfect
embezzlement is impossible in a tensor product framework!
We now want to draw an analogy with quantum correlation
matrices.
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Tsirelson, Connes and all that

Suppose that Alice and Bob each have n quantum experiments
and each experiment has m outcomes. We let p(a, b|x , y) denote
the conditional probability that Alice gets outcome a and Bob gets
outcome b given that they perform experiments x and y
respectively. There are several possible models for describing the
set of all such tuples.
One model is that Alice and Bob have finite dimensional state
spaces HA and HB . For each experiment x , Alice has projections
{Ex ,a, 1 ≤ a ≤ m} such that

∑
a Ex ,a = IA. Similarly, for each y ,

Bob has projections {Fy ,b : 1 ≤ b ≤ m} such that
∑

b Fy ,b = IB .
They share an entangled state ψ ∈ HA ⊗HB and

p(a, b|x , y) = 〈ψ|Ex ,a ⊗ Fy ,b|ψ〉.
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We let Cq(n,m) = {p(a, b|x , y) : obtained as above } ⊆ Rn2m2
.

We let Cqs(n,m) denote the possibly larger set that we could
obtain if we allowed the spaces HA and HB to also be infinite
dimensional.
We let Cqc(n,m) denote the possibly larger set that we could
obtain if instead of requiring the common state space to be a
tensor product, we just required one common state space, and
demanded that Ex ,aFy ,b = Fy ,bEx ,a for all a, b, x , y , i.e., a
commuting model.
Tsirelson was the first to examine these sets in the 1990’s and
study the relations between them. In fact, he wondered if they
could all be equal. The equalities of various pairs are called the
Tsirelson conjectures
Here are some of the things that we know/don’t know about these
sets.
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I Cq(n,m) ⊆ Cqs(n,m) ⊂ Cqc(n,m) and this larger set is
closed.

I Cq(n,m)− = Cqs(n,m)− and this can be identified with the
states on a minimal tensor product.

I (JNPPSW + Ozawa, 2013)Cq(n,m)− = Cqc(n,m), ∀n,m iff
Connes’ Embedding conjecture has an affirmative answer.

I (Slofstra, April 2016) there exists an n,m(very large) such
that Cqs(n,m) 6= Cqc(n,m).

I (Slofstra, March, 2017) proved that the sets Cq(n,m) and
Cqs(n,m) are not closed, for n,m sufficiently large.
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Sam Harris’s Results

Theorem (Harris)

The following are equivalent.

1. Connes’ Embedding conjecture is true.

2. Unc(n)⊗min Unc(m) = Unc(n)⊗max Unc(m), ∀n,m.

3. Unc(2)⊗min Unc(2) = Unc(2)⊗max Unc(2).

4. Certain unitary correlation sets satisfy
UCq(n,m)− = UCqc(n,m), ∀n,m.

The equivalence of the first three, is the analogue of Kirchberg’s
theorem relating Connes to tensor products of free group
C*-algebras. The equivalence of the first and last is the analogue
of the result of [Junge · · · Ozawa].
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Reduced Unitary Correlation Sets

We set

Bq(n,m) = {〈Uij ⊗ Vklψ,ψ〉 : (Ui ,j), (Vk,l) are unitary,

Ui ,j ∈ Mp,Vk,l ∈ Mq, ∃p, q, ||ψ|| = 1}
⊂ Mn ⊗Mm.

For the set Bqs(n,m) we drop the requirement that each Ui ,j and
Vk,l act on finite dimensional spaces.
For the set Bqc(n,m) we replace the tensor product of two spaces
by a single space and instead demand that the Ui ,j ’s *-commute
with the Vk,l ’s.
Here are some of the things that we know/don’t know about these
sets.
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Theorem (Harris-P)

I Bq(n,m) ⊆ Bqs(n,m) ⊆ Bqc(n,m).

I For each n,m, Bq(n,m) and Bqs(n,m) are not
closed–consequence of embezzlement theory

I Bqc(n,m) = {
(
s(uij ⊗ vkl)

)
|s : Unc(n)⊗max Unc(m)→

C is a state }.
I Bq(n,m)− = Bqs(n,m)− = {

(
s(uij ⊗ vkl)

)
|s :

Unc(n)⊗min Unc(m)→ C is a state }.
I Bqs(n,m) 6= Bqc(n,m), ∀n,m ≥ 2.

I Bq(n,m)− = Bqc(n,m), ∀n,m ⇐⇒ Connes Embedding is
true.
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I The sets Bq(n,m)− and Bqc(n,m) are the closed unit balls of
norms on Mn ⊗Mm that are reasonable cross norms in the
sense of Grothendieck.

I CEC is true iff these tensor norms are equal for all n,m iff
they are equal for all n = m.

I Both of these tensor norms are larger than the operator norm
on Mn ⊗Mm.

I If ψ =
∑

i ,k xi ,kei ⊗ ek ∈ Cn ⊗ Cn is a unit vector with
Schmidt rank n, then the matrix (ai ,j ,k,l) given by
ai ,0.j ,0 = xi ,j , and ai ,j ,k,l = 0 for all other indices is an extreme
point of both Bq(n, n)− and Bqc(n,m).

I If (ai ,j ,k,l) ∈ Bqc(n, n) with ai ,0,k,0 = xi ,k then necessarily
ai ,j ,k,l = 0,∀(j , l) 6= (0, 0).

What are the extreme points of Bqc(n, n) ?
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Thanks!
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