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Chapter 1

Metric and Topological
Spaces

1.1 Topics to be covered

In this chapter we cover basic topics in analysis and topology that provide
a mathematical foundation for the topics from functional analysis presented
in subsequent chapters. We also include an introductory discussion on a key
notion from quantum information: the quantum bit or “qubit”.

Readers with a background that includes a good course in real or complex
analysis can move swiftly through this chapter, whereas those coming to the
text from di↵erent fields should carefully work through the material.

• Review of Metric Spaces

Definition of metric and examples

Convergence of sequences

✏� � definition of Continuity

Open, closed and compact sets

Sequential characterizations

Connected and pathwise connected sets

Equivalence and Uniform equivalence of metrics

Cauchy sequences and completeness

C(R) as a metric space

Baire’s theorem

1



2 CHAPTER 1. METRIC AND TOPOLOGICAL SPACES

• Qubits and the Bloch Sphere

Qubit metrics and fidelity

• General Topological Spaces and Nets

Open and closed sets, continuity

Nets and directed sets

Closed sets, compact sets, and continuity in terms of nets

1.2 Metric Spaces

Many mathematical investigations require various notions of distance to be
quantified. This is accomplished at a most basic level through metrics.

Definition 1.1. Given a set X a metric on X is a function, d : X⇥X ! R
that satisfies for all x, y, z 2 X:

1. d(x, y) � 0,

2. d(x, y) = 0 if and only if x = y,

3. d(x, y) = d(y, x),

4. d(x, z)  d(x, y) + d(y, z).

The pair (X, d) is called a metric space. If in place of 2) we only have that
d(x, x) = 0 for all x 2 X, then d is called a pseudometric.

Example 1.2. Some standard examples of metrics on real spaces include
the following (with complex versions defined similarly):

• (R, d) where d(x, y) = |x� y|.

• (Rn

, d

p

) where d

p

(x, y) =
�P

n

i=1 |xi � y

i

|p�1/p, for any 1  p < +1.
When p = 2 we call this the Euclidean distance.

• (Rn

, d1) where d1(x, y) = max{|x
i

� y

i

| : 1  i  n}.

• X any non-empty set, define d(x, y) =

(
1 x 6= y

0 x = y

. This is called the

discrete metric.

• Given a metric space (X, d), and a subset W ✓ X, (W,d) is also a
metric space. This is called a metric subspace of X.
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Definition 1.3. Let (X, d1), (Y, d2) be metric spaces, let f : X ! Y be a
function, and let x0 2 X. We say that f is continuous at x0 provided
that for every ✏ > 0, there exists � > 0 such that d1(x, x0) < � implies
d2(f(x), f(x0)) < ✏. We call f continuous if it is continuous at every
x0 2 X.

Example 1.4. Consider the subset (�1,+1) ✓ R of (R, d). Observe that
the function f : R ! (�1,+1) given by f(x) = x

1+|x| is one-to-one, onto and

continuous. The inverse function g(t) = t

1�|t| is also continuous.

Definition 1.5. Let (X, d) be a metric space. A subset O is open provided
that whenever x 2 O, then there exists � > 0 such that the set

B(x0; �) := {x | d(x0, x) < �} ✓ O.

The set B(x0; �) is called the ball centered at x0 of radius �. A set is
called closed if its complement is open.

These concepts also characterize continuity.

Proposition 1.6. Let (X, d1), (Y, d2) be metric spaces. Let f : X ! Y .
The following conditions are equivalent:

1. f is continuous,

2. for every open set U ✓ Y , the set f�1(U) := {x 2 X : f(x) 2 U} is
open,

3. for every closed set C ✓ Y , the set f�1(C) is closed.

Convergence of sequences also gives good characterizations of continuity.

Definition 1.7. Let (X, d) be a metric space. A sequence {x
n

}
n2N con-

verges to x0 provided that for every ✏ > 0 there is N such that n > N

implies d(x
n

, x0) < ✏. We write lim
n

x

n

= x0 or x
n

! x0.

Proposition 1.8. Let (X, d1), (Y, d2) be metric spaces and let f : X ! Y .
Then

1. f is continuous at x0 2 X if and only if for every sequence {x
n

} such
that lim

n

x

n

= x0 we have that lim
n

f(x
n

) = f(x0).

2. C ✓ X is closed if and only if for every convergent sequence {x
n

} ✓ C

we have that lim
n

x

n

2 C.
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1.2.1 Equivalent Metrics

Definition 1.9. Let X be a set and let d1 and d2 be metrics on X. We
say that d1 and d2 are equivalent provided that a set is open in the d1

metric if and only if it is open in the d2 metric. We say that d1 and d2 are
uniformly equivalent provided that there are constants, A,B > 0 such
that d1(x, y)  Ad2(x, y) and d2(x, y)  B d1(x, y) for all x, y 2 X.

It is easy to see that if two metrics are uniformly equivalent then they
are equivalent. Also, two metrics are equivalent if and only if the function
id : X ! X is continuous from (X, d1) to (X, d2) and from (X, d2) to (X, d1).

A map f : X ! Y between metric spaces such that f is one-to-one, onto
with both f and f

�1 continuous is called a homeomorphism. Thus, two
metrics are equivalent if and only if the identity map is a homeomorphism.

Example 1.10. Returning to the metrics d1, d2, d1 on Rn, observe that
for x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn we have:

• d1(x, y)  d1(x, y) and d1(x, y)  nd1(x, y),

• d1(x, y)  d2(x, y) and d2(x, y) 
p
nd1(x, y),

• d1(x, y) 
p
nd2(x, y) (use Cauchy-Schwarz) and d2(x, y)  d1(x, y).

It follows that these are all uniformly equivalent metrics.

Problem 1.11. Let (X, d) be a metric space. Define r(x, y) = d(x,y)
1+d(x,y) .

Prove that r is a metric on X and that d and r are equivalent metrics.

1.2.2 Cauchy Sequences and Completeness

Definition 1.12. Let (X, d) be a metric space. A sequence {x
n

} is Cauchy
provided that for every ✏ > 0 there exists N so that when n,m > N then
d(x

n

, x

m

) < ✏. A metric space is called complete provided that every
Cauchy sequence converges to a point in X.

Definition 1.13. Let (Y, d) be a metric space. A subset X ✓ Y is called
dense provided that for every y 2 Y and every ✏ > 0 there is a point x 2 X

with d(y, x) < ✏.

The canonical example is that the rational numbers Q together with
d(x, y) = |x�y| is a metric space that is not complete. The method in which
we construct R from Q by adding limits of Cauchy sequences, generalizes to
any metric space.



1.2. METRIC SPACES 5

Theorem 1.14. Let (X, d) be a metric space. Then there is a metric space
(X̂, d̂) so that

1. X ✓ X̂,

2. d̂(x, y) = d(x, y) for every pair x, y 2 X,

3. X is a dense subset of X̂.

Moreover, if (X̃, d̃) is another metric space satisfying 1), 2), 3), then there
is a homeomorphism h : X̂ ! X̃ such that h(x) = x for every x 2 X and
d̃(h(x̂), h(ŷ)) = d̂(x̂, ŷ) for every pair x̂, ŷ 2 X̂.

Definition 1.15. The (unique) metric space (X̂, d̂) given in the above the-
orem is called the completion of (X, d).

The following problem shows that the property of being complete is NOT
invariant under equivalence of metric.

Problem 1.16. On R define d(x, y) = |x � y|, r(x, y) = d(x,y)
1+d(x,y) and

s(x, y) = | x

1+|x| � y

1+|y| |. Prove that

1. s is a metric on R,

2. d, r and s are all equivalent metrics,

3. (R, d) and (R, r) are complete metric spaces,

4. (R, s) is not complete.

1.2.3 Compact Sets

Definition 1.17. Let (X, d) be a metric space. Then a subset K ✓ X

is called compact provided that whenever {U
a

}
a2A is a collection of open

sets such that K ✓ [
a2AUa

, then there is a finite subset F ✓ A such that
K ✓ [

a2FUa

.

The following gives a nice characterization of this property in metric
spaces.

Theorem 1.18. Let (X, d) be a metric space. The following conditions are
equivalent:

1. K is compact,
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2. every sequence {x
n

}
n2N ✓ K has a subsequence {x

nk} that converges
to a point in K,

3. (K, d) is complete and for all ✏ > 0 there is a finite subset {x1, ..., xn} ✓
K such that for each x 2 K there is an x

i

with d(x, x
i

) < ✏.

Condition 2) is often called the Bolzano-Weierstrass property, and a
subset as in 3) is called an ✏-net. One consequence of this result is the
important Heine-Borel theorem.

Corollary 1.19. A subset K ✓ Rn is compact if and only if it is closed and
bounded.

1.2.4 Uniform Convergence

Proposition 1.20. Let (K, d) be a non-empty compact metric space and
let f : K ! R be continuous. Then there are points x

M

, x

m

2 K such that
f(x

M

) = sup{f(x) : x 2 K} and f(x
m

) = inf{f(x) : x 2 K}. In particular,
both the supremum and infimum are finite.

Proof. Choose a sequence {x
n

} so that lim
n

f(x
n

) = sup{f(x) : x 2 K}.
This then has a convergent subsequence with lim

k

x

nk = x

M

2 K. By
continuity, f(x

M

) = lim
k

f(x
nk) = sup{f(x) : x 2 K}. The rest of the

proof is similar.

One motivation for studying metrics is that they can often be built to
capture various kinds of convergence. We illustrate this with one example.

Definition 1.21. Let (X, d) be a metric space and let K ✓ X. We say that
a sequence of functions {f

n

} ⇢ C(X) converges uniformly to f 2 C(X)
on K provided that

lim
n

sup{|f(x)� f

n

(x)| : x 2 K} = 0.

We say that {f
n

} converges uniformly on compact subsets to f pro-
vided that {f

n

} converges uniformly to f on K for every compact subset K
of X.

Example 1.22. We now construct a metric that for (R, d) captures uniform
convergence on compact subsets. Let C(R) denote the continuous real-
valued functions on R and let f, g 2 C(R). For each n, set

d

n

(f, g) = sup{|f(t)� g(t)| : �n  t  +n},
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and let r
n

(f, g) = dn(f,g)
1+dn(f,g)

. We define

r(f, g) =
1X

n=1

r

n

(f, g)

2n
.

Note that since 0  r

n

(f, g)  1 this series converges.

We shall make use of the following inequalities below.

Lemma 1.23. Let a, b, c � 0. Then a  b if and only if a

1+a

 b

1+b

. Further,

if a  b+ c, then a

1+a

 b

1+b

+ c

1+c

.

Theorem 1.24. Let f

n

, f 2 C(R). Then lim
n

r(f
n

, f) = 0 if and only if
{f

n

} converges uniformly to f on compact subsets. Moreover, (C(R), r) is
a complete metric space.

Proof. First we show that r is a metric. It is clear that r(f, g) = 0 exactly
when f = g and that r(f, g) = r(g, f). To see the triangle inequality, let
f, g, h 2 C(R). It is clear that d

n

(f, g)  d

n

(f, h)+d

n

(h, g) so by the lemma,
r

n

(f, g)  r

n

(f, h) + r

n

(h, g). Now it follows that r(f, g)  r(f, h) + r(h, g).
Suppose that lim

n

r(f
n

, f) = 0. Given a compact subset K and ✏ > 0,
pick an m so that K ✓ [�m,+m]. Choose an N so that n > N implies that
r(f

n

, f)  2�m

✏

1+✏

. Then for n > N we have that

2�m

d

m

(f
n

, f)

1 + d

m

(f
n

, f)
 r(f

n

, f) < 2�m

✏

1 + ✏

,

and hence d

m

(f
n

, f) < ✏. But sup{|f
n

(t) � f(t)| : t 2 K}  d

m

(f
n

, f) < ✏.
Thus, {f

n

} converges uniformly to f on K.
Conversely, assume that {f

n

} converges uniformly to f on every K and
that ✏ > 0 is given. Pick M so that

P1
m=M+1 2

�m

< ✏/2. Pick � so

that �

1+�

= ✏/2, and finally pick an N so that for n > N , we have that
d

M

(f
n

, f) < �.
Then for n > N it follows that

r(f
n

, f) 
MX

m=1

2�m

r

m

(f
n

, f) +
1X

m=M+1

2�m


MX

m=1

2�m

r

M

(f
n

, f) + ✏/2

<

d

M

(f
n

, f)

1 + d

M

(f
n

, f)
+ ✏/2

<

�

1 + �

+ ✏/2 = ✏.
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Hence, uniform convergence on compact sets implies convergence in the
metric.

Finally, if a sequence {f
n

} is Cauchy in the metric r, then it is pointwise
Cauchy and so there is a function, f(x) = lim

n

f

n

(x). Also it is easy to show
that for each M and ✏ > 0, there must be an N so that n,m > N implies
that d

M

(f
n

, f

m

) < ✏. From this it follows that f
n

converges uniformly to f

on [�M,+M ] and so is continuous on [�M,+M ]. Thus, f is continuous.
More of the same shows that r(f

n

, f) ! 0, and so the space is complete.

1.2.5 Baire’s Theorem

Some of the deepest results in functional analysis are consequences of Baire’s
theorem. One statement of the theorem is as follows.

Theorem 1.25. Let (X, d) be a complete metric space and let {U
n

}
n2N be

a countable collection of open, dense sets. Then \
n2NUn

is dense in X.

Proof. Given ✏ > 0 and x 2 X, since U1 is dense, we can find x1 2 U1 so
that d(x, x1) < ✏/2. As U1 is open we can pick �1 < ✏/2 so that the closure
of the ball of radius �1 around x1 satisfies

B(x1; �1)
� ✓ U1 \B(x; ✏),

where the set on the left side of this inclusion denotes the closure of B(x1; �1).
Applying the same reasoning to U2 we may pick x2 2 U2 so that d(x1, x2) <
�1/2, and a �2 < �1/2 so that B(x2, �2)� ✓ U2 \B(x1; �1).

Continuing inductively, we define x

n

, �

n

such that �
n+1 < �

n

/2  ✏/2n

and B(x
n+1; �n+1)� ✓ U

n+1 \B(x
n

; �
n

).
The fact that d(x

n

, x

n+1) < ✏/2n is enough to show that {x
n

} is Cauchy,
and so there is a point x0 = lim

n

x

n

. The containments imply the points
x

n

, x

n+1, ... are all inside B(x
n

, �

n

)�, and hence, x0 2 B(x
n

; �
n

)� ✓ U

n

.
Thus, x0 2 \

n2NUn

. Also, since each B(x
n

, �

n

)� ✓ B(x, ✏) we have that
d(x, x0) < ✏.

Definition 1.26. A set E is called nowhere dense provided that the set
complement of the closure E

� is dense, i.e., X\E� is dense.

Note that U
n

is dense and open if and only if E
n

= X\U
n

is closed and
nowhere dense.

A much weaker statement than saying that \U
n

is dense, is to say that
it is non-empty. Taking complements, this is just the statement that X 6=
X\\U

n

= [(X\U
n

). Thus, the following result appears weaker than Baire’s
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theorem, but nevertheless it is quite important and referred to as Baire’s
Category Theorem.

Theorem 1.27. A complete metric space cannot be written as a countable
union of nowhere dense sets.

The name comes from the following. A set that can be written as a
countable union of nowhere dense sets is called a set of first category. A set
that cannot is called a set of second category. In this language, the above
theorem says that a complete metric space is of second category. Another
name for sets of first category is to call them meagre sets.

Example 1.28. An example that illustrates this theorem comes from con-
sideration of (Q, d) with d(x, y) = |x � y|. Since Q is countable we may
write it as Q = {q

n

: n 2 N}. Now set E
n

= {q
n

}. Then this is a countable
collection of nowhere dense sets and Q = [E

n

. Thus, by the theorem, (Q, d)
is not complete, something that we knew already.

Problem 1.29. What about (N, d) and E

n

= {n}?

1.3 Qubits and the Bloch Sphere

The basic unit of information in quantum information theory is the quantum
bit or qubit. We will give a more detailed treatment later; for the moment
we can simply take a qubit to be a unit vector in C2. Thus, for the purposes
of this initial discussion, a qubit is given by  = ↵|0i+ �|1i where ↵,� 2 C
with |↵|2 + |�|2 = 1 and

|0i =
✓
1
0

◆
, |1i =

✓
1
0

◆
.

If ↵ 6= 0 6= �, then  is said to be in a superposition of the (classical) states
|0i and |1i.

When qubits represent pure states on a 2-level quantum mechanical sys-
tem (with |0i and |1i as the classical base states), then the vectors  and
� correspond to the same pure state, where � is any complex number of
modulus 1, i.e., a point on the unit circle in the complex plane. Thus, we are
often interested in the set of equivalence classes of qubits where we define
 and � to be equivalent if there exists �, |�| = 1, such that  = ��. If we
let [ ] denote the equivalence class of the vector  , then the collection of all
such equivalence classes is the complex projective space, denoted CP1.



10 CHAPTER 1. METRIC AND TOPOLOGICAL SPACES

Note that when  is a qubit whose first coordinate is non-zero, then  
is equivalent to a unique vector of the form (a, b) with 0 < a  1. When
0 < a < 1 then all equivalence classes are given by (a,�

p
1� a

2), which is
the product of an interval and a circle, i.e., a cylinder. However, when a = 1
there is only one equivalence class, [(1, 0)] and similarly, when a = 0, there
is only the equivalence class [(0, 1)]. Thus, the set of equivalence classes
of qubits can be regarded as a cylinder where the circles at each endpoint
are collapsed to single points, i.e., a two dimensional sphere. This object is
known as the Bloch sphere.

Let us give one of the standard explicit descriptions of the Bloch sphere,
which we will refer to later. Observe that we can write any unit vector
 2 C2 as

| i = e

i�(cos
✓

2
|0i+ e

i� sin
✓

2
|1i),

for some � 2 R and 0  ✓,� < 2⇡. As noted above, the “global phase
factor” e

i� may be ignored, and thus the angles ✓ and � describe a unique
point on the surface of the unit sphere as depicted in Figure

blochsphereblochsphere

1.1.

Problem 1.30. In this parametrization, verify the following special cases
of states identified with points on the Bloch sphere: the north pole (✓ = 0)
and |0i; the south pole (✓ = ⇡) and |1i; and important superposition states,

✓ =
⇡

2
, � = 0 and |+i := 1p

2
(|0i+ |1i),

✓ =
⇡

2
, � = ⇡ and |�i := 1p

2
(|0i � |1i).

Later we will see another representation of equivalence classes of qubits
in the context of the postulates of quantum mechanics, by identifying each
qubit with the matrix of the projection onto the one dimensional space that
it spans.

1.3.1 Qubit Metrics and Fidelity

There are several natural metrics on the Bloch sphere. The first comes from
its identification as equivalence classes of vectors. We set

d([�], [ ]) = inf{k�� � k2 : |�| = 1},

where k(a, b)k2 =
p|a|2 + |b|2 denotes the usual Euclidean distance. The

other metrics we shall use come from the concept of fidelity.
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Figure 1.1: Unit vectors, also known as “pure states”, are represented as
surface points on the sphere, and “mixed” (rank-2) states correspond to
interior points. Moving inside, further from the surface means “more mixed”
as we shall clarify further later, in particular the centre corresponds to the
maximally state ⇢ = 1

2I. (Image courtesy of Google Images) blochsphere

Definition 1.31. Given two qubits, � = (a, b),  = (c, d) their fidelity is
the quantity

F (�, ) = |h�| i|2 = |ac+ bd|2.

Note 0  F (�, )  1, also that fidelity is really a function on equivalence
classes, and F (�, ) = 1 if and only if [�] = [ ].

Two other important metrics are given as follows.

Definition 1.32. The Fubini-Study metric on the Bloch sphere is given
by

d

FS

([�], [ ]) = arccos(F (�, )).

The Bures metric is given by

d

B

([�], [ ]) =
p
1� F (�, ).

It can be shown that these three metrics are all uniformly equivalent and
the Bloch sphere is a complete metric space in each of them.

1.4 Topological Spaces

Not all notions of convergence can be defined by a metric, this led to a
generalization of metric spaces. Recall that in a metric space, arbitrary
unions of open sets are open and finite intersections of open sets are open.
This motivates the following definition.



12 CHAPTER 1. METRIC AND TOPOLOGICAL SPACES

Definition 1.33. Let X be a set T be a collection of subsets of X. We call
T a topology on X and call (X, T ) a topological space, provided that:

1. ; 2 T and X 2 T ,

2. whenever U
a

2 T , 8a 2 A, then
� [

a2A U

a

� 2 T ,

3. whenever U
i

2 T , 1  i  n, then
� \n

i=1 Ui

� 2 T .

We call a subset of X open if it is in T and we call a subset of X closed if
its complement is in T . Given a point x 2 X, we let N

x

= {U 2 T : x 2 U}
and call this collection the neighborhoods of x.

We base the notion of continuity on the open set description in metric
spaces.

Definition 1.34. Given two topological spaces (X, T ) and (Y,S) and a
function f : X ! Y we say that:

• f is continuous at x0 provided that for every V 2 S with f(x0) 2
V there is U 2 T with x0 2 U such that f(U) ✓ V , i.e., every
neighborhood of f(x0) contains f(U) for some neighborhood of x0;

• f is continuous provided that for every V 2 S we have that f�1(V ) :=
{x 2 X : f(x) 2 V } 2 T .

It is not hard to see that when X and Y are metric spaces these reduce
to the usual definitions of continuity.

Problem 1.35. Prove that f : X ! Y is continuous if and only if it is
continuous at every point in X.

1.4.1 Nets and Directed Sets

Many results about topological spaces have the same proofs as in the metric
space case if one replaces sequences with nets.

Definition 1.36. A pair (⇤,) consisting of a set ⇤ together with a relation
 on ⇤ is called a directed set if the relation satisfies:

1. x  y and y  x implies that x = y (symmetric),

2. x  y and y  z implies that x  z (transitive),

3. for every x1, x2 2 ⇤ there is x3 2 ⇤ such that x1  x3 and x2  x3.
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Example 1.37. Below are some examples of directed sets.

• Let ⇤ be either N,Z, or R with the usual .

• Let S be a set and let F be the collection of all finite subsets of S.
Given F1, F2 2 F define F1  F2 if and only if F1 ✓ F2.

• Given a topological space (X, T ) and a point x, let ⇤ = N
x

be the
set of all open neighborhoods of x and define U1  U2 if and only
if U2 ✓ U1. The intuition of this order is that “farther out” means
smaller set and so “closer” to x.

• We find important examples in calculus as well. Given an interval
[a, b] recall that a partition is a set P = {x0 = a < x1 · · · < x

n

= b}.
These are used to subdivide the interval. An augmentation of P is
a collection, P

⇤ = {x01 < · · · < x

0
n

} where x

i�1  x

0
i

 x

i

. The
pair P = (P, P ⇤) is called an augmented partition. We define P1 =
(P1, P

⇤
1 )  P2 = (P2, P

⇤
2 ) provided that P1 ✓ P2 and P

⇤
1 ✓ P

⇤
2 . It

is easy to see that  satisfies the first two properties needed to be a
directed set. The third property is trickier: Given any two augmented
partitions P1 = (P1, P

⇤
1 ) and P2 = (P2, P

⇤
2 ), let P1 [ P

⇤
1 [ P2 [ P

⇤
2 =

{a = x0 < ... < x

m

= b} add one extra point, c with x

m�1 < c < b and
let P3 = {x0 < ... < x

m�1 < c < x

m

= b}. Now let P ⇤
3 = {x0 < ... <

x

m�1 < x

m

}, then this is an augmentation of P3 and P1 [ P2 ✓ P3

and P

⇤
1 [ P

⇤
2 ✓ P3, so that P1  P3 and P2  P3.

Definition 1.38. Let (X, T ) be a topological space. Then a net in X is a
directed set (⇤,) together with a function f : ⇤ ! X. As with sequences
we prefer to set x

�

= f(�) and write the net as {x
�

}
�2⇤. We say that the

net {x
�

}
�2⇤ converges to x and write lim

�

x

�

= x provided that for each
U 2 N

x

there is �0 2 ⇤ such that when �0  � then x

�

2 U .

Here is the careful statement of the Riemann sum theorem from calculus:
Let f : [a, b] ! R be continuous. For each augmented partition P = ({a =
x0 < · · · < x

n

= b}, {x01 < · · · < x

0
n

}), the Riemann sum is given by

SP =
nX

i=1

f(x0
i

)(x
i

� x

i�1).

The set of all Riemann sums forms a net of real numbers.

Theorem 1.39. Let f : [a, b] ! R be continuous. Then the net of Riemann
sums converges, and we call this limit the “Riemann integral” of f .
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1.4.2 Unordered vs Ordered Sums

Given a set A and real numbers r
a

, a 2 A, we wish to define
P

a2A r

a

. To do
this consider the directed set (F ,) of all finite subsets of A. Given F 2 F
we set

s

F

=
X

a2F
r

a

and we call this number the partial sum over F . The collection {s
F

}
F2F is

a net of real numbers, called the net of partial sums.

Definition 1.40. We say that
P

a2A r

a

converges to s provided that s is
the limit of the net of partial sums.

Thus, s =
P

a2A r

a

if and only if for each ✏ > 0 there is a finite set
F0 ✓ A such that for every finite set F with F0 ✓ F we have that

|s� s

F

| < ✏.

Given r

n

, n 2 N, it is interesting to compare the convergence of the un-
ordered series,

P
n2N r

n

with the convergence of the ordered series,
P+1

n=1 rn.

For the latter case we only consider partial sums of the form
P

K

n=1 rn, a very
small collection of all finite subsets of N.

Since we only need this smaller collection of partial sums to approach a
value, it is easy to see that whenever

P
n2N r

n

converges, then
P+1

n=1 rn will
converge.

The converse is not true. For instance, the series
P+1

n=1
(�1)n

n

converges,

but
P

n2N
(�1)n

n

does not converge.

Problem 1.41. Prove that
P

n2N r

n

converges if and only if
P+1

n=1 |rn|
converges, i.e. if and only if the series converges absolutely.

Here are just some of the reasons that nets are convenient.

Proposition 1.42. Let (X, T ) and (Y,S) be topological spaces and let f :
X ! Y . Then

1. f is continuous at x0 if and only if for every net {x
�

}
�2⇤ such that

lim
�

x

�

= x0 we have that lim
�

f(x
�

) = f(x0).

2. f is continuous if and only if whenever a net {x
�

}
�2⇤ in X converges

to a point x, then lim
�

f(x
�

) = f(x).

3. A set C ✓ X is closed if and only if whenever {x
�

}
�2⇤ is a net in C

that converges to a point x 2 X, then x 2 C.
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4. A set K ✓ X is compact if and only if every net in K has a subnet
that converges to a point in K.

Note that these results are the counterparts of many results for metric
spaces. In general they are not true if you only use sequences instead of
nets.

We have not yet defined subnets.

Definition 1.43. Let ⇤ and D be two directed sets. A function g : D ! ⇤
is called final provided that a  b implies g(a)  g(b) and given any �0 2 ⇤
there is d0 2 D such that d0  d implies �0  g(d). Given a net {x

�

}
�2⇤ a

subnet is any net of the form {x
g(d)}d2D for some directed set D and final

function g : D ! ⇤.

Just as with subsequences, we will often write a subnet as {x
�d
}
d2D

where really, �
d

= g(d).

Problem 1.44. When ⇤ = D = N then every subsequence is a subnet but
a subnet need not be a subsequence. Explain why.

1.4.3 The Key Separation Axiom

Definition 1.45. A topological space (X, T ) is called Hausdor↵ provided
that for any x 6= y there are open set U, V such that x 2 U, y 2 V and
U \ V = ;.

This axiom guarantees that there are lots of continuous functions. The
following result is called Urysohn’s Lemma.

Theorem 1.46. Let (K, T ) be a compact Hausdor↵ space and let A,B be
closed subsets with A\B = ;. Then there is a continuous function f : K !
[0, 1] such that f(a) = 0, for all a 2 A and f(b) = 1, for all b 2 B.

The following result is Tietze’s ExtensionTheorem.

Theorem 1.47. Let (K, T ) be a compact, Hausdor↵ space and let A ✓ K

be a closed subset and let f : A ! [0, 1] be continuous. Then there is a
continuous function F : K ! [0, 1] such that F (a) = f(a), for all a 2 A.
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