COMPLETELY BOUNDED MAPS

and

OPERATOR ALGEBRAS

Solutions to Selected Exercises



CHAPTER 1: INTRODUCTION

1.1 Let (T; ;) be in My (B(H)). Verify that the linear transformation it determines on H(™ is bounded and that, in

1/2
fact, [|(Ti)l| < (S350 ITsl?) -
hy
Solution: Let | : | € (™ be of unit length. We compute
hn |
w1 > i1 T,k n |l n 2
(Tig) | - ; =Y DTk (1.1)
hn ?=1Tn,jhj i=1 || j=1
2

n n

< S IITihsll | triangle inequality 12)
=1 \j=1
n n 2

< D D ITsl IR (1.3)
i=1 \j=1
n n n

< DS ITsl® ) { Do sl (1.4)
i=1 J=1 j=1

= Y ITl? (1.5)
i,j=1

Taking square roots now yields the result.
1.2 Let 7 : Mn(B(H)) — B(H™) be the identification given in the text.

i) Verify that 7 is a one-to-one, *-homomorphism.
ii) Let E; : H — H™ be the map defined by E; (k) equal to the vector that has h for its j-th entry and is 0
elsewhere. Show that E7 : H™ — H is the map which sends a vector in H(™) to its j-th component.
iii) Given T € B(H{™) set T;; = E}TE;. Show that w((Ti;)) = T and that consequently  is onto.
Solution: Note that,
h1

Z Erhy = . (1.6)
k=1 hn,



hy f

i) Let (S;;) and (T; ;) bein M, (B(H)),leth=| : |,f=| : | € H™ anda € C. We have,
hn fn
> j=1(aS3hj + Ty 5hy)
m(a(Si;) + (Tig)h = 7w((@Si;+Tij))h = : (1.7)
2 5=1(0Sn jhj + T 5h;)
> j=151,3h; =1 Sl,,-hj
= a : + (1.8)
;=1 Sn,ih; 3—1 S n,ihj
= (ar((Si;)) +7((T:;5)))h-. (1.9)

Thus 7 is linear.

Let (Ri;) = (Sij)(Ti5)-

[ Z RlJ
m((Rij))h =
| 2 ia Rn,jhj
[ 27 k=1 S1kTk,5hj
- : (1.10)
| 2 k=1 Sn kT b
On the other hand,
21 Tl,jh,-
[r((SiNm(Ti)h = 7((Si;))
J_II;Jh

R S (Z5es Thg hs)

i ZZ:l Snk (Z;’;I 0y hj)
- : (1.11)
L Z;’;k=1 Sn:ka)j h]

Comparison of (1.10) and (1.11) shows that 7 is a homomorphism.




We now compute the adjoint of 7((T5 ;)).

b fi 2i=1 T1,5hs f1
hn fn Z?—lT ,jh' fn

n
= Z (Tiihs, fi) = Z <hJ’T¢*Jf1

i,=1 ij=1
< Ch | [ 2 Tif1fi 1 >
L h‘n J 1—1 znf1 J
[ hy ] fi]
= < b (T | >
L hn _ fn |

This shows that 7((T3;))* = 7((T};)) = 7((T,;)*) and so 7 is a *-homomorphism.
Suppose 7((T;,;)) = 0. Then for every k € {1,...,n} and h € H we have

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)

0 Tixh
= 7((T5)) Ex(h) =
0 Tn,kh
Hence T; ;h = Oforall h € Hand forall4,j € {1,...,n}. It follows that (Ti;) = 0 and 7 is one-to-one.
h1
ii) Lethe Hand | : | € H™. The definition of the adjoint gives us
hn
hy h1
<E; : ,h> = < : ,Ejh> = (hy, )
hn hn
ha
Therefore, E7 is the map that sends | : | to h;.
ha



iii) We have,

hy fi Y1 Th,5h; fi
<7r((Ti,j)) N IS I >=< : | > (1.18)
h'n fn ;'L=1 Tnyjhj f"
= (Tijhis £y = > (EITEjhj, f) (1.19)
i,j=1 i,j=1
= i(TEhJ,Ef,)—<ZTEhJ,ZEf,> (1.20
i,j=1 j=1 =1
- < Z h)ZEf1> (Th, f). (1.21)
j=1 i=1

Thus 7((T;;)) = T and 7 is onto.

1.3 Let (T; ;) be in M,(B(H)). Prove that (T} ;) is a contraction if and only if for every choice of 2n unit vectors

Z1,--+3Tn, Y1, - - Yn in H, the scalar matrix ((T; ;z;,y:)) is a contraction.

Solution: We use the fact that if T" is a bounded operator on a Hilbert space 7, then T is a contraction if and
only if |(Th, k)| < 1 forall h, k € H of unit length.

A1 K1
Suppose first that (T; ;) is a contraction and that | : |, | : | are vectors of unit length in C*. A short
An Hn
calculation:
)\11‘1
ZIIAmII = > Pl = 1, (122)
Anmn k=1
M1 [y ]
shows that : and : are of unit length in ("), It follows that,
AnZn | Haln |
/\1 1 U1 n
<((Ti,jzj7yi)) N PR I > = Z 5,55 Yi) Al
An J un 1').7 =1
n
= Z 1 (A5), pavi) (1.23)
121 My
= <(Ti,j) S P > <1 (1.24)
AnTn UnYn

and hence ((T; jz;,y;)) is a contraction in M,,.
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1.5

hy i

Conversely, let | : | and | : | be unit vectors in H ™). Choose unit vectors 1, ..., Tn,Y1,---,Yn in H
hn fa ]
and scalars A1, . .., An, {1, - . - , i SUch that Ajz; = h; and p;y; = f;. We have,
2
hl W n n n
1= s = D0 Pweesl® = D0 Il llael® = D0 Il (1.25)
hn k=1 k=1 k=1
A1 B
Which proves that the vectors | : |, | : | are of unit length in C™. A calculation similar to the one in
An Hn

(1.24) proves that (T; ;) is a contraction.

Let(T; ;) be in My, (H(™). Prove that (T} ;) is positive if and only if for every choice of n vectors 1, . .., Z, in
H, the scalar matrix ((T; jz;, z;)) is positive.

A1
Solution: If | € C"and z,, ..., T, are vectors in H, then
An
)\1 )\1 /\1.’L‘1 )\1.’1,‘1
<((Ti,jzj7 :1:1)) ’ > = <(T1,J) ) > (1.26)
An An AnTn AnZn
T3
If (T; ;) is positive, (1.26) shows that ((T} jz;, z;)) is positive. If [ : | € H™ and ((T; jx;, z:)) is positive
Tn

then set \y = 1 forall k € {1,...,n} in (1.26) to prove (T} ;) is positive.
Let A and B be unital C*-algebras, and let 7 : A — B be a *-homomorphism with 7(1) = 1. Show that 7 is
completely positive and completely bounded and that ||7|| = |7y || = ||7|| = 1.

Solution: If 7 is a *-homomorphism with 7(1) = 1, then 7 maps invertible elements in .A to invertible elements
in B. Therefore o(7(a)) C o(a) for any a € A. It follows that,

Im@l? = lm(a)*n(a)l (127
= [Ir(a”a)]| = r(r(a*a)) (1.28)
< r(a*a) = |a*al| = llal*. (129)
where () denotes the spectral radius of z. Thus, ||| < 1. Since ||[w(1)|| = ||1|| = 1, we have ||7|| = L.

If a is positive, then there exists an z € A such that a = z*z. Therefore,
7(a) = w(z*z) = n(z)*w(z) > 0. (1.30)

This shows that 7 is positive.



1.6

1.7

We have proved that a x-homomorphism that maps the identity to the identity is a norm 1, positive map. The
definitions of addition and multiplication in M,,(.A) and the definition of , imply that 7, is indeed a unital,
*-homomorphism. Hence 7 is completely positive and

[7lly = sup{l|mn]l : m > 1} =1 = |||, (1.31)
shows that 7 is completely bounded.

Let A, B and C be C*-algebras, and let o : A — B and ) : B — C be (completely) positive maps. Show that
1 o  is (completely) positive.

Solution: We first prove that 1 o ¢ is positive. Let a € A be positive. Since ¢ is a positive map (a) is positive
in B. The fact that 1 is a positive map shows that (3 o ){a) = ¥(p(a)) > 0, proving our claim.

It is straightforward to check that (v o ), = ¥, © @,,. This fact and a similar argument to the one used in the
preceeding paragraph shows us that 1 o ¢ is completely positive when ¢ and v are completely positive.

Let {E;,;}1'j=, be matrix units for My, let A = (E;;)?,_, and let B = (Bij)7 j=1 be in My (M,). Show that
1
A is unitary and that ;B is a rank one projection.

Solution: We begin by noting the following facts: E}; = Ej;, Y k=1 Bk x = 1n, the n x n identity matrix, and

g oy 0 ifj#p
E‘L,]Ep’q - { E,l,q if] =p . (1.32)
We have A* = (Ej;)* = (E};) = (Eji) = A, and s0 A is self-adjoint. Thus AA* = A% = A*A. When we
compute the (7, j)-th entry of A% we get,
n
B 0 if 3 j

;EIMEJ’IC - { ZZ:I By =1, if =3 (1.33)
From which it follows that A2 = 1 and A is unitary.
Since B* = (E; ;)* = (E};) = (E;i;) = B, LB is self-adjoint. The (4, j)-th entry of B2 is

n n
> EixBr; =Y Eij=nE;;. (1.34)
=1 £

Therefore the (i, j)-th entry of ;B is 1 E; ; and so (1 nB)z = 1B. Thus 1B is a projection. It remains to

be shown that B has rank one. The 1dent1ﬁcatlon of Mp(M,) w1th M2 allows us to treat B as an operator on
C” =C"®...0C" We compute the trace of B and note for a projection P that rank P = trace P. Note
et

n copies
that the diagonal entries of B are 0 except the ((k — 1)n + k, (k — 1)n + k) entries for k = 1,...,n and so
Ak,1
trace B = n which shows that trace %B = 1. We now compute the range of B. Let h, = : e ™
)‘k,n
Now,
n
B(hi®...®hy) ZEM i@ @D Enjhi | =1+ dap)(e1 ®... @ey). (135)
i=1



1.8

1.9

Which shows that B, and hence -};B, is the projection onto the span of the n2-tuple whose entries are equal to
1 in the 1st, (n + 1)-th, ... ,((n — 1)n + 1)-th place and is 0 otherwise.

Let {E; ;}7,-; be a system of matrix units for B(H), let A = (Eji)tj=1 and let B = (E;;)7;_, be in

1
M, (B(H)). Show that A is a partial isometry and that EB is a rank one projection. Show that p,(A) = B
and [|pn(A)]| = 7.

Solution: ¢ is the transpose map. We begin by noting the following facts: E} ; = Ej,

0 ifj#l
Ei,jEz,m={ .. ifj.il : (1.36)
and
= 1, 0
> Epp = [ 7o ] =P, (1.37)
k=1

where 1,, denotes the n x n identity matrix.

A calculation similar to that in excercise 1.7 shows that A is self-adjoint and that

P, 0 --- 0
0 P, --- 0
AA*=A%=| | . | ) (1.38)
0o 0 .--- P,
hy
which is the projection of H™) onto the subspace spanned by vectors of the form : where all except
hn

possibly the first n entries of each hy are 0. Therefore A is a partial isometry.

A similar argument to the one for Exercise 1.7 shows that %B is a non-zero projection. We have,

¢n(A) = en((Bj2) = (E};) = (Biy) = B, (1.39)

and )
loa(4)] = 18] =n[ 2] = (140)
Let A be in M, and let At denote the transpose of A. Prove that A is positive if and only if A* is positive and that

[|A|| = ||A*||- Prove that these same results hold for operators on separable, infinite dimensional Hilbert space,
when we fix an orthonormal basis, regard operators as infinite matrices and use this to define the transpose.

Solution: We prove the second part of the exercise which concerns Hilbert space, the first part being a special
case of the second. To see that A? is positive we write A = B*B for some B € B(H). Thus,

At = (B*B)t = B{(B*)! = BY(B*)* > 0. (1.41)

By interchanging the roles of A and A? we see that A is positive whenever A* is positive.

Since H is a separable, infinite-dimensional Hilbert space we can assume that H = £2 with the orthonormal
basis {e, }n>1, Where e, is the sequence whose n-th entry is 1 and whose other entries are 0. Let (v ;) be the

8



matrix of A with respect to this orthonormal basis and let (7, 2, .. .) be an element of . Denote by A and
T the matrix (@; ;) and the sequence (Z1,Z2,...). Note that ||z|| = ||Z||. It follows from the definition of the
inner-product that

(z,y) = (Z,9)- (1.42)
It is also straightforward to show that Az = AZ.
Let ||z|| < 1 and consider,

|Az||* = (Az, Az) = {Az, Az) = || Az||* < || A|?. (1.43)

Therefore || 4| < ||A]. By interchanging the roles of A and 4 we see that || 4] = [|4|| < ||4]|. Therefore
| Al = ||4]|- Since Af = A* we get,

|4%[| = I[4%)] = ll4*] = (LAl (1.44)
The idea in the last two paragraphs gives an alternate proof of the positivity result. A short calculation,
(Az,z) = (z,A*z) = <:r,Ea:> = <z,—ﬁ> = (z, A'T), (1.45)
shows that A is positive if and only if A? is positive.

1.10 Prove that the map 7 : Mp(A) — A® My, defined by 7((ai;)) = >°7';_; ai,; ® Ey ; is an algebra isomorphism.

Solution: Let o be a scalar. The addition and scalar multiplication of tensors satisfies (¢ ® A) + (a ® B) =
a® (A + B) and a(a ® A) = (aa) ® A = a ® (aA) and therefore  is linear. Let (c; ;) = (ai;)(bi ;). We

have,
n n
) = z ¢ij® Eij = Z @i kbk,; ® Ejj. (1.46)
1,j=1 1,5,k=1
Now,
n
m((ai))m((big) = Z ai;®Eij | | D ari®Eiy (1.47)
1.7—‘ k,l=1
n n n
= > 0k ®Ei;Ex = > Z Qijbk) ® Ej j Ey (1.48)
i,7,k,l=1 i,l=14,k=1
= > > e ®Ey by using (1.33), (1.49)
il=1 j=1

which (after relabeling the indices) is equal to (1.46). Thus 7 is a homomorphism. The involution in A ® M,
is defined by (a ® A)* = a* ® A* which proves that 7 is *~-homomophism. We have,

rW==]|. . . .||=D18E:=10) E;=181, (1.50)
ST i=1 i=1
00 1

which shows that 7 is unital.



It remains to show  is bijective. Suppose that 7((a; ;)) = 0, we want to show that ay; = 0 for all &, €
{1,...,n}. We compute,

n

18 Exp)m((ais))1®Ey) = (A®Ek) | D aij®Ei; | (1©Ey) (1.51)
i,j=1

n
= (1®Exg) (Z iy ® E,-,,) (1.52)

—~

. 1
= Z a;1 @ ExkE;) = ax) ® Ey (1.53)
i=1

If we now use the fact that ||ak; ® Ex il = ||ak|| | Ek,ll and ||Exul| = 1 we see that [jag;|| = O and so

ak,; = 0. Now suppose that a ® A is an elementary tensor in A ® My,. If A = (o ;), then we can write

n n
a®A = Z a® (C!i,jEi’j) = Z (ai,ja) ®E;; = w((ai,ja)). (1.54)
ij=1 ij=1

Thus, since 7 is linear, the range of 7 contains the span of the elementary tensors. The fact that 7 is a one-to-
one, *-homomorpism implies that it is an isometry and has closed range. This together with the fact that the set
of elementary tensors is dense in A ® M, proves rangew = A ® M, and so 7 is onto.
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CHAPTER 2: POSITIVE MAPS

2.1 Let S be an operator system, B be a C*-algebra and ¢ : § — B a postive map. Prove that ¢ is self-sdoint, i.e.,
that p(z*) = p(z)*.
Solution: We first prove the result when 2 = z*. We can write £ = p; — p, with p; and p, positive. Since ¢
is positive ¢(p1) and o(p2) are positive and so p(z) = ¢(p1) — p(p2), which is the difference of two postive
elements, is self-adjoint.

Now let z € S and write z = z; + iz with z; and x5 self-adjoint. Then we have,

w(a*) = p(z1 — i29) = (1) — ip(2) = p(@1)" — ip(z2)* = (p(31) +ip(32))* = p(z)*,  (2.1)
which completes the proof.
2.2 Let S be an operator system, B be a C*-algebra and ¢ : S — B be a positive map. Prove that ¢ extends to a
positive map on the norm closure of S.

Selution: The positivity of ¢ implies that ¢ is bounded and in particular is uniformly continuous. It follows
that o extends in a unique way to a continuous map  on the norm closure of S. It remains, therefore, to show
that ¢ is positive.

Let p be a positive element in S. Then, there is a sequence {2} in S such that |[p — z,|| — 0 as n — oo. The
fact that p is self-adjoint tells us that ||p — z}|| = ||p — x| and so,

*
“p—@ —0asn — oo. 22)

Set hp = (zn + 77,)/2 and note that hy, is self-adjoint. Let ¢ > 0. We claim that k,, + €1 is positive for
sufficiently large values of n. We may assume that h,, is a sequence of operators on a Hilbert space . Let
z € 'H and choose N so large that n > N implies ||k, — p|| < £/2. Then,

((hn +el)z,z) = ((hn + €1 — (p+€l))z,z) + ((p + €1)z, z) . (2.3)

Since p is positive
((p+el)z,z) 2 e, @4

and the Cauchy-Schwarz inequality gives,
[((hn €1 = (p+ £1))3,2)] < I + 1~ (p-+ €] 2 = llam — ol Ial? < S =l?.  @25)
Using (2.3), (2.4) and (2.5) we get,
(b +€1)2,2) 2 (€ = ) ol = = |12l @)

which establishes our claim.

Since h, + €1 — p+ €1 we have,

o(p+el) = Jim o(hn +€1) > 0. 2.7
Thus,
o(p) +ep(1) > 0, 2.8)
for every positive . When we let € — 0 we see that $(p) > 0, which completes the proof.

11
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2.5

2.6

Let S be an operator system and let ¢ : S — C be positive. Prove that ||| < ¢(1).

Solution: Let a € S and choose a unimodular A € C such that [p(a)| = Ap(a) = p(Aa). We have |p(a)| =
©(Aa) = @((\a)*), where the last equality follows from the fact that ¢ is positive. For any element a of a
C*-algebra Rea < ||a|| 1. Thus,

o@) = 3(0a) +p(0a)) = p (2252) 29
= p(Re (M) < p(lAal1) = alo(1). @10)

Therefore, ||of| < ©(1).
Let S be an operator system and let ¢ : S — C(X) where C (X)) denotes the continuous functions on a compact
Hausdorff space X. Prove that if ¢ is positive, then |||l < |l(1)]].
Solution: For each z in X let m; : C(X) — C denote the function that maps f to f(x). m; is positive and so
the map 7, o ¢ : S — C is positive. From Exercise 2.3 we get,

lo(a)(z)| = |(mz 0 p)(a)| < (72 0 ) (1)) llall = (1) (z) llall < le(1)] {lall - 2.11)
Thus, [|p(a)]| < [lp(1)]| lall and it follows that [|¢]] < [le(1)]]-
(Schwarz Inequality) Let A be a C*-algebra and let ¢ : A — C be a positive linear functional. Prove that
(@) < (e 2)p(y*y)-

Solution: Let ¢ € R and choose a unimodular complex number A such that |p(z*y)| = Ap(z*y). Using the
fact that ¢ is positive we get,

0 < o((z+ty)(z+ty) (2.12)
= o(z*z +t(z*y + y'z) + t2y*y) (2.13)
= p(z*z) + t(p(a*y) + o(y*z)) + 2p(y"y) (2.14)
= ¢(z*z) + t{p(z*y) + o(z*y)) + Pp(y"Y) (2.15)
= ¢(z*z) + 2Re p(z*y)t + (y* y)t? (2.16)

where (2.15) follows from the fact that ¢ is positive and therefore self-adjoint. The expression in (2.16) is a
quadratic in ¢ with real coefficients. Since this quadratic is always non-negative it follows that its discriminant
is never positive. Thus,

(2Re p(z*y))? < dp(z*z)p(y"y)- 2.17)
By replacing z by Az and dividing out the factor of 4 we get,
lo(z*y)|? < w(z*z)e(y"y). (2.18)

Let T be an operator on a Hilbert space H, the numerical radius of T is defined by
w(T) = sup{|(T'z, )| : =z €H,|z| =1} (2.19)
Prove that if ¢ : S — B(?H) is positive and p(1) = 1, then w(p(a)) < |laf|.

Solution: Let a € S and let z be a unit vector in H. Note that the linear functional p, that maps an operator
T € B(H) to (T'z, z) is positive. Therefore p; 0 ¢ : S — C is positive. Hence by exercise 2.3,

l(p(a)z,z)] = |pz 0 0(a)] < (pz 0 (1)) llall = p=(1) llall = llzI* lall = |lall - (2.20)
From which we see that w(p(a)) < |la|.

12



2.7

2.8

Let T be an operator on a Hilbert space. Prove that w(T) < 1 if and only if 2 + (AT) + (AT)* > 0 for all
complex numbers A with |A| = 1.

Solution: First note that 2 + (AT") 4 (AT')* is positive if and only if 1 + Re A (T'z,z) > O forall z € H. If
w(T) < 1, then,

—ReA (T'z,z) < | A (Tz,z)| = |(Tz,z)| <w(T) <1, (2.21)
which proves that 2 + (AT') + (AT)* > 0.
For the converse choose a ), (depending on z), of modulus 1 such that A (T'z, z) = — |(T'z, z)|. We have,
(Tz,z)| = -\ (Tz,z) = —Re A (T'z,z) < 1, (2.22)

and sow(T) < 1.

Prove that w(T') defines a norm on B(H), with w(T") < ||T|| < 2w(T"). Show that both inequalities are sharp.

Solution: w(T') is defined as the supremum of a set of non-negative numbers and is therefore non-negative.
Also w(T) = 0 if and only if (T'z, z) = 0 for all z such that ||z|| = 1 if and only if T = 0. If & € C, then

w(aT) = sup{[{aTz,z)|: |z| =1} =sup{|e||(Tz,z)|: ||z|| =1} (2.23)
= la|sup{[(Tz,2)| : |lz]| =1} = |o| w(T) (2.249)

If R, T are two operators and ||z|| = 1, then

(R +T)z,z)| = |(Rz,z) + (T',2)| < [(Rz, z)| + [(Tz, 7)| < w(R) +w(T) (2.25)
implies that w(R + T') < w(R) + w(T). This proves that w(T') defines a norm on B(H).
If ||z|| = 1, then an application of the Cauchy-Schwarz shows that,

[(Tz,z)| < T<| |||} < ||, (2.26)

and so w(T') < ||T'||. For the other inequality begin by writing T = A + iB where A and B are self-adjoint.
Note that w(T') = w(T™). We use the fact that for a self-adjoint operator A, || A|| = sup{|(4z,z)| : |lz| =
1} = w(A). We have,

ITII = JA+iB|| < |All+ B (2:27)
= w(d)+wB)=w (TzT ) +w (T;iT ) (2.28)
< w(T) + w(T*) + w(T) + w(T*) — 2u(T) 2.29)
< 5 .

The identity map 1 on any Hilbert space satisfies w(1) = 1 = ||1]|. To see that the best upper bound is 2 we
consider the operator defined on C2 by T [ :?j ] = [ g ] . We have,
H
Y

o

2

2 2
= H [ 0 ] H = oI’ <" +[yl* = ‘ , (230)

13
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2.10

2.15

and so |T|| < 1. By considering T [ (1) ] we see that ||T'|| = 1. Now suppose that [ z } has unit length and

consider, ) )
T z lzI"+yl” 1
= L 7 =, .
e 5][5 )=t < =505 @b

IT] < 20(T) <1 =|T], @32)

Hence,

which shows that the other inequality is sharp.

Let S be an operator system, 3 a C*-algebra and ¢ : S — B a linear map such that (1) is positive, |l¢o(1)|| =
loll- Give an example to show that  need not be positive. In similar vein, show that if M is as in proposition
2.12, (1) is positive, with ||¢(1)]| = |||, then @ need not be well-defined.

Solution: Let

A=[‘c1 Z] J=“ }]eMz (2.33)
and define  : My — My by
4 _|atec b+d
<p(A)-JA-[a+C b+d]. (2.34)

Since ¢ is left multiplication by J, we have ||| = ||¢(1)| = 2. Further ¢(1) = J > 0. To see that ¢ is not

positive consider
10 1 0
‘p[o 0]:[1 0]’ 2.35)

For the second part let M be the set of 2 x 2 upper triangular matrices and restrict the map ¢ in the previous
paragraph to M. Note that if a € M is self-adjoint but p(a) # ¢(a)*, then @ is not well-defined. Consider the

self-adjoint matrix
20 (2.36)
0 1{° ’

2 0 2 1
‘p[o 1]=[2 1]’ 2.37)

(Krein) Let S be an operator system contained in the C*-algebra A, and let ¢ : S — C be positive. Prove that
¢ can be extended to a positive map on A.

which is not self-adjoint.

and note that

which is not self-adjoint.

Solution: The fact that ¢ is positive tells us that (1) is a non-negative real number. If (1) = 0 then ||| <
©(1) = 0 and this map extends to the zero functional. Assume that (1) # 0 and let ¥(a) = p(1)"1p(a)
and note that 1) is a positive map on S with ||3|| = (1) = 1. By the Hahn-Banach theorem 1) extends to a
map v on A with ||[)|| = 1. 9 is a unital contraction and is therefore a positive map. The map ¢ defined by
@(a) = p(1)9(a) is a positive map which extends .

In this exercise we give an alternate proof of von Neumann’s inequality. We assume that the reader has some
familiarity with integration of operator valued functions. Let T' € B(H) with ||T'|| < 1 and, let p and g denote
arbitrary polynomials.

14



(@) Let P(¢,T) = (1 — e T)! + (1 — e*T*)"1 —
o (p(e") +a(e®))P(t, T) dt.

(b) Show that p(T") + ¢(T)* = 2_17;

(c) Deduce von Neumann’s inequality.

Solution:

1, and show that P(¢,T") > 0 for all £.

(a) We know that if |T|| < 1, then 1 — e~*T is invertible. Let R = =T and note that the adjoint of
S=(1-R)'is§* = (1— R*)~1. Let h € H and set k = Sh. Then,

(S + §* — 1)h, h)

= (Sh7 h) + <S*h7 h) - (h’h)

= (k,S7k) + (S7'k, k) — (57k, S k)

= (k,(1 = R)k) + ((1 — R)k,k) — ((1 — R)k, (1 — R)k)

= |Ikl* — |RE||* > o,

since R is a contraction.

(b) We know that if ||T|| < 1, then the operator 1 — e~#T is invertible with inverse given by,

o0
(1 _ e—'itT)—l — Z e—-intT'n.'

Let p(z) = ag + ... + ax2*. We have,

n=0

(2.38)
(2.39)
(2.40)
(241)

(2.42)

2w 2r 27 2w
/ p(e®)P(t,T)dt = / pe®) (1 —e *T) 1 dt + / p(e®)(1 — e*T*)~ 1 dt — / p(et)1dt
0 0 0 0

Consider the first term on the right side of (2.43),

27
/ p(e®)(1—e™*T) 1dt =
0

A similar calculation shows that,

27 .
/ p(ezt)(l _ eth*)—l dt =
0
oo k

=22

n=0m=0

15

2m .
/ p(e®
0

/27rp(eit) (i e—intTn> dt
0

n=0

0 27
Z / p(eit)e—intTn dt
0

n=0

oo k o
Z Z / Qi te—intm gy
4]

n=0m=0

2m(aol + 1T + ... axT*) = 27p(T)

n=0 n=0
27 . .
ame™e ™ dt = 21agl
0

(2.43)

(2.44)

(2.45)

(2.46)

247

o0 o0 2w
) (Z ei”tT*"> dt = Z / p(e)e™T* d42.48)
0

(2.49)



and

2T . or k .
/ p(e?)ldt = / Z aretldt = 2magl. (2.50)
0 0 m=0
Therefore,
1 2w .
— / p(e)P(t,T) dt = p(T). (2.51)
2r 0
The same argument can be used to show that
1 [
o(T) = = / @ P,T) dt. 2.52)
2T 0
(c) Suppose that p + § is positive, then the integral
— [ (pe") +a(e®) P&, T) e, 2.53)
2 0

is positive, being a limit of Riemann sums, each of which is a positive operator. This last statement follows
from the fact that P(¢,T) and p + g are positive. This proves Theorem 2.6 and von Neumann’s inequality
follows for operators T' with ||T|| < 1. We now prove the case |T]| = 1. Let 0 < 7 < 1 and note that
|IrT|| < 1. Thus for any polynomial p, [|p(rT)|| < ||p|lo.- Therefore,

(D)l = tim [lp(rT)] < [Iplloo - (2.54)

2.16 (Wermer) In this exercise we give an alternate proof of von Neumann’s inequality which is only valid for
matrices. We assume that the reader is familiar with the singular value decomposition of a matrix. Let T' € M,
with | T]| < 1 and write T = USV with U, V unitary and S = diag(s1, ..., x) a positive diagonal matrix,
0<s <1,4=1,...,n Define an analytic matrix-valued function T'(21,...,2,) = UZV where Z =
diag(z1,...,2n), |2i| £ 1,4 =1,...,n. Fix a polynomial p.

i) Let z,y € C™ and let f(21,...,2n) = (P(T(21,...,2,))z,y). Deduce that f achieves its maximum
modulus at a point where |2;] = ... = |2, = 1. Note that at such a point T'(z1, . . ., 2,) is unitary.
ii) Deduce that sup|,,j<1 [[P(T(21, . - - , 2n))]| is attained at a point where T(z1,- -, 2n) is unitary.
iii) Deduce that ||p(T)|| < sup ||p(W)|| over W € My, unitary.
iv) Show that for W unitary ||p(W)|| < |Ip|| -
v) Deduce von Neumann’s inequality for T' € M.

Solution:

i) Note that f is an analytic function. We have

sup |f(z1,..-,20)| = sup sup |f(21,...,2n)] (2.55)
z;|<1 |z,-|§1,i;é1 |21|SI
= sup |f(wi,z2,-..,20)|, (2.56)
|zi|517":#1

where w is a complex number of modulus 1, by the maximum modulus principle. Repeating this argu-
ment we see that f achieves its maximum modulus at a point where |z;| = 1 forallé = 1,...,n. In this
case the matrix Z is diagonal matrix with diagonal entries of absolute value 1, thus Z, and consequently
T(z1,.-.,2n) = UZV is unitary.
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ii) We have,

sup [|p(T(21,...,20))ll = sup sup {(p(T(z1,...,2n))z,y)| (257
|z:]<1 |2:]<1 z,yeCn
= sup sup |f(21,...,2n)|, (2.58)
z,y€C™ |z|<1
from which it follows by i) that the supremum occurs at a point where T'(zy, . . ., 2,) is unitary.

iii) Since the singular values of T satisfy 0 < s; < 1, we have,

(Dl = lIp(T(s1, ..., s))l| < sup [[p(T(z1, .- zn))| < sup (W) (2.59)

Zi|S

where the last inequality follows from part ii).

iv) If W is unitary, then p(W) is normal and so ||p(W)|| = r(p(W)) where r denotes the spectral radius. Let
A € o(W). Since the eigenvalues of W have modulus 1, |p())| < sup),j—; [p(2)| = ||pll, , and so

P (W)l = sup{lp(N)| : A € W} < |Ipll - (2.60)
v) By combining the results from parts iii) and iv) we get
()| < sup |lp(W)]| < [Ipllo - (2.61)
2.20 (Korovkin) Let f € C([0,1]) and let g(t) = (t — z)2.
i) Given € > 0, show that there exists a constant ¢ > 0 depending only on ¢ and f such that
|F(t) — f(z)] < €+ cge(t) forall 0 < z,t < 1. (2.62)
ii) Let ¢ : C([0,1]) — C([0,1]) be a positive map with (1) = 1. Show that
—€& — ¢p(9z)(z) < (f)(2) — f(2) < £+ cp(gz)(2), (2.63)

and deduce that [|o(f) — f|| < & + csup, [p(g2) ().

iii) Let ¢ : C([0,1]) — C([0,1]) be a sequence of positive maps. Prove that if ||, (f;) — fil| — 0 as
n — oo for fi(t) =',1=0,1,2, then [lpn(f) — f|| = 0 asn — oo forall f € C([0,1]).

Solution:

i) Since f is uniformly continuous we may choose § > 0 such that | f(t) — f(z)| < € for |t — z| < & with
t € [0,1]. Let M = sup{|f(¢)| : ¢t € [0,1]}. For |t—=z| < & we have |f(t) — f(z)| < € and for
|t — z| > & we have,

176) = 7@l < 2M < 22 g, (6) = cqult). 260

Combining these inequalities we get,

If(t) = F(@)] < & + cgat). (2.65)

17



ii) From (2.65),

—€l—cg; < f— f(z) <el+cyy. (2.66)
Applying @ to both sides of (2.66) and noting that ¢ is unital yields
—€ — cp(gz)(z) < p(f)(z) — f(z) < &+ cp(gz) (). (2.67)
Hence,
lo(f)(z) — f(2)] < €+ clo(gz) ()], (2.68)
and taking the supremum over z € [0, 1] yields,
lp(f) = fl < &+ esup le(gz)()] - (2.69)
iii) Note that,
©n(gz) — 9z = on(f2) — f2 - 2z(pn(f1) — f1) + mz(‘Pn(fO) — fo). (2.70)
Therefore,
lpn(gz) — goll < 6 max llpn(fi) - fill <€ 2.71)

for sufficiently large values of n. Note that g;(z) = 0 and so

lon(gz)(2)] = lon(gz)(z) — g=(z)| < €. (2.72)
Thus
llon(f) = fll < e+ csup lpn(gz)(2)] < (14 c)e, (2.73)
which shows @, (f) — f uniformly.

2.21 The Bernstein maps oy, : C([0,1]) — C([0,1]) are defined by

om0 =3 (7)1 (£) - @74)

k=0

s . . . t—t2
i) Verify that the Bernstein maps are positive maps with (1) = 1, pa(t) = t, pn(t?) = 2 +

ii) Deduce that |[pn(f) — f|| — 0 for all £ € C([0,1]).
iii) Deduce the Weierstrass theorem, i.e., prove that the polynomials are dense in C([0, 1}).

Solution:

i) Note that the quantity t*(1 — t)"~* is non-negative on [0, 1]. Thus if f > 0, then,

(Z) f (%) (1 — )"k, 2.75)

is non-negative. This implies that ¢, (f) > 0.
Denote by f; the functions f;(t) = t*. We have by the binomial theorem that,

en(1)(t) = (Z) -tk =(t+Q-t)"=1. (2.76)
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Now,

_ = (n 19_ k(1 _ s\n—k
on(f)t) = ’;) (k>f1 (n>t (1—t) 77
= (m\ k n—k
= —t*(1—t) (2.78)
I;) (k) n
_ - n\ k k n—k
-3 (k> a1 @.79)
k=1
o (n =\ kg ek
S (k_ l)t 1-1) 2.80)
k=1
it P |
= Z( )tk“(l—t)”‘l‘k (2.81)
k
k=0
n—1
=ty tha -t~k (2.82)
k=0
= tt+Q-t)" 1=t (2.83)
A similar calculation,
— = (n k_2 k(1 _ p\n—k
en(R)®) = 3 (, ) at" -1 (2.84)
k=0
— ~ (n—1 ZC_ k(1 _ s\n—k
-3 (k_ 1) Epri -1 (2.85)
k=1
=ty (Z: 1) gt’“"l(l —t)nk (2.86)
k=1
n—1
=ty (";1>$t’°(1—t)”-1-’“ (2.87)
k=0
n—1 n—1
=t (“; l)gtk(l—t)"‘l_k+t2%tk(l—t)"‘l‘k (2.88)
k=0 k=0
_ =15 -1\ _k o1k, E Sk n—1—k
= Ttk=0< B )mt (1-1) +;kz_ot (1-1) (2.89)
_rlpy L e ot 2.90)
n n

ii) We will make use of the results from exercise 20. Note that |¢n(fo) — foll = llen(f1) — f1ll = 0 and

- 2
llon(f2) = foll = H% < o 0 as m — oo. By the result in Exercise 20.iii this implies that

llon(f) — fIl — 0forall f € C([0, 1]).
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iii) From the part ii) of this exercise we know that the collection {¢,(f) : f € C([0,1])} is dense in
C([0,1]). This collection is contained in the set of polynomials and hence the polynomials are dense in

C([0,1]).

2.22 A sequence {an}%2, of complex numbers is called a Hausdorff moment sequence if there exists a positive

(finite) Borel measure p on [0, 1] such that a, = fol t" du(t) for all n. Setbpm = S5 (3) (—1)*aksm for all
n,m2>0.

i) Assuming the existence of such a measure p, show that b, ,, = fol t™(1 — t)™ du(t) and deduce that
necessarily b, ,, > 0 for alln,m > 0.

ii) Let 7 C C([0, 1]) denote the set of polynomials and define ¢ : P — C by setting ©(t") = a,,. Show that
if by, yp > 0 for all n,m > 0 then ¢ is a positive map.

iii) Prove that {a,}52, is a Hausdorff moment sequence if and only if b, , > 0 forallm,n > 0.

Solution:

i) We have,

n

L t’°+'" du(t) (2.91)

bnm = . (Z) ~1)*ag4m
(2"

I
NERANS

k=0
1 n
_ / tmz<> (=1)¢* du(t) 2.92)
0 k=0
1
= / t™(1 —t)™du(t) > 0. (2.93)
0

Since p is positive and the function f(t) = t™(1 — ¢)™ is non-negative on [0, 1].

ii) Let P; denote the set of polynomials of degree at most j and let f; € P; be defined by f;(t) = t/. We
begin by proving that each of the Bernstein maps ,, : P; — P;. Itis clear that ¢,(1) = 1 and so the
claim is true for j = 0. We proceed by induction. Assuming the result for all polynomials of degree
j — 1 or less we prove it for polynomials of degree j. Since ¢y, is linear for all n we need only check that
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vn(f;) € P;. We have,

enlf)E) = g <Z) Ji (;2-) (1 - 1) 2.94
= kzn: (:) gtk(l — )k (2.95)
=
- kz: (’;: 1) g;t"u —t)ynk (2.96)
- t::: <Z B i) %t’“-l(l —tynk (2.97)
=t
- tg‘j (”; 1) Ug;—i)lj—ltk(l — g)n-1-k (2.98)
= tomalam)®) 299)

1\’7!
where gn, ;(t) = (t + ;) € Pj_1. By the induction hypothesis ¢n_1(g) € P;—1 and so pn(f;) =
f1on-1(gn;) € P;.

We also have,

0< bom = Z(Z)(—l)’“ak+m (2.100)

k=0
= Z(Z)(—l)kcp(tk+m) (2.101)

k=0
= oftm (")(—1)’%" 2.102)

k=0 k

= pE™(1-t)") (2.103)

This shows that if f > 0 then,
wounMO =3 (1)1 (£)ettta-0m4 =3 (})f(£) e z0. @109
k=0 k=0

Now assume that f € P and suppose that f has degree j. We have seen that ¢, (f) € P; for all n. The
map |p; being a linear map on a finite dimensional space must be continuous. Therefore,

¢(f) = ¢(im @,(f)) = Lm o(pn(f)) 2 0. (2.105)

ili) We have seen in part i) that if {a,}22 is a Hausdorff moment sequence, then b, ,,, is non-negative.
For the converse assume that by, ,,, is positive for all n, m > 0 and note this implies that the linear func-
tional ¢ : P — C is positive. By Exercise 2.2, ( has a positive extension to the closure of P, which is
C([0,1]). The Riesz representation theorem implies that there is a positive (finite) Borel measure such

that .
an = o(t") = / £ dut). 2.106)
0
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CHAPTER 3: COMPLETELY POSITIVE MAPS

3.1 Prove that ||, || < ||¢k|| for n < k and that if y is positive, then @y, is positive.
Solution: Note that the map @ : M,,(A) — M (A) defined by,

AO]

(4) = [ a0 G.1)

is a one-to-one, *-homomorphism. This allows us to identify M,,(4) as a C*-subalgebra of M} (.A). Under this
identification ,, is the compression, to M, (A), of yy. It follows that ,, is positive whenever ¢y, is positive
and that [|n|| < [Jkl-

3.2 Let P,Q, A be operators on some Hilbert space H with P, () positive.

P A
A Q

ii) Prove that [ ;, Z’ ] is positive in M3(.A) if and only if a*a < b.

i) Show that [ ] > 0if and only if |(Az, y)|> < (Py,y) (Qy,y) for all z,y in H.

P A
A Q
0<((P+ A"+ A+ Q)z,7) < (V(Pz,z) + /(Qz, 2))?, (3.2)

and hence [P + A+ A* + Q| < (|P|I* + [|Q|I*)*/2.

P A
A* P

iii) Show that if [ ] > 0 then for any z in H, we have that

iv) Show that if [ ] > 0, then A*A < ||P|| P and in particular ||A|| < ||P||.

Solution:

i) Let z,y € H. We recall the fact (Exercise 1.3) that the operator matrix ((T;;)) is positive if and only if
for any choice of n vectors 1, . . ., Zn, the scalar matrix ((T; ;z;, z;)) is positive. Using this we see that

P A
[ A Q] (3.3)

(Py,y)  (Az,y) ]
. 3.4

|t ant G
A 2 x 2 scalar matrix is positive if and only if it has non-negative trace and determinant. Since P, () are

positive the matrix in (3.4) has positive trace. Thus, positivity of (3.4) is equivalent to the matrix having
non-negative determinant. i.e.,

is positive if and only if the matrix

(Py,y) (Qz,2) > (Az,y) (A*y, o) = (Az,y) (y, Az) = |(Az,y)|*. 35
ii) We can assume that A4 is a C*-subalgebra of B(H) for some Hilbert space H. We know that
1 A
[ A* B ] 20 (3.6)
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if and only if |(Az,y)|* < (y,y) (Bz, z). Setting y = Az yields
|(Az, Az)|* < (Az, Az) (Bz,z), (3.7)

and so (A* Az, z) = (Az, Az) < (Bz, x), which proves that A*A < B.
Conversely if we know that (A* Az, z) < (Bz,z) then by multliplying both sides by (y,y) and using the
Cauchy-Schwarz inequality we get,

(Az,y)[* < (4z, Az) (v, 9) < (Bz,2) (y,9). (3.8)
iii) Notice that,

. _ P A z T

(P+A +A+Q)m,z)—<[A* Q][z}’[z]>20' 39
For the other ineqaulity we use the fact that |(Az, z)|* < (Pz, z) (Qz, z). We have,

(P+A"+ A+ Q)z,z) = (Pz,z)+ (A*z,z) + (Az,7) + (Q, T) (3.10)
< (Pz,z)+2/(Px,z)\/(Qz, 1) + (Qz, z) @3.11)
= (V(Pz,z)+/(Qz,z))? (3.12)
< (P2 el + QI 21l < (1PIY2 + QN2 llz(? .3.13)

which proves the other inequality. Since P + A + A* + Q is self-adjoint the last inequality implies that
1P+ A+ 4%+ QI < (I1PI + IQ)1*) /2.
iv) The positivity of

P A
[A* P] (3.14)

|(Az, Az)|* < (PAz, Az) (Pz,z) < |P|l (Az, Az) (Pz,x). (3.15)
It follows that (Az, Az) < ||P|| (Pz, x) which implies A*A < || P|| P and || A|| < || P

gives,

3.3 Prove a non-unital version of proposition 3.2.

Solution: Let S be an operator system, 5 a C*-algebra and ¢ : S — B a 2-positive map. Let a € S with
|la|] < 1. Since ¢ is 2-positive we have,

1 a|_1{ ¢1) ¢)
By 3.2.iii we have ||p(a)|| < |le(1)]].

3.4 (Modified Schwarz Inequality for 2-positive maps) Let .A and B be C*-algebras, ¢ : A — B 2-positive. Prove
that p(a)*p(a) < lle(1)]| ¢(a*a) and that [lo(a*B)|* < [lp(a*a)]l [lo(b*b)]].
Solution: If

P A
[ A Q ] 3.17)
is a positive operator matrix then,
(Az, Az)? < (PAz, Az) (Qz,2) < |P| (Az, Az) (Qz, z), (3.18)
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35

3.6

from which we get that A*A < || P|| Q and ||A|)* < ||P]| | Qll-

Notice that the matrix, .
1 a 1l a 1l a
[a* a*a]_[o 0] [0 0]20’ (3.19)
and since ¢ is 2-positive
1 a p(1)  (a)
= > 0. .
o(la wa]) =[S0 vom |20 20
From our observation in the first paragraph p(a)*¢(a) < |l¢(1)| ¢(a*a).
Next consider the matrix .
a*a a*b a b a b
[b*a b*b]_[o 0] [0 0]20' 321)

The 2-positivity of ¢ implies that the matrix,

p(a*a) w(a*d) | _ [ w(a*a) ¢(a®h)
[mwm mww]‘[wmwr wvw]zm

and s0 p(a*b)*¢(a*b) < [lp(a*a)l| (b*) and |lw(a*d)I* < lp(a*a)ll o (6b)]|
Let A be a C*-algebra with unit. Show that the maps Tr, o : M,(A) — A defined by Tr ((ai5)) = 21 i
and o((ai,5)) = 3.7 j=1 @i,;j are completely positive maps. Deduce that if l(ai ;)| < 1,then H2?J=1 ai j ” <n.

(3.22)

Solution: We identify A with a C*-subalgebra of B(H). Let E; be the operator in B(H, H™)) defined by
E;(R) = (0,...,h,...,0) where the h appears in the j-th entry. Let A = (A;;)7=1 be an element of
M, (B(H)). A calculation done in Exercise 1.2.iii shows that

E;AE; = A; (3.23)
and so n .
Tr(d) =Y Aii=Y  EfAE, (3.24)
i=1 i=1
which is completely positive.
Similarly,
n n n
o(A) = Y EfAE;=) Y EfAE; (3.25)
i,J =1 j=1
n n n n
= O BNAQ_E) = (Q_EyAQ_E)), (3.26)
i=1 j=1 i=1 j=1

which proves that ¢ is completely positive.

(Choi) Let A be a C*-algebra, let X be a complex number with |A| = 1, let Uy be the unitary element of M, (A)
that is diagonal with u; ; = A1, and let Diag : My, (A) — My (A) be defined by Diag((a;,;)) = (bi,;), where
bi’j = O, for< 7é ] and bi,i = Qi

(i) Show that Uz (a; ;)Ux = (M ai ;).
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(i) By considering the non-trivial n-th roots of unity, show that the map @ : M, (4) — M, (.A) defined by
®(A) = nDiag(A) — A is completely positive.

(iii) Show that the map ® : M,, — M, defined by ®(A) = (n — 1)Diag(A) — A is not positive.
Solution:

(i) Recall thatif D = diag(dy, ..., dp) then, D(a; ;) = (diai ;) and (ai;)D = (ai;d;). Note that if |A] = 1,
then X = A~L. Thus,

U3 (ai,5)Ux = (Niai i ¥) = (AN ay5) = (¥ Hay). (3.27)

(i) Let A = (a;;) and w = e2™/™ which is an n-th root of unity. Note that w,...,w™ ! are precisely the
non-trivial n-th roots of unity. Note that

- n ifl=0
kl
SH=t ) - @28

We claim that EZ;% U*. AU, = nDiag(A) — A. Noting that U; is the identity matrix, we have,

n—1 n—1
A+ UnAUp = Z Us AU = Y (W0 0a;) (3.29)
= k=0 k=0
n—1 o
= (Z wk(J_’L)a’i:j) = dia‘g(al,h ey an,n), (330)

which proves our claim. Since any map of the form A — X*AX is completley positive and sums of
completely positive maps are completely positive we see that A — nDiag(A) — A is completely positive.

(iii) Consider the matrix A which has 1 in every entry. Note that A is positive and that,

n-2 -1 ... -1
-1 n-2 ... -1
(n —1)Diag(A) — A = . . . . . (3.31)
| -1 -1 - n-=2
Now,
n-2 =1 ... =1 17 1 -1 1
-1 n-2 ... -1 1 1 -1 1
-1 -1 - n-2 1 ] 1 -1 1

which shows that (n — 1)Diag(A) — A is not positive, and hence is not completely positive.

3.7 Let A and B be C*-algebras with unit and let ¢, 5 : A — B be bounded linear maps with ¢ & 9 completely
positive. Prove that ||p2||,, < [le1(1)]].
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Solution: Define ¢, = @1 + @2 and ¢_ = 1 — py. Note that 1 = %(go+ + _) and so ¢ is completely
positive. Let A € M, (A) with ||A|| < and note (by Lemma 3.1.i) that

1 A 1 -A
[A* 1 ] and [—A* 1 ] (3-33)
are positive. Since ¢ and _ are completely positive we have,
1 A 1 -4 (P1)n(1)  (p2)n(4)
0< " . _)on . =2 * . 3.34
s (| 4 1)) rem| e T =2 8 G0 30

Applying the result of exercise 3.2.iv we get |[(©2)n(A)|| < [(p1)n(1)]| = |le1(1)]| since ¢ is completely
positive. Therefore ||p2|| 4, < [l01(1)]]

3.8 Let A be a C*-algebra with unit. Define T1,T3 : Mp(A) — Mp(A) by T1((ai;)) = (bi;), where b;; =
S orepai, bij =0, for i # j and To((as;)) = (cij) where ¢; ; = aj;. Fix k and [, k # [, and define U,ffl to be
1in the (k,!)-entry, £1 in the (I, k)-entry and O elsewhere.

(i) Show that

1 N
Ti(4) - T(4) = 5 > UL AUG,. (3.35)
k£l
(i) Show that .
Ti(A) + To(4) = 5 > U AU}, + Diag(A). (3.36)
k£l

(iii) Deduce that T} + T3 are completely positive and that ||T3|| , < n.
(iv) By considering, A = C, show that ||T3||, = n.

Solution:

(i) Consider first the case £ = 1 and note that

al,l e _al,l . 0
U fAUG = | =y -+ —a1q - O, (3.37)
| O e 0 ‘e 0 i

where a;; is in the (1, 1)-entry, and a; ; is in the (I, [)-entry. Therefore,

az2+...+apn —G21 -+ —Gn1
_a1,2 a1,1 v 0
>_Uij AUy, = : A (3.38)
141 : .
_al’n 0 cee al,l
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In general we have,

Ok k SN —Qk1 .o 0
DUSAUD = | ok - Tymig 0 —Gnk |- (3.39)
I#k : : :
L 0 o _ak,n see ak,k i

Note that for ¢ # j the element —a;; appears twice in the (%, j)-th place, once when ! = j and k = 7 and
once when [ = 7 and k = j. In the k-th diagonal entry we get 23 -, a;;. Thus,

2 e —2a21 - —2an1
n —2a1,2 2 ag - —2an2
> Uiy, = . Dot - " (3.40)
k=1 l#k : : . :
—2a1,n —20.2,71 cee 2 Zl;én ap
= 2(Ti(4) - T2(4)) (3.41)
(3.42)
(ii) Using similar ideas to the those used in the previous part we have that,
23 121010 2a2,1 e 2an,1
= 2012 2) 01y - 2an,2
> D UiTAUY = . SR ; (3.43)
k=1 l#k . : .. :
201,11 2042’71 e 2 21#11. a[’[
= 2(Ti(A) + T2(A) — Diag(A4)) (3.44)
(3.45)

(iii) Using the fact that maps of the type A — X*AX and A — Diag(A) are completely positive and that
sums of completely positive maps are completely positive we see that T; + T5 are completely positive.
From exercise 3.7 we get that

nl 0 .- 0
0 nl --- O

1Tl < ITHWI=\| . . .. . |[|== (3.46)
0 0 .-+ nl

(iv) Let A = (Ej3)7;o1 € Mn(My), where E;; are the matrix units in M,. We proved in exercise 1.7
that A was unitary and that %(E,-J')?J=1 = 1(T3)n(A) was a rank one projection. Thus, ||(T2).| >
|(T2)n(A)|| = n which proves that || T3], > n. Combining this with the estimate from the previous part

of this exercise we get || T3|| , = n.

3.9 Let A be a C*-algebra and let .A° denote the set .A with the same norm and *-operation, but with a multiplica-
tion defined by a o b = ba.

(i) Prove that A% is a C*-algebra.
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(ii) Prove that M, and M,” are *-isomorphic via the transpose map.
(iii) Show that the identity map from A to AP is always positive.

(iv) Prove that the identity map from Mj to M, is not 2-positive.

(v) (Walter) Let U, V, and X be elements of .4 with U, V unitary. Prove that

1 U X
ur 1 Vv |20 (3.47)
X* v 1

ifand onlyif X =UV.
(vi) Prove that the identity map from .4 to A is completely positive if and only if .4 is commutative.

Solution:

i) Itis straightforward to check that A is a *-algebra. The C*-identity follows from
lla* 0 afl = llaa”|| = ||(a*)*a*|| = lla*|I* = llal|*. (3.48)
ii) Itis clear that 7 : M2 — M;P defined by m(A) = AT is a linear map that preserves the *-operation. We
check that this map is a homorphism:
7(AB) = (AB)T = BTAT = AT 0 BT = n(A) o n(B). (3.49)
iii) Suppose that A is positive in .4, then A = B*B for some B. Thus, A = B o B* = (B*)* o B* which
shows that A is positive in AP, and so the identity map is positive.

iv) Note that the map 7 : My” — M is a *-isomorphism and is therefore completely positive. If the identity
map id : My — M,? were 2-positive, then id o 7 : My — M, would be 2-positive. Note that the matrix

B Eip
A= ! ’ 3.50
[ Exy Eap ] (3:50)
is positive in Ma(M>), but that
idom(4) = [ gi; gz; ] ! @3.51)

is not positive. This contradiction shows that id is not 2-positive.
(v) We present 2 proofs of this result.

Proof 1. Note that an element a of a C*-algebra A is positive if and only if z*az is positive for all z € A
Using this fact we get,

1 U X T U* 00 1 U X][U 00
U 1 V|20 < |0 10||U* 1 V]|{010|>0 (35
X* v o1 0 0 1] [ x* V1 0 01
1 1 U*X
— 1 1 V |20 (3.53)
XU v* 1
1 1 0 1 1 U*x][1 1 0
— |1 -10 1 1V 1 -1 0 |>@.5%
(0 0 1] XxU V- 1 0 0 1
T4 0 U*X +V
= 0 0 U*X-V | >0 (3.55)
| X*U+V* X*U-V* 1
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(vi)

It follows that the lower-left 2 x 2 corner of this matrix must also be positive, and so
0 Urx -v
xXU-v 1
which implies by exercise 3.2.i that U*X — V =0 or X = UV, since U is invertible.

Proof 2. Cholesky lemma: Suppose that P € B(H), B € B(K) and A € B(K,H) where H and K are
Hilbert spaces. If P is positive and invertible, then the operator matrix

P A
[ e B] (3.57)

is positive if and only if B — A* P~ A is positive.
Proof of the lemma: Assume that B is invertible .The matrix in (3.57) is positive if and only if

] >0, (3.56)

P12 ¢ P Al[PY2 o 1 P-1/24B-1/2
0 BY2||[4a B 0 B~Y2 |~ | B-l/24*p-1/2 1 20
(3.58)
which by Lemma 3.1.i happens if and only if
B124*p-1/2p-1/24B-1/2 < 1 (3.59)
which is equivalent to
A*P'ALB. (3.60)
In the case where B is not invertible we consider the invertible operator B + 1, with £ > 0, and note that
the matrix P 4
R

is positive if and only if B + €1 — A*P~' A > 0. We now have our result by letting € — 0.

If we apply this result to the matrix in (3.47) with P =1, B = [ 1}* XII}A= [U X ] weget,
[ 1 Vv U*
0 < |y 1]—[X*][U X ] (3.62)
[ 1-U'U V-U*X
= |v-xwv 1—X*X] (3.63)
[0 V-UX
= | v-xw 1—X*XJ' (3.64)

Once again by exercise 3.2.iwehave V —U*X =0or X =UV.

Note that if A is commutative then A%’ = A and the identity map from a C*-algebra to itself is completely
positive.

For the converse we use the fact that the unitary elements span a C*-algebra. Let U,V be two unitary
elements in A. If the identity map is completely positive then

1 U UV
U 1 Vv (3.65)
ViUt vl

is positive in A%’ and so UV = U o V = VU, by exercise 3.9.v. Thus, any two unitaries in .A commute
and so A is commutative.
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COMPLETELY BOUNDED MAPS AND OPERATOR ALGEBRAS
CHAPTER 4: DILATION THEOREMS

4.1 Use Stinespring’s representation theorem to prove that VI = llell » When @ is completely positive. Also, use
the representation theorem to prove that p(a)*p(a) < ||l¢(1)|| ¢(a*a)

Solution: We first note by proposition 3.6 that ||¢(1)|| = |||l = |l¢ll- By Stinespring’s theorem we have
@(1) = V*V and so | p(1)|| = [V*V]| = |[V||>. We also have,

e(a)*p(a) = (V*n(@)V)'V*r(a)V =V*1(a)*VV*r(a)V 4.1)

< WVIPV*r(a)*n(a)V = |V|? V*r(a*a)V 4.2)

= lle(@)l pla*a). (4.3)

4.2 (Multiplicative Domains) In this exercise, we provide an alternative proof of theorem 3.19. Let A be a C*-
algebra with unit and let ¢ : A — B(H) be completely positive, ¢(1) = 1, with minimal Stinespring repre-
sentation, (7, V, K).

@
(ii)

(iii)

Prove that ¢(a)*p(a) = p(a*a) if and only if V'H is an invariant subspace for w(a).

Use this to give an alternative proof that {a € A : p(a)*¢(a) = p(a*a)} = {a € A : p(ba) =
(b)p(a) for all b € A}. Recall that this set is the right multiplicative domain of .

Similarly show that ¢(a)*p(a) = ¢(a*a) and p(a)p(a)* = p(aa*) if and only if VH is a reducing sub-
space for w(a). Deduce that the set of such elements is a C*-subalgebra of .A. Recall that this subalgebra
is the multiplicative domain of .

Solution: Note that since ¢ is unital, V' is an isometry and VH is a closed subspace of K. The fact that
o(a) = V*n(a)V shows us that, relative to the decomposition K = V'H & (V'H)L, 7(a) is the operator matrix

@

(ii)

(iif)

_ | vla) Ala)
m(a) = [ B(a) C(a) ] . 4.4)

Observe that the invariance of V'H under 7(a) is equivalent to the requirement that B(a) = 0. As wis a
*-homomorphism we know that w(a*a) = 7(a)*m(a) or in terms of the (1, 1) entry of the corresponding
operator matrices

p(a*a) = p(a)*p(a) + B(a)*B(a). 4.5)
It is clear from this that ¢(a*a) = y(a)*(a) if and only if B(a)*B(a) = 0 if and only if B(a) = 0.
If p(ba) = p(b)p(a) for all b € A then by setting b = a* and noting that ¢ is self-adjoint we see that
p(a*a) = p(a)*p(a). Conversely assume that p(a*a) = p(a)*p(a) and that b € A. By equating the
(1,1) entries of 7(ba) and 7(b)7(a) we get,

p(ba) = ¢(b)(p(a) + A(b) B(a) = ¢(b)p(a)- (4.6)

From part 4.2.(i). we have that p(a)*¢(a) = ¢(a*a) and p(a)p(a)* = @(aa*) if and only if VH is
invariant under both 7(a) and 7(a*) if and only if V'H is reducing for 7(a).

Note that a is in the multiplicative domain of ¢ if and only if V'H is reducing which happens if and only
if the (2,1) entry of both 7(a) and w(a*) are 0. This is the collection of 7(a) that are diagonal, which is
a C*-algebra. Since the multiplicative domain is the inverse image of this set under = we see that it is a
C*-subalgebra of A.
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4.3 (Bimodule Maps) Let A, B and C be C*-algebras with unit and suppose that C is contained in both .4 and B
with 1¢ = 14 and 1¢ = 1g. A linear map ¢ : A — B s called a C-bimodule map if p(c;acy) = cip(a)es for
all ¢1,c2inC. Let p : A — B be completely positive.

(i) If p(1) = 1, the prove that ¢ is a C-bimodule map if and only if ¢(c) = c for all ¢ in C.

(ii) Prove, in general, that ¢ is a C-bimodule map if and only if ¢(c) = cyp(1) for all ¢ in C. Moreover, in this
case, ¢(1) commutes with C.

Solution:

(i) See4.3.(ii).

(ii) We give a proof of part (i), and part (i) will follow as a special case. Assume first that ¢ is a C-bimodule
map. We have,

o(c) = p(c1?) = cp(1)1 = ep(1). C))

Similarly ¢(c) = ¢(1)c.
For the converse assume ¢(c) = cp(1) for all ¢ € C. Note that by taking adjoints we get ¢(c*) = p(1)c*.
Since C is self-adjoint it follows that ¢(c) = ¢(1)c for all ¢ € C. We assume that B = B('H) for a Hilbert
space H. Let 7 be a Stinespring dilation of ¢ on a Hilbert space K and let V : H — K be the associated
linear operator. We will adopt the notation used in Theorem 4.1 (Stinespring’s Dilation Theorem). We
note that C is a C*-subalgebra of B(H) and begin by proving that Ve = w(¢)V. Let h € H and note that
Ve(h) =1®c(h)+ N and n(c)V (h) = 7(c)[1 ® h + N] = ¢ ® h + N. Thus equality will follow if we
show that 1 ® c¢(h) — c® h € N. We have,

(1®ch)—c®h,1®c(h)—c®h) = (1®c(h),1®c(h))+ (c®h,cQh) 4.8)
—(c®h,1®ch)— (1Qc(h),c®h) 4.9)
= (p(1)c(h), c(h)) + (p(c*c)h, k) (4.10)
~ (p(c)h, c(h)) — (p(c*)c(h), h) @.11)
= (p(1)c(h), c(h)) + {@(1)c*c(h), h) (4.12)
— {p(D)e(h), c(h)) — (p(1)c*c(h),h) =0 (4.13)
Note that by taking adjoints we have cV* = V*r(c) for all ¢ € C. Now,
plciacy) = V*r(aac)V = V*r(e)w(a)w(c)V (4.14)
= aV*'m(a)Ve = crp(a)cs. 4.15)

4.4 Let Dy, be the C*-subalgebra of diagonal matrices in M,,. Prove that a linear map ¢ : M,, — M, is a D,-
bimodule map if and only if ¢ is the Schur product map, St, for some matrix T'.

Solution: Let J be the matrix all of whose entries are 1 and let T' = (¢;,;) = ¢(J). Let {E;;}7,_; be the set
of matrix units for M,,. We have,

©(Ei;) = ¢(Ej;JEiz) = Ejj0(J)Ei; = ti jE;j =T o Ey 5. (4.16)

By linearity ¢ must be the Schur product map St.
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CHAPTER 5: COMMUTING CONTRACTIONS

5.1 Prove that if (V1,K;) and (V3, K3) are two minimal isometric dilations of a contraction operator T" on H, then
there exists a unitary U : C; — K3 such that Uh = h forall h € H and UV, U* = V5.

Solution: Since (V;, K;), 7 = 1,2 are minimal isometric dilations we know that
={Vh : he H,n >0} .1
is dense in KC;. Define amap U : H; — Ha by

N N
U ( > Vlkhk> = > Vih (52)
k=—N

k=—N

We claim that U is an isometry. It follows from this that U has a unique extension to an isometry from K; — Ks.
We will denote this extension by U. As the range of U is dense in Kz, U is unitary. Since Vj is a dilation of T

on K;,
{1
VT‘=[T *], (5.3)

J * %
relative to the decomposition K; = H @ M. It follows that if h, k € H then <Vj"h, k:> = (T™h, k). We have,

2

= 3 (VEh Vi) + 3 (Vih, Vit ) (55)
k<l k>l

= 3 (e VEFm) + > (Vi ) 5.6)
k<l k>l

= > (he T h)+ > (75 g, ) 5.7)
k<l k>

> <hk,Vf“"h;>+I§< VEhe, ) (5.8)

= (i Vl’“hk) (59

k=—N

Now,

N N
Vi ( > V{“hk) = (Z Vzk"‘lhk) (5.10)

k=-N k=-N
N
= ( > Vzkhk) (5.11)
k=—N
N
= WU ( > Vl’“hk) : (5.12)
k=—N
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52

53

Therefore UV}, = VoU on the dense subspace H;. It follows by a limit argument that UV; = VoU or UV1U* =
Va.

Let H; and H» be Hilbert spaces, let A, € B(Hi,Hz) be a sequence of operators and let A = (Aiy;) :
£2(H;) — £2(Hz) be the corresponding Hankel operator. Prove the analogue of Nehari-Page in this setting.

Solution: Let H = H; @ Ha, A = (Ai+j) and let

. 0 0
An = [ A 0 ] € B(H). (5.13)

By the Nehari-Page theorem the Hankel matrix A = (fi,-ﬂ-) is bounded if and only if there exists

. *

A, = |: A ] (5.14)
for n < 0 such that |Bllcc = SUPgereq ||Brllc < 00 where B () = S __ A,rl"lei®, Further
(Ai+5)] = | Bllco- Let B = 3" ___ Anei™. Since B; is a compression of B, we have that

IB| = sup |IB;|l < sup ||B:|| =B < co. (5.15)
0<r<1 0<r<1
All that remains to be shown is that for this choice of Aj, ||(Ait;)|| = ||Bll- We have already proven

that || B||,, < ||Blleo- We can identify the Hilbert spaces £2(H; @ Ha) and £2(H;) @ £2(Hz) by the map
(hg) ) h$,2)) — (hﬁll)) @ (h,(f)). The operator A is identified with the operator 2 g ] and so || A = ||A].
Since A is a compression of the multiplication operator Mp we always have ||(Ai;)|| < ||MB|l = || Bl -

(Caratheodory’s Completion Theorem) Let ay, . . ., a,, be in C. Use commutant lifting to prove that

ap 0 e 0
n o0

“ =inf Y a2+ Y 0| (5.16)
j=0 j=n+1 .

a, --- ai ap

where the infinum is over sequences {b;} such that the resulting power series is bounded on D and the co-
norm is the supremum over ID. Moreover, there exists a sequence {b;} where the infimum is attained. Thus,
a polynomial can be completed to a power series whose supremum over the disk is bounded by 1 by adding
higher order terms if and only if the norm of the corresponding Toeplitz matrix is at most 1.

Deduce that the map

© 0 - 0
y . )

o~

7
fer=me | 1 € Moy, 5.17)

T 0
fn) - f(1) f(0)
yields an isometric isomorphism of H*°(T)/ei("+1)¢ I°(T) into M,,1. Generalize this to the case where
Ao, ..., Ay are operators in a (separable) Hilbert Space.
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Solution: Denote the matrix on the left side of (5.16) by R and let

0 «++ +ov «on 0
1 - :

S=|¢g . - D | € Mpqa. (5.18)
(0 -~ 0 1 0

Note first that the minimal unitary dilation of S is the operator U on L?(T) given by (U f)(e¥) = &' f(e).
We have

0 - --- 0
SR=RS=| % o1, (5.19)

Qp-1 **° ap 0
and so by the commutant lifting theorem there is an operator V commuting with U, with ||V|| = ||R|| such that

RS™ = PyVU™|y. Since V commutes with U, V' is multiplication by g € L. If m < 0, then,
(g,6™) = (V1,U™1) = (VU™™1,1) = (PyVU™™1,1) = (RS™™1,1) = 0. (5.20)

Therefore, g(e®) = % ; axet*®. Let T, denote the Toeplitz operator associated with g acting on H%(T). We
have,

VBl = V1= 1Tl = gl 7y = Doy = 508 |5 07| (5.21)
z =0

Let {b;} be a sequence of complex numbers such that h(z) = Y5 g a;27 + 352, ., bz’ defines a bounded
function on . Let T}, be the corresponding Toeplitz operator on H?(D) and note that R is the compression of
T}, to the subspace spanned by 1, 2, . . ., 2. Therefore || R|| < ||T%||. Combining this with (5.21) we see that,

n [0 o]
IR| = inf || ajz? + ) bz . (5.22)
j=0

j=n+1 oo

Let f,g € H®(T), let ® : H®(T) — My be the map

f € H®(T) — f'l) e € Mpy. (5.23)
: K . 0

Fmy - F) 70

Since m(k) = f(k) + g(k) and af(k) = af(k) we see that ® is linear. To check that @ is in fact a
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homomorphism we take note of the fact that E(k) = ;?:0 f( 7)g(k — ) and compute,

O T go) 0o -~ 0
o(f)o(g) = f(:l) (; g(:l) (:) (5.24)
| ) - ) PO | L) - s a0
[ F(0)3(0) 0 0
_ | fogo+fosn : (5.25)
: 0
L f(n)g(0) + ...+ F(0)g(m) - F(1)5(0) + F(0)g1) F(0)g(0)
= ®(fg) (5-26)
The kemel of ® is the set of functions f € H(T) such that f(0) = ... = f(n) = 0, which is precisely

e(n+1)6 froo(T). Therefore, H*(T)/e!("*+1)6 H°(T) is isomorphic, via &(f + "+ Ho(T)) = &(f),toa
subalgebra of M.

Finally,
[en)| = we{if+ 9l : g € 2 m=(m)} (5:27)
= inf Xn:f(j)zj + i b2 i b;z! € H®(D) (5.28)
§=0 j=n+1 j=n+1
foo o .- 0
=[] : (5.29)
o
fn) -+ f(1) f(0)

5.4 Let {T1,...,T,} be contractions on a Hilbert Space H (possibly non-commuting). Prove that there exits a
Hilbert space X containing H and unitaries {U1, ..., Uy} on K such that

T . T = PyUR . Ufm |y, (5.30)

where m, k1, . . ., km, are arbitrary non-negative integers,and 1 < 4 < m,forl =1,...,n.

Solution: We begin by recalling the construction used in Bz.-Nagy’s dilation theorem. Given a contraction T’
on a Hilbert space we construct an isometric dilation V on £2() by defining

V(hi,ha,...) = (Thy, (1 — T*T)Y2hy, by, ks, . ..). (5.31)

We can dilate an isometry V on a Hilbert space H to a unitary U on H & H by

V 1-V*V
U—[O e ] (5.32)

If we combine these two constructions we see that a contraction 7' on H can be dilated to a unitary U on
2(H) © £2(H).
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Given a collection of contractions T3, . . ., T, dilate them as above to Uy, ..., U,. Let h € H and note that,
UF((0,0,...) ® (1,0,...)) = (0,0,...) ® (Tfh, %,%,...). (5.33)
It follows from this that,
UB LU ((0,0,..) @ (h,0,..)) = (0,0,...) & (Tf ... Tfmh, %,%,..). (5.34)
Therefore T} ... T¥™h = PyUf ... Ufmh.

(Schaeffer) Let T be a contraction on a Hilbert space H, let £3(H) = Y o> _ . @H denote the Hilbert space
formed as a direct sum of copies of H indexed by the integers Z. Define an operator matrix U = (U; ;) by
setting Upp = T, Upy = (1 — TT* /2, U_190 = (1 — T*T)/2,U_11 = T*, Uppny1 = 1, forn > lor
n < —2 and U; ; = 0 for all other pairs (3, j). Prove that U defines a unitary operator on 2 (H) and that if we
identify H with the 0-th copy of H in £3(*), then T™ = Py U™ |y for all non-negative integers n.

Solution: We can check by a direct calcuation that all the diagonal entries of UU* and U*U are 1, and that all
other entries, except the (—1,0) and (0, —1) entries are 0. We find that both the (—1, 0) entry of UU* and the
(0, —1) entry of U*U are (1 — T*T)Y/2T* — T*(1 — TT*)/2 while both the (0, —1) entry of UU* and (—1,0)
entry of U*U are T(1 — T*T)Y/2 — (1 — TT*)'/?T..

Thus to prove that U is unitary we need to check that T'(1 — T*T)Y/? = (1 — TT*)'/2T. Since T is a
contraction 1 — T*T and 1 — T'T* are positive operators whose spectrum is contained in the interval [0, 1].
Let f : [0,1] — R denote the function f(t) = /1 —t. Choose a sequence py of polynomials defined on the
interval [0, 1] such that ||p, — f||,, — 0 as n — oco. Note then that T'p,(T*T) = p,(TT*)T and so via the
continuous functional calculus,

T(1 - T*T)/? = lim Tpn(T*T) = lim pn(TTH)T = (1~ TT*)'/?T. (5.35)
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CHAPTER 6: COMPLETELY POSITIVE MAPS INTO M,

6.1 Let A be any unital C*-algebra. Give an example of a linear functional, s : M,,(A) — C, such that s is unital
and positive, but such that the associated linear map , @, : A — M, has norm n.

Solution: We first consider the case when .A = C and the linear functional s : M,, — C defined by

s((aij)) = = Z @i,j- (6.1)

i,j=1

We have seen in chapter 3 that this functional is positive and unital. We have,

ws(a)ij =ns(a® E; ;) = a. (6.2)
Thus,
1 .-+ 1
ps@) =a| : - ], (6.3)
1 .- 1
which implies,
lps(a)ll = aflJ]| = an, (64)

and 50 |5 | = 7.
For a general C*-algebra A choose a state sg of this algebra and define a linear functional s by

n

1
s((aiz)) = " Z 0(aiz)- 6.5)

Recall that the map o : M,,(A) — A defined by

((aiy)) Z aij, (6.6)

:.7_1

is completely positive. With this notation s = - (s0 © o) which, being the composition of two positive maps, is

positive. We have
n

s(1) = % > s0(0:,;1) = 1. 6.7)

so(a) -+ so(a)
ps(a) = : : . (6.8)
so(a) -+ so(a)

It follows that {|s(a)|| = so(a)n. Since sp is a state ||so|| = 1 and 50 ||| < n. By setting a = 1 we get that
llps|| = n.
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62 Let p : S — M, be positive and set (1) = P. Let Q be the projection onto the range of P and let
R be positive with (1 — Q)R = 0, RPR = Q. Let 9 : S — M, be any positive, unital map and set
¢'(a) = Rp(a)R + (1 - Q)¥(a)(1 - Q).

(i) Show that ¢’ is a unital, positive map.
(ii) Show that is (a; ;) is positive in M,(S), but wi((as;)) is not positive, then ¢ ((ai,;)) is not positive
either.
(iii) Deduce the equivalence of i) and ii) in Theorem 6.6.

Solution:

(i) Suppose that a > 0. Since ¢ and 4 are positive, ¢(a) and 1(a) are positive. Since R and (1 — Q) are
self-adjoint Ryp(a)R and (1 — @)v(a)(1 — Q) are positive and so ¢'(a) is positive. We have,

¢'(1) = Rp(1)R+(1-Q)1)(1-Q) 6.9
= RPR+(1-Q)?%=Q+(1-Q)=1 (6.10)
(ii) We claim that range p(a) C range P for all a € S. Indeed if A, B € B(H) are two positive operators

such that A < B, then ker B C ker A. To see this assume that Bh = 0 and note that this implies that
(Ah, h) = 0. Thus,

0 = (Ah,h) = <A1/2h,A1/2h> - ||A1/’-’-hH2. 6.11)

Hence, Ah = AY/2(AY2h) = 0.

The fact that ¢ is positive implies that ¢(a) < ||a]| P for @ > 0. It follows that ker (a) 2 ker P, which in
turn implies on taking orthogonal complements that range (a) C range P. Therefore, since ¢ is linear
and every element of S is a sum of at most 4 positive elements, range () C range P forallz € S. If
z € C™, then we may write z = z 4y with = € range P and y € ker P. Since range @(a) C range P we

have
(pla)z, z) = (p(a)z, z) . (6.12)
Let (a;j) € Mg (S) be positive and assume that ¢((a; ;)) is not positive. By our observation in (6.12)
we can choose 71, ..., Z, € range P such that,
k
> (plai)zs, ) 2 0. (6.13)
i,j=1
Set z; = PRx; € range P,
k k k
S (¢ @ig)zz) = D (Relaig)Rej,z) + (- Qlai)(1 — Q)zj, ) (6.14)
i,g=1 ij=1 i,j—l
k
= Z (p(a; )Rz, Rz;) + Z (ai;)(1— Q)z, Qz) (6.15)
i,j=1 ,3_1

1
:M?r

( (al,J)szyQ-'L'z + Z "/)(az,] )Zjan'L) (6.16)

1,7=1

=

[
|
—

(p(aig)zj, i) 2 0. 6.17)

=

s
I
—

I
M-
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6.3

6.5

6.6

(iif) Clearly (i) implies (ii) in Theorem 6.6. Now assume that every unital, posiitve map ¢ : S — M, is
completely positive and that 1) : S — M, is a positive map. By the previous part of this exercise we can
construct a unital, positive map 1)’ such that 1 is k-positive whenever ¢ is k-positive. By our hypothesis
1 is completely positive and so v is completely positive.

Assume that the equivalent conditions of Theorem 6.8 are not met. Show that then there always exists a unital,
positive map ¢ : § — M which is not contractive.

Solution: If the equivalent conditons of theorem 6.8 are not met then there exists an element = of norm at most
1 and a positive map ¢ such that ||p(z)|| > ||¢(1)]|. It follows that

o(1) ¢(z) ]
) 6.18
e ©19
is not positive. Construct a positive unital map o’ from ¢ as in exercise 6.2.(i) and note that
¢'(1) ¢'(a) ]
) 6.19
oo S ©1
is not positive by exercise 6.2.(ii). Hence, ||¢'(z)|| > ||¢'(1)|| = ||1|| = 1. Thus ¢’ is unital and positive but

not contractive.
Let S be an operator system. Prove that the following are equivalent:

(i) For every C*-algebra B, every positive ¢ : S — B is n-positive.
(i) ST ® Mt is dense in M, (S)*.

Solution: (i) implies (ii): Let B = M, and note then that any positive map ¢ from S into M,, is n-positive. It
follows from theorem 6.1 that ¢ is completely positive and so by Theorem 6.6 S+ ® M} is dense in M, (S)*.

(ii) implies (i): We may assume that B = B(’H). By theorem 6.6 we know that any positive map ¢ : S — M,, is
completely positive. Let (a;,;) be positive in M, (S). We need to check that @, ((a; ;)) is positive in B(H™).
Let h1,...,hn € H and let F be the m-dimensional subspace spanned by {hs,...,h,}. Let ¢ : S — B(F)
be the compression of ¢ to F. If we identify M, with B(F) and note that M,, can be identified with the
subalgebra of M,, via

AEMmr—»[g g}EMn; (6.20)
then we see that ¢ is n-positive by ii). Therefore,
n n
> (plasghs,ha) = 3 ((ai)hs,hi) 2 0. 621)
ij=1 ij=1

Use corollary 6.7 to give an alternate proof of the fact that every positive map with domain C(X) is completely
positive.

Solution: Let F € My(C(X))*. Since X is compact we may choose a finite cover of open sets {U; L, for
X and sequence of points z; € U; such that ||F(z) — F(z;)|| < € for all z € U;. Let p; be a partition of unity
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subordinate to the cover U;. Note that if p;(z) # 0, then || F(z) — F(z;)|| < €. It follows that,

F(z) - (?;pj@’F(mj))(w) - F(x)—gmmw(xj) 62)
- j i(@)(F(@) - F(z,) 623
< gmj(z)w(x) — ;) ©24)
_ j:pj@) |F(@) - F(a;)l < (625)

We have shown that C(X)* ® M} is dense in M,,(C(X))™" and so by corollary 6.7 every positive map with
domain C(X) is completely positive.
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CHAPTER 7: ARVESON’S EXTENSION THEOREMS

7.1 Let X and Y be Banach spaces and for f € X*, g € Y*, define Ly, € B(X,Y*) by Ly (z) = f(z)g.
By considering these operators prove that the map j : X ® Y — B(X,Y™*)* defined in this chapter has the
following properties:

(i) j is linear,
@) (i)l ==zl llyl,

(iii) 7 is one-to-one.

Since j is one-to-one, the identification of X ® Y with j(X ® Y') endows X ® Y with a norm (rather than just
a seminorm). Conclude that Z, of Lemma 7.1, can be identified with the completion of X ® Y with respect to
this norm.

A norm on the tensor product of two normed spaces that satisifes ||z ® y|| = ||z|| |y|| is called a cross-norm.
Solution:

(i) We define j : X ® Y — B(X,Y*)* as j(z ® y)(L) = L(z)(y) and extend this map linearly, which
guarantees that j is linear.

(ii) Suppose that L € B(X,Y™*). We have,

li(z @ y)(L)| = |L(z) )| < IL)I Iyl <[]l 1yl - .

It follows from this that ||5(z ® y)|| < ||z|| |ly||. To prove the reverse inequality choose linear functionals
f € X*, g € Y* such that f(z) = ||z||, g(y) = ||y|. Note that,

iz ®y)(Lsg) = f(x)g(y) = llz| Iy, (72)

and so [|j(z ® y[| = [|z]| [lyll-

(iii) Letv € X ® Y and suppose that j(v) = 0. We can write, v = > * | z; ® y; where the set {z1,...,Tn}
is linearly independent. Choose linear functionals f; € X* such that f;(z;) = 6;;. Let g € Y* and

consider,
m
0=3j(v)(Lg;g) =Y filz:)aw:) = g(u;)- (7.3)
i=1
Thus g(y;) = 0 for all g € Y* which implies that y; = O forall j = 1,...,m. Hence v = 0 and j is
one-to-one.

7.3 Let A be an operator algebra contained in the C*-algebra B, let p : A — B(H) be a completely contractive,
unital homomorphism, and let 7; : B — B(K;),i = 1,2, define minimal B-dilations of p. Define completely
positive maps, @; : B — B(H), by ¢;(b) = Pym;(b)|n,i=1,2.

(i) Show that there exists a unitary U : K; — K3 with Uh = h for h in H, and U*na(b)U = = (b) if and
only if ¢1 = 3. Such dilations are called unitarily equivalent.

(ii) Show that there is a one-to-one correspondence between unitarily equivalent, minimal B dilations of p and
completely positive extensions of p to B.

(iif) Show that the set of completely positive extensions of p is a compact, convex set in the BW -topology on
CP(B,H).
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Solution:

(i) Assume first that such a unitary does exist. Since Uh = h for all h € H we see that U*h = h for all
h € H and so PyU* = P;; We have

p1(b)(h) = Pyumi(b)(h) = PnU*ma(b)Uh 74)
= PyUmy(b)h = Pyma(b)(h) (1.5)

which shows that 1 = .
Assume that @1 = @o = . Define V; : H — K; by V;h = h. If we decompose KX = H & HL, and
h € H,k € HL, then V}* : K — M is given by V;*(h + h') = h. Therefore V;*m;(b)V; = ;(b) for
any b € B. Since 7(B)H is dense in K; it follows that (m;, KC;, V;) are minimal Stinespring dilations of .
Thus there exists a unitary U : K1 — K2 such that U*m(b)U = w1 (b).

(i) Given a minimal B-dilation we define an extension ¢ : B — B(H) of p by ¢(b) = Pym(b)|n. The
preceeding part of this exercise shows that unitarily equivalent B-dilations give rise to the same completely
positive extension.

(iii) Let 1, w2 be two completely positive extensions of p. For 0 < ¢ < 1 the map ¢ = tp; + (1 — t)pa is
completely positive. If a € A, then

p(a) = tp1(a) + (1 — t)pa(a) = tp(a) + (1 — t)o(a) = p(a). 7.7

Let £ denote the set of completely positive extensions of p and note that this set is a subset of the
CP(B,H,1) which is compact in the BW-topology. It is enough to show that £ is closed in the BW -
topology. Let {¢x}rea be a net in £ and assume that ¢y — . Since CP(B,H,1) is closed ¢ is
completely positive. As ) is completely positive and unital, ¢, is contractive. From Lemma 7.3 we have
that

forallz,y € Handb € B.If a € A, then

(p(a)z,y) = (ea(a)(@),y) — (pla)z,y) - (79
Therefore (p(a)z,y) = (p(a)z,y) forall z,y € H. Hence, p(a) = p(a) and p € €.

7.4 (Extension of Bimodule Maps) Let A, C be C*-algebras, let S be an operator system, and suppose that C C
S C A IfC C B(H), then ¢ : S — B(H) is C-bimodule map provided ¢(c1ac2) = c1p(a)cy. Prove that if
¢ : S — B(H) is a completely positive C-bimodule map, then every completely positive extension of ¢ to A
is also a C-bimodule map.

Solution: To check that a completely positive extension 9 of ¢ is C-bimodule it is enough by exercise 4.3.ii to
check that 9(c) = ct(1). Since 1 is an extension of ¢ this is the same as saying that ¢(c) = cp(1). The fact
that ¢ is C-bimodule gives,

o(c) = p(c1?) = ep(1)1 = cp(1). (7.10)

7.5 Let B C B(H) be a unital C*-algebra. Prove that B is injective if and only if there exists a completely positive
map ¢ : B(H) — B such that p(b) = b for all b in B. Show that ¢ is necessarily a B-bimodule map. A map
with the above properties is called a completely positive conditional expectaton.
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Solution: Assume that B is injective. Note that the identity map I : B — B is completely positive and
that B is an operator system contained in B(7{). Since B is injective I has a completely positive extension
¢ : B(H) — B. As pextends I, p(b) = I(b) = bforall b € B.

For the converse assume that there is a completely positive map ¢ : B(H) — B such that o(b) = bforallb € B.
Let A be a C*-algebra, S be an operator system contained in A and suppose that ¥ : S — B is completely
positive. Let j : B — B(H) denote the inclusion map and note that j o ¢ : S — B(H) is completely positive.
Since B(H) is injective this map extends to a completely positive map 6 : A — B(H). Thus po 6 : A — Bis
completely positive. We need to check that o o 8 extends 1. For z € S we have,

pob(z) = p(i(¥(2))) = v(¥(z)) = ¢(z), (7.11)
since ¢(b) = bforall b € B and ¥(z) € B.
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CHAPTER 8: COMPLETELY BOUNDED MAPS

8.1 Show that Re (¢,) = (Re ), and that (pn)* = (¢*)n.
Solution:Let (a; ;)71 € Mn(M). We have,

(p")nl(ai;s))

Using this we get,

2(Repn)

(" (i) = (p(ai;)") = (p(a}:))"
on((a3))" = enl(ai)*)*
(#n)"((as5))

@n + (pn)*
n+ (")n
(‘P + ‘p*)n
2(Rep)n

8.1
8.2)
8.3)

84)
(8.5)
(8.6)
8.7

8.2 Letp: M — B, let H and K be in M,,, and let A be in M, (M). Prove that ¢, (HAK) = Hp,(A)K. Thus,
©n : Mp(M) — My,(B) is an M,,-bimodule map.

Solution: Let H = ();;), K = (ui,;) and A = (a; ;). Note that the (7, j) entry of HAK is

k(3 n
Z Z A kG L5 -
k=1

It follows that,

=1

n n
on(HAK) = on (( E )\i,kak,lﬂl,j) )
k=1 y
! 1,j=1

8.3 Verify the claim of Theorem 8.4.

n

k,

1

n
n
> /\i,kak,mz,j))
= ij=1

= () Mirplar)ms)

k=1

H(p(a: ;) K = Hon(AK.

(8.8)

8.9)

(8.10)

(8.11)

(8.12)

Solution: Let {E; ;}7,_; denote the matrix units in My C M3(A). Let K = rangem(Ey,1). Note since m;
is a *-homomorphism that 7 (E1 1) is a projection and thus K is closed. We claim that K; = K & K. Define

U:K®K — Kby,

UEze|* = (z,7)+ (m(E21)y, m1(E21)y) + 2Re (z,m(E2,1)y)
Iz)|* + (m1(E12E2.1)y,y) + 2Re (m1(E1,1)z, 71(E2,1)y)
lz|® + (m1(B11)y, y) + 2Re (m1(E12F1 1)z, y)

Uz @y) =z +m(E21)y-
It is straightforward that U is linear. We now prove that it is an isometry.

2
Izl + iyl = llz @ yll*
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Now let z € K; and note that

z= I}clz = 7I'(E1,1)Z + 7I'(E2,2)2 (8.18)
= 7r(E1,1)z + 7r(E2,1)7r(E1,1)7r(E1,2)z (8.19)
= U(W(El’l)z D 7r(E1,1)7r(E1,2)z). (8.20)

This shows that U is surjective and is therefore a unitary.
Define P; : K® K — Kby Pj(z1 ® x2) = zjand 7 : A — B(K) by

71'(0,) = P17r1(a)P1*. (821)

Note that P} F; = Ix. It follows that 7 is a unital, linear map and we check that it is a *-homomorphism. Let
a,be A,
m(ab) = Pymi(ab) P = Py(my(a)my (b)) P = Pimi(a) P} Py ()P = w(a)w(b). (8.22)

and,
w(a*) = Pimy(a)* P} = (Pm(a)P)* = m(a)* (8.23)

To complete the verification we must show that the (3, j)-th entry of 71 ((a; 7)) is m(a; ;). Note that the (4, §)-th
entry is Hm((a,-,j))P;‘. Now,

2
Pm((ais))P; = Z i1 (ak ® Ej) P} (8.24)
2
= Z 1(ak,1 ® (Ex1E11E11)) P (8.25)
P
= Z Py (Eg,1)m(akg ® E13)mi(Fry) (8.26)
k=1
Piry(Eii)mi(ai; © Er1)m(En ;) Pr (8.27)
P17T1 (ai,jE]_’]_)Pl* = 7!‘(0.,"]'). (828)

8.4 Show that if ¢ is completely bounded, and ¢(a) = Vy*7(a)V4 is the representation of theorem 8.4 with ||V3 || =
|V2]|, then setting p;(a) = V;*r(a)Vi, yields the map ® of Theorem 8.3.

Solution: Note that

lelle = WAl IVall = IVill* = IV Vil = Vi n (Vi < [lei(D)l]- (8.29)

Also,
les@ll = ViFr(@Vill < IVl (@) IVl < IVE(HTVED (el (8.30)
= [[Vil*llell = el lal (8.31)

Therefore |||, = |l If [loll, = 1, then we may choose V;, i = 1,2, to be isometries. Therefore,
pi(1) = Vir(1)Vi = V7V = 1

‘We compute,
¢*(a) = p(a*)* = (V' (a”)V2)* = V5'n(a) V1. (8.32)

45



LetA=[CcL b]andV=[V1 0 ].Wehave,

d 0 V

_ [ (@) o(b)

* = L ¢*(c) wz(d)] (8:33)
[ Ve ver(o)Va
B _V;*W(C)Vi V;*vr(d)Vz] (8.34)
_ [ 0 ][w@ =@ |[W 0
= Lo Vz’*Hw(c) vr(d)Ho vz] (8.35)
= VimA)V. (8.36)

This shows that ® is completely positive, since 7 is a *-homomorphism

8.5 Prove that the conclusions of Theorems 8.2, 8.3 and 8.5 still hold when the range is changed from B(H) to an
arbitrary injective C*-algebra.
Solution: Throughout this solution B will denote an injective C*-algebra, which is represented on H. By
exercise 7.5 there exists a completely positive map 6 : B(H) — B such that (b) = b for all b € B. Theorem
8.2 Let ¢ : M — B be completely bounded. Extend ¢, by Wittstock’s theorem, to a completely bounded map
¥ : A — B(H). Notice that the map 6 o ¢ : A — B is completely bounded. Let a € M, note that p(a) € B
and so
8 o9(a) =00p(a) = p(a). (8.37)

Thus, 6 o 9 is a completely bounded extension of ¢. Since # is unital and completely positive we have ||6]| =
6|l , = 1. Using this fact we get,

lplley < 1160 Pllep < [16lls 1Ml = llelles - (8.38)

Theorem 8.3 Let A be a C*-algebra with unit, let ¢ : A — B be completely bounded. Then there exists
completely positive maps ; : A — B with ||i]| 4 = [¥ll 4 & = 1,2, such that the map U : Ma(A) — Ma(B)

given by ) ,
o[z ] (38 2]

is completely positive. Moreover, if |||, = 1, then we may take 1;(1) = 1,5 =1,2.

We may assume that |||, = 1. Let 8 : B(H) — B be a completely positive projection. Construct with 1 is
place of ¢ the maps ¢;, i = 1,2 and ® as in Theorem 8.3. Let ; = f o ;. As @ fixes B we have that fotp = 7
and 6 o * = 1)*. It follows that and ¥ = 6 o ®. As composites of completely positive (completely bounded)
maps are completely positive (completely bounded) we see that 1;, i = 1,2 are completely bounded and ¥ is
completely positive. 8 is unital and so 1;(1) = §(x(1)) = 1. Together with,

ills = 10 0 @illey < 16l llpilles < 1, (8.40)

this proves ||¢;|| = 1 = [[¥]] 4

Theorem 8.5 Let A be a C*-algebra with unit, and let ¢ : A — B be completely bounded. then there exists a
completely positive map v : A — B with ||[¥|| < ||¢ll, such that 1 = Re @ and ¢ £ Im ¢ are all completely
positive. In particular, the completely bounded maps are the linear span of the completely positive maps.
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Since B C B(H) construct as in Theorem 8.5 a map p : A — B(H) such that ||p||, < [¢l|, and set
Yp=00p: A— B. Wehave

18lles < 1161l llollcs < Hleplep - (8.41)
As 0 is a projection onto 3, 8 o p = . Notice that,
(60 9*)(a) = 8(p(a")") = 6(p(a™))" = (6 0 0)(a))* = (6 0 )" (a). (842)
Consequently,
fo(ptImp)=(fop)+Im(fop)=1+Imey, (8.43)

is completely positive. Similarly, 1 + Re ¢ is completely positive.

8.6 Let A, B,C be C*-algebras with unit, with C contained in both 4 and B,and 1 4 =15 =1¢. Let M C Abea
subspace such that c;Mco € M forall ¢, ¢c2 in C, and set

s:{[gi :2} :a,beM,cl,C2€C}. (8.44)

(i) Prove that if ¢ : M — B is a completely contractive C-bimodule map, then ® : S — M, (B) defined by
sf|a 2l)=| a, ¢ (8.45)
) (p(b)* C2 ’ )
is completely positive.

(ii) Prove that if B is injective, then the conclusions of Theorems 8.2, 8.3 and 8.5 still hold with the additonal
assumption that the maps be C-bimodule maps.

Solution:
(i) Let
NON
(Sig)=| W 5 | € Ma(S). (8.46)
by cij
After a canonical shuffle (5; ;) is the matrix
H A
[ B K ] , 8.47)

where H = (cgj)), K= (cl(?), A = (b; ;) and B = (b;;).Similarly after a canonical shuffle &, ((S; ;)) is

If the matrix in (8.47) is positive, then A = B and H, K are positive. Let € > 0 and note that the matrices
H. = H+ el and K, = K + €I are positive and invertible. We have,

-2 [HE A] -2y _ I HY2ARTV? (8.49)
0 K|l A K 0o K2 KA HY? I '
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The matrix on the left of (8.49) is positive and by Lemma 3.1 we have that

||H;1/2AK;1/2" <1 (8.50)

As @ is C-bimodule, on(Ho Y2 AKY?) = H7 Y0, (A) K2, A similar calculation to (8.49) shows
that ®,,((S; 7)) is positive if and only if

I H Y2, (A K2 ]
~1/2 «pr—1/2 > 0. (8.51)
| Ke on(A)*H I |
From the assumption that ¢ is completely contractive we get
|H;1/2%(A)K;1/2” = H%(H;I/MK;I/?) | <1, (8.52)

which is equivalent to the matrix in (8.51) being positive.

(ii) We check that the maps considered in the proofs of Theorems 8.2, 8.3, and 8.5 are C-bimodule.
Theorem 8.2 Recall that ¢ was defined by

o([& D[ 0]

where ¥ is the extension of ® described in part i). Being an extension of @, ¥ fixes C @ C, and so by
Exercise 4.3, ¥ is C ® C-bimodule. If ¢1, c3 € C, then

o0 ]) - w5 olnele o)) e
- [col 8]‘I’<[8 8])[82] (8.55)

from which we get ¥(ci1ace) = c19(a)ca.
Theorem 8.3 A matrix factoring similar to the one used above shows that ;, for ¢ = 1,2, is a C-bimodule

map.
Theorem 8.5 We will prove that * is C-bimodule. The claims of theorem 8.5 will then follow as before.
p*(cracs) = ((crace)*)* = p(cza*c))” (8.56)
= (cap(a®)e])” = arp(a”) ez (8.57)
= cip*(a)co. (8.58)

8.7 Let A = (a;,j)7%=;- Prove that the following are equivalent:
(i) Sa: B(£%) — B(£?) is positive.
(i) Sa:B(£?) — B(£?) is completely positive.
(iii) There exists a Hilbert space H and a bounded sequence of vectors {z;} in H such that a; ; = (z;, T;).
Solution: Let P, : £2 — £2 denote the projection onto the first n coordinates. Let A, = P, AP, which is the
matrix equal to A in the n X n top left corner and 0 otherwise. Observe that A, —wot A as n — oco. Note

that Ap * T = (P,AP,) % T = P,(A* T)P, = (A T), forany T € B(¢2). By Theorem 3.7 the following
three statements are equivalent
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(a) Sa, is positive for allm > 1.
(b) A, > 0foralln > 1.
(c) Sa, is completely positive for all n > 1.

(i) implies (ii). If T > 0, then
San(T) = Ap* T = Ap Ty = (A% T)p = (Sa(T))n > 0. (8.59)

Therefore S 4,, is positive and by the observation above Sg4,, is completely positive. Assume T’ = (Ti)T5=1 2
Oandletz; € £2,j=1,...,m.

T1 T1
<(SA)m (Ti,j) ) >

Im Tm

I
™3

(A* T 5)z;, ;) (8.60)

-

LY
Il
—

Il
‘Ma

Il
s

nlingo ((A* T j)nzj,z;) 8.61)

.

J

m
= A _,Zl (A *Tij)z), i) (8.62)
1=
m T T
= [fm ) <(SA,,)m(T,-,,~) N > >0 (8.63)
1,j=1 T Tm

(if) implies (iii). Let S4 : B(¢?) — B(£2) be completely positive. Let (,H, V') be a minimal Stinespring
representation of S4. Let Ey; = Ej i and note that E; Ey, = F; ;. Foreach j € N, define z;, = m(Ex)Ver € H.
Note that ||z < ||V||. Now,

(x5, ;) (T(Ej)Vej,m(E;)Ve;) (8.64)
= (V*’IT(E,')*W(EJ')VCJ', ei) (8.65)
= (V*n(E;;)Vej,e;) (8.66)
= (Sa (Ei,j)ej, e;) (8.67)
= (ai;Eije;, e;) (8.68)
= Qi3 (869)

(iii) implies (i). Let ||zx|| < M forallk > 1, T = (t;;)35_; € B(¢%) and h, k € £2. It is enough to prove that
[|(Sa(T))xll is bounded independent of 7 (which establishes the fact that S4(T") is an element of B(£?)) and
Ay > 0. The latter claim implies, for a positive operator T', that

(SATh,H) = Em ((Sa(T))ah,h) = Jim (S, (TIh, 1) 0. (8.70)
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Now,

H(Sa(T))nh, k)| =

IA

IA

Therefore, ||(Sa(T))x|l < ||| M2
Also,

n
(Aph,h)pe = Zai,jhji

((An * Tn)h, k)|

n —
> aigtighik:

1,j=1

n

Z (zj, Ti) tijhiki

1,j=1

hlzl k1$1
hazn

knTn

n 1/2 n 1/2
1t 220) | oy (Z llhmllz) (Z llkmllz)
i=1

i=1

n Y2 / n 1/2
I T (Z |hsf? IIwillz) (Z |k Ilmill2)

i=1 i=1

I M2 ||A] |kl

1l
T
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CHAPTER 9: COMPLETELY BOUNDED HOMOMORPHISMS

9.7 (Sz.-Nagy) This exercise gives a more direct proof of Corollary 9.4. Let T be an invertible operator on H such
that ||T™|| < M for all integers n, and let glim be a Banach generalized limit [34].

(i) Show that (z,y), = glim (T™z, T"y) defines a new inner product on  and that M~2 (z, z) < (x, z); <
M?(z,z).
(i) Show that T is a unitary transformation on (H, (, ), ).
(iii) Prove that there exists a similarity on H, with ||S~1||||S|| < M?2, such that S~1T'S is unitary.

Solution: We begin by noting that glim : £%° — C is a positive linear functional, glim((ap)82,) = limp 00 @ty
whenever ()72 ; is convergent and glim((an)S2,) = glim((n41)22, ) for any (an)2, € £°.

(i) We have by the Cauchy-Schwarz inequality that,
(T"z,T"z) < |T"|* {z,2) < M* (=, ), ©.)

and,
(€,7) = (T"T"z, T""T"z) < ||T7"| (T"z, T"z) < M2 (T"z, T"z). 9.2)

This shows that (T"z, T"z) is an £*° sequence and so (, ), is well-defined. Since glim is positive and
linear (, ), is a semi-inner product on H. Applying glim to the inequalities in (9.1) and (9.2) establishes
M=% (z,z) < (z,z); < M?(z,z),and so (,), is an inner product.

(i) As T is invertible, our claim is established if we prove that T is an isometry. We have,
Tz = (Tz,Tz), = glim (T, T"*'2) = glim (T"z, T"z) = (z,z); = ||lz|?. 93)

(iii) Using the fact that M~ |lz|| < ||z||; < M ||z|| we see that R : (H, (,)) — (H, (,);) defined by R(h) =
h is a bounded invertible operator with || R|| < M and ||[R~!|| < M. Therefore the Hilbert spaces (H, (, )
and (H, (,);) have the same dimension. It follows that there is a unitary U : (H, (,)) — (H, {, )1)- The
operator,

U*RTR™'U = (R™'U)"'TR™U, (94)

is unitary and similar to T, via the similarity § = R™1U. Since U and U* are unitary we have IIS|| =
|B=Y| < M and ||[$|| = ||R|| < M. Hence || S|[[|S~Y|| < M?.

9.10 (Sz.-Nagy-Foias) An operator T in B(H) is said to belong to class C » if there exists a Hilbert space K containing
'H, and a unitary on X, such that

T" = pPyU" |3, ©.5)

for all positive integers n. Prove that such a T is completely polynomially bounded and that there exists an

invertible operator S such that S~!T'S is a contraction with ||S~[|||S|| < 2p — 1 when p > 1.

Solution: By Theorem 9.8 it is enough to prove that ¢ : P(D) — B(H) defined by (p) = p(T) is completely
bounded with |||l , <2p— 1. Let p(2z) = ap + a1z + ... + @mz™. We have,

p(T) = agl+o1TH+...+ ap,T™ 9.6)
= aol + pPr(aaU + ... + anU™)|n .7

= aol — paol + paol + pPr(oaU + ... + anU™)|y 9.8)

ao(1 — p)I + pPrp(U)ly. (9.9)
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9.12

It follows by the spectral mapping theorem since p(U) is normal that,

o) < (p = 1) [p(0)] + ()]l < (p = 1) [IPlleo + £ lIPlloe = (20 = 1) 1Pleo - (9.10)
Let (p; ;) € M, (P(D)). We have,
len (i) = I1@i (TN < (p = D) (i ODI + 2 1P (UN] - 9.11)
Since U is a unitary we can apply von Neumann’s inequality for matrices (Corollary 3.12),
@i (UM cemy < 1@ lagy ey » 9.12)

to (9.11) to get,
lonll < 2p—1. (9.13)

let T be an operator with real spectrum. Prove that T is similar to a self-adjoint operator if and only if the
Cayley transform of T, C' = (T + 4)(T — i)™, has the property that for some constant M, |C™|| < M for all
integers n.

Solution: Assume first that ||C™|| < M for all integers n. By Sz.-Nagy’s theorem U = SCS~1 is unitary for
some invertible operator S. We claim that STS~1 is self-adjoint. Note that,

o(C) = o(U) = {tiz-tea(T)}, 9.14)

andthat 1 ¢ o(U). From U = SCS~! = S(T+i)(T—4)~1S~ it follows that US(T—)S~" = S(T+i)s—
On rearrangmg this equation we get (U — 1)STS~! = (U + 1). As (U — 1) is invertible STS ' =4(U —
1)~}(U + 1). Therefore,

(STS™)* = —iU+1)*((U-1)*" 9.15)
= —iUt+1)Ut-1)"" (9.16)
= —il+U)U @ -v)uH 9.17)
= —i1+U)WUtv@-U)! (9.18)
= i(U-1)"YU+1) 9.19)
= STSL. (9.20)

To prove the converse suppose that T' = SRS~ where R is self-adjoint and let B denote the Cayley transform
of R. The adjoint of B is given by,

B* = ((R-i)") Y (R+9)" (9:21)
= (R+i)YR-1) (9.22)
= (R—i)™YR+1)™ (9.23)
((R +i)(R-9)™H™ (9.24)
B! (9.25)
and so B is unitary. Further,
B = (87'TS+4)(S7'TS—1i)™! (9.26)
= SYT +4)8[S™T —-i)S]™* (9.27)
= S YT +i)(T-1i)"'S (9.28)
s-1cs. (9.29)
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9.15

Hence,
Ic™l = [[s72Bs|| < (IS~ 1B ISl = IS~H[1S])-

(9.30)

Let T be in B(H) with o(T") contained in the open unit disk. Prove that P = 32 o T**T* is a norm convergent

series with || PY/2TP~1/2|| < 1.

Solution: Let R > 0 be chosen so that 7(T") < R < 1. By the spectral radius formula there exists N € N such
that |[T™||*/* < R forallm > N. Therefore [T = |T**|| < R forallm > N and so [|T*"T™|| < R?"
for all n > N. It follows that the series is absolutely convergent in B(*) and consequently norm convergent.

Since P is the sum of positive operators and P > I we see that P is positive and invertible.
Note that,

||P1/2TP—-1/2” <1 <= (P1/2TP—1/2)*(P1/2TP—1/2) < I
< P2 prP12<]
< T*PT<P

We establish this last inequality,

0o oo oo
T*PT = ZT*(T*ka)T — ZT*k+1Tk+1 — Z T*Ich =P-I<P
k=0 k=0 k=1
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CHAPTER 10: POLYNOMIALLY BOUNDED OPERATORS

10.1 Let

€ My (10.1)

[ R R

[0 - 0 0
be an elementary Jordan block.

(i) Show that the (1, k) entry of Ji* is the (k — 1)-th derivative of 2™/(k — 1)! evaluated at A. Deduce that
Jy is power bounded if and only if |A| < 1.

(ii) Prove that if |A] < 1 then J) is similar to a contraction.

(iii) Let T € M,, be power bounded. Prove that T is similar to a contraction.
Solution:

(i) We write Jy = AI + N and note that N is nilpotent of order k. Therefore,

Jr = (A +N)™ (10.2)
min{k—1,m}
- 3 (m) Am=3 N (10.3)
=0 M
(10.4)

If m < k — 1 then the (1, k) entry is O which is also the (k — 1)th derivative of 2™/(k — 1)!. Form > k
The (1, k) entry is given by,

m _ mm—1)...(m—k+2) d*1 Pk
Akl m—k+1 _ . 10.
<k _ 1) k=1 A 1|, kD) (10.5)
If A > 1 then
1757 = (kr_r_z 1) A%+ o 00 as m — oo, (10.6)
Therefore, Jy is not power bounded. Conversely if |A| < 1, thenform > k — 1
L . '
175 < > ( ) IA™ 9 < kmF A" — 0asm — oo. (10.7)
= \J—1
(ii) Let
10 - 0
0 r ... 0
D= . . . . (10.8)
0 0 k-1
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If r # 0, then

A r 0 0
0 :
D7D, = | ¢ 0 (10.9)
. .
| 0 0 0 X
and so
|Dp-1JaDy|| < |A| +7 < 1, (10.10)

forany0<r <1— |\
(iii) As T is power bounded there exists a constant M such that ||T"|| < M for all n > 0. Let J denote the

Jordan form of T and suppose that J = diag(J),,...,J),), where Jy, is an elementary Jordan block.
Suppose that R™ITR = J. We have that,

J" = R™'T"R = diag(J},,...,J},) (10.11)
and,
1751 < |R' TRl < MR |IR] . (10.12)

Hence J), is power bounded. It follows by part (i) that |A;| < 1 fori = 1,...,! and so by part (ii) there
exist similarities 51, . .., S; such that S~ 1y ;i 18 a contraction. Let D = dlag(Sl, -,51),8 = RD and
note that

|S'TS|| = |D'R'TRD| = |D~JD| = DX, (157 S| < 1. (10.13)
10.3 i) Show that g1, f1,p1, @1 satisfy 1)-4) of Theorem 10.8.
ii) Show that if g, fm, Pm, Gm satisfy 1)-4), then gm+1, fm+1, Pm+1, Gmt1 satisfy 1)-4).

Solution:

i) We have g1 = ¢; = 1, p1(2) = —h;2" which has degree at most k; and f1(2) = h12F which implies
I'(f1) = (h,0,...).

it) We compute

Fpii(e?) = Fp(e”)Bnia(e”) (10.14)
Im (19) Pm (—10) 1 h +16_1k"‘+10
[f (€°) gm(e™™) ] [hmﬂeikmm 1 (10.15)
gm(€*

)+hm+le'lkm+19pm(e—i0) pm(e-—’ia) h mi1€ ‘Lkm+19 ( 1.9)
(10.16)
(

%) + hmyrekm+19g,, (=) g, (e=¥) — hmirekm10 £ (0i6)
We will deduce properties 1) and 4), the remaining deductions are similar. We have,
9m+1(6) = g (€%) + hppy1em10p, (719), (10.17)

By assumption the degree of g, and pp, is at most k, but p,, (%) is a polynomial in negative powers of
9 and so the degree of the second term in (10.17) is at most kp, 3. The only contribution to the constant
term in gp 41 is from gy, since kmi1 > k. It follows that g,,, (0) = 1. Now consider

fm+1(e"9) = fm(ew) + hm+1e"k"‘+19qm(e'w). (10.18)
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10.4

10.5

Since k1 > 2km + 1 the smallest exponent that appears in hmi1em+10g,, (e7%) is at least ki1 —
K > km + 1. In addition the constant term of ¢y, is 1 and so the coefficient of Zkm+1 g hm+1- Therefore,
the coefficients of z¥, k =0, ..., km, in f;, and f,41 are the same and the coefficient of ZPm+1in £
is hm+1- Hence, F(fm+1) = (hl, ey hm, hm+1, 0, . )
Let I" be the map of Theorem 10.8. Prove that I' : A(D)/kerI’ — £2 is a Banach space isomorphism with
ITH < 1,071 < Ve.

Solution: By standard results on quotient spaces and using the fact that I" is contractive and onto we have that
I is a bijective, contractive map. From the proof of Theorem 10.8 we see that given b € £2 there exists a
f € A(D) such that T(f) = hand || f|| < v/ ||h||. Thus,

TR = If +ker Tl < [If]| < Veliall, (10.19)
andso I < Ve
LetCy, ..., C, denote the 2" x 2™ CAR matrices, let E 1, ..., En be the standard matrix units in My, and let
®(ME11+ ...+ AEn1) = MC1 + ... + ApCh, so that @ is an isometry. Prove that || @}, > v/1/2.
Solution: Let C = \1C1 + ...+ ApChr. Let P = CC* and @ = C*C. Note that

C*= 3 MN(CCj+CiC)+ Y NG =0. (10.20)

1<i<j<n j=1

From this we get QP = C*C?C* = 0. Moreover,

n n
P+Q=CC*+C"C= Y MN(CiC;+CiCi) =) NPT (10.21)
i,4=1 i=1

It follows that | P|| = ||Q|| = [|P + Q|| = X7, |As|*. Therefore @ is an isometry.

Recall that C;Cf = 2 1) g Ey2® I? ("9 § = 1,...,n. Therefore C;C? is a diagonal matrix with ones
and zeroes on the diagonal. Inspection reveals that the pattern of ones and zeros is 2i—1 zeroes followed by

2i—1 ones and so on down the diagonal. Therefore the matrix y_;._; C;C; is diagonal with n being the largest
diagonal entry. Hence, ||>_i—; CiC|| = n.

Let A € M,(M,,) be the matrix.

: : (10.22)
0o ... 0

By permuting the columns of A we see that A is unitarily equivalent to the matrix which has 1’s in the first n
diagonal entries and is zero otherwise. Therefore || A|| = 1. Now,

C, ... Cp cr ... 0

[2n(A)2n(A)]| = : : : : (10.23)
0 ... 0 c; ... 0

= Y cct| =n. (10.24)
i=1

Hence [|2] > (|2l 2 v/7.
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CHAPTER 11: APPLICATIONS TO K-SPECTRAL SETS.
There are no written solutions to this chapter
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CHAPTER 12: TENSOR PRODUCTS
There are no written solutions to this chapter
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CHAPTER 13: ABSTRACT CHARACTERIZATIONS OF OPERATOR SYSTEMS AND OPERATOR SPACES

13.1

13.2

133

Let V' be a matrix normed space, let X € My (V) and let Y € M, 4(V) be a matrix obtained from X by
introducing finitely many rows and columns of 0’s. Prove that [| X lnn = 1Yl 4

Solution: Let
I,
0

|BIl < [|Y]|,,4- Now setting

A=[In|0] € My B= [ ] € My, (13.1)

We see then that X = AY B and so || X||,,, , < |4l Y]], ,

A= [I(')" } € Mpm,B=[1,|0] € M,,, (13.2)

we see that AXB =Y and so [[Y|, o < 1Al | Xl 1BIl = | X |, Hence || X, = [¥l], -

Let V' be a vector space and assume that we are given a sequence of norms, ||-||,, on M, (V') satisfying:

@) |AX B, < |A]| |X||, |1 B]| for X € M,(V), A € M,, and B € M,,.
(ii) for X € Mp(V), | X ®O|l,,, ., = || X||,,» where O denotes an m x m matrix of 0’s.

For X € Mmn(V) set || X||,,,, = “)’f”l where | = max{m,n} and X is the matrix obtained by adding
sufficiently many rows or columns to X to make it square. Prove that (V, || *|lm,) is @ matrix normed space.

These alternate axioms are often given as the axioms for a matrix normed space and, consequently, no mention
is given of the norms of rectangular matrices.

Solution: Let A € Mpm, X € My and B € My 4. Let s = max{m,n,p, g} and inflate 4, B, X by
introducing rows and columns of zeros to make them s x s matrices. Let ! = max{p, ¢} < s, k = max{m,n}.
Now,

lAXB|,, = m”l (13.3)
AXB 0
- (#4522 (13.4)
A0 X 0 B 0
<l oIS o JLIES ] w9
1411 IX @0, |3 (13.6)
AT Xk 1B (13.7)
AN X [l o 1B (13.8)

Let V' be an operator space and let W be a closed subspace and let 7 : V — V/W denote the quotient map
m(v) = v + W. Prove that if we define norms on My, ,(V/W) by setting

I @i o = inf{ V5 + wisl,, , ¢ wiy € W} (13.9)

then V/W is an operator space.
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13.5

Solution: Let A € My X € My, and B € M, 4. Lete > 0 and choose Z such that 1 X +€ > 1 Z]lnn
with T, n(Z) = X. It is a straighforward calculation to check that Tpg(AZB) = ATma(Z)B = AXB.
Therefore,

|AXBl,, < |AZBI,, (13.10)
< AN 1Z] 1B (1310
< NANIX N 181+ AN B (13.12)

As the choice of & was arbitrary we see that [ AX BI|,, , < [|A[| | X |~ | B]|.

We now check that this is an L°°-matrix normed space. To do this we need only check that
“'X @ Y||m+p,n+q S ma‘x{“X”m,’n ? "Y“p,q} (1313)

where X € My, o(V/W) and Y € Mpq(V/W). Choose R, Z such that mmpn(R) = X, Tpq(Z) =Y and
”X“m,’n. +e> ”Z“m,n’ ”Y”p,q +e> “R”p,q' Note that 7“771'5'13,71‘}'11(R ® Z) =X © Y. We have’

X & Y“m+p,n+q < |R® Z”m+p,n+q (13.14)
= max{||Rl|,n, 12,4} (13.15)
< max{|| Xl n 1Y llpq} + (13.16)

By letting ¢ — 0 we get our result.

Verify the claims of Proposition 13.3.

Solution: Given an a matrix ordered *-vector space S with an Archimedean matrix order unit e we define

lz| =inf{r : [ ;f 71] GCz}. (13.17)

Denote by S the set on the right hand side of (13.17). We have already seen that ||z|| > 0 and that ||z|| = 0 if
and only if z = 0. We will now prove that | Az| = |||z, |z + %[l < llzl| + ||yl and ||z*|| = ||z||. We may
assume that A # 0. Note that,

A2 g ~1/2
A | RS I R LN (13.18)
0 A z* Te 0 A2 Azt |A|re
1t follows that,
re Are Az
[ o re :I €l [ ot I\ re ] € Co. (13.19)
Hence,
. | re Az
|Az|| = inf {'r : [X:n* re ] 6(32} (13.20)
. ) A"t re z
= mf{r. [ o e | €€ (13.21)
. se
= 1nf{|)\|s : [ - se ] ECZ} (13.22)
= [All=ll (13.23)
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Letx,y € S and note that if r € S; and s € Sy, then 7 + s € S It follows that, inf Szt+y < 7+ s for every
T € Sz and s € Sy. Therefore ||z + y|| = inf Sz1y < infS; + inf Sy = ||z|| + ||y

Finally we see that
0 1 re 01 re z*
[1 0][.’1:* re][l 0]—[z re]' (13.24)

From which we get ||z|| = ||z*||.
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CHAPTER 14: AN OPERATOR SPACE BESTIARY

14.1

14.2

143

Let V be a normed space, X an operator space and let ¢ : X — MIN(V), ¢ : MAX(V') — X be linear maps.
Prove that ||| = |||l and ||#]| = ||%]| . Deduce that MIN(V') and MAX (V') are homogeneous.

Solution: Let (z;;) € My (X) with [|(z;;)]] < 1. Recall that if g is a linear functional on an operator space,
then g is completely bounded and ||g]|, = |g||. Consider,

len((zig)l = sup{l|(f((z: )N = f€ W'} (14.1)
= sup{||(f o @)n((zi)l : f € VT} (14.2)
< sup[|(f o @)l (14.3)
= |foel (14.4)
< £l (14.5)
< lell (14.6)

We may assume that ||1]| < 1. We begin by noting that

i)y axcry = SRl < 2V = B, lloll <1} 147)

To prove this, note that the equation in (14.7) defines an operator space norm on V which is larger than
llmax(vy- These must be equal, since llllmax(vy is the largest operator space norm on V. By Ruan’s theorem
there exists a complete isometry p : X — B(’H() for some Hilbert space H. Note that the map poy : V — B(H)
is contractive. Therefore,

Iy = lenl(vin))l (14.8)
(o0 %) (vi ) (14.9)
< il agn uaxevy) - (14.10)

Hence ||| < Land [[¢] = [[%lle

Let V be a normed space, X an operator space and let ¢ : MIN(V') — X. Prove that [l¢], < (V) [lo]].

Solution: We may assume (V') < co. Define j : MIN(V) — MAX(V) by j(v) = v,and ¢ : MAX(V) - X
by ¥(z) = ¢(z). Note,

@)l = le@)l < llell vy < lell lolaxe) - (14.11)

Therefore, v is bounded and ||3|| < ||¢||. By Exercise 14.1 9 is completely bounded and ||9||,, = ||%]|. Since
¢ = 1 o j we see that ¢ is completely bounded. Now,

el = 19 0 5lles < 1l ey Nilley = (V) Il < (V) [l (14.12)
(Zhang) Let FF,, denote the free group on n generators
W™, uMy, (14.13)
Prove that the maps ¢ : MAX(€L) — C2(F,,) and 9 : MAX(£L) — Cy(Fn—1) given by

(O ) =A™ + 4+ Anul®, (14.14)
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e P((A1, M) = M D b ™Y AT, (14.15)
are complete isometries.

Solution: Letey, ..., e, € £, denote the standard basis, let A = (Aq, ..., A,) € £1 and let (v;;) = S7_, Ax®
ex € My (MAX(£2)). We have o ((vi ) = 0, Ak ® u,(cn). Assume that p : £ — B(H). From,

n n
eI = 1> Meoler)|| < D 1wl lloter)ll, (14.16)
k=1 k=1
it follows that p is contractive if and only if p(ey) is a contraction on H for k = 1, ..., n. By definition, and the
observation just made, we have,
n n
d A ®er = sup{ [) Ak ® plex) cp: S BH),lpl <1y 417
k=1 MAX(€L) k=1 B(H(m))
n
= sup{ (Y Ar®T: : T1,...,Tn € B(H), |Tk|| < 1 3(14.18)
k=1 B(H(m))
Now,
n n
ZAk®ul(cn) =sup{ X:A1:®U;c : Uq,...,Up € U(H), H a Hilbert space} (14.19)
k=1 C*(Fy) k=1

where U(H) denotes the unitary group of B(H). If p : £2 — B(H) then p(ex) is a contraction and so the
supremum on the right side of (14.19) is smaller than the right side of (14.17).

By exercise 5.4, given any n contractions 11, ..., T, on H we can dilate T3, ..., T}, to n unitaries Uy, ..., U,
on K. Therefore,
n n
> A® T <[> Ac®Us (14.20)
k=1 B(H(n) k=1 B(K(n))

Hence, (14.17) and (14.19) are equal.
If (vi) = Y7y Ak ® ex € My (MAX(£L)), then 9 (i) = S22 Ax ® ui™ Y + A, ® I. The norm of
Ym is given by,

n-—1
Yo 4oul VA, 01
b=1

(14.21)

C"(Fn_l)

By the universal property of C*(IF,,) there is a *-homomorphism 7 : C*(F,) — C*(F,_;) such that u,(c") —

u,(c"__ll) fork=1,...,n—1and usl") +— 1. Similarly there is a *-homomorphism o : C*(Fp,_1) to C*(Fy,)

such thatu,(c"_l) - u&")*u,(c"). We have,

(roa) (u,(cn_l) = w(u;")*u,(cn)) = u,(cn_l). (14.22)
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Therefore o is one-one and a *-isomorphism. Now,

n—1

n—1
Y A@ul ™V + 4,01 = I3 A @l u + 4, @ ulun (14.23)
k=1 C*(Fn-1) k=1 C*(Fn)
= e u) (40 ul”) (14.24)
k=1 C* (Fn)
n
= o™ A@ul (14.25)
k=1 C*(Fn)
n
= IS 4 0ul? (14.26)
k=1 C*(Fn)
(14.26) is due to the fact that I, ® u™Misa unitary in My, (C*(F,)).
14.4 Prove that the maps ¢ : MIN(£L) — C(T™) and 3 : MIN(£%) — C(T™"!) given by
(p(()\l, ceey /\n)) =M2z1+...+ An2p (14.27)
and
’(,[)(()\1, R ,An)) =A\21+ ...+ Ap—1Zn-1+ An (14.28)

are complete isomteries.

Solution: Let (v;;) € Mm(£L), @ = (@1,...,an),8 = (B1,...,0n) € £, and z = (21,...,2,) € T™ If
w= (“11'-')/"L71) eé}l,then
lllgy, = sup Tlulzl + ot pnznl - (14.29)

215--2n €
It is a consequence of the triangle inequality that the right hand side of (14.29) is smaller than the left hand side.
To prove the reverse inequality we simply choose z; € T, j = 1,...,n such that p;z; = |Aj| for j =1,...,n.
To see that ¢ is a complete isometry we compute,

oD lhgicamy = 502 106(05)2) g, (14.30)
z n
= s s (e ) (14.31)
2€T" ||al,<1,]|8]},<1
m
= sup sup Z(p('ui 3 )(2)06; (14.32)
2€T" ||all,<1,[|801,<1 |5 5=
m
= sup sup Zcp(v,-,j)(z)a,-,@j (14.33)
2€T" [lall,<1,11811,<1 |5 ;=1

i (i am(f;-’ﬂj) 2 (14.34)

= sup sup
Ila”2sl’"ﬂ"251zlr-~1zn€T k=1 \i,j=1
m
= sup Z aivi,jﬂj (14.35)
lell<L,18l<1 |5 =1 a
= ”(viwj)”Mm(MIN(e}.))' (14.36)
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To establish that 9 is a complete isometry we need only prove the following analogue of (14.29):

lelly = sup  |miz1+ ... + 1201 + nl - (14.37)

Z14e0092n—1€

If we choose w € T such that wy, = |un| and for j = 1,...,n — 1, pick z; € T such that zju; = w1 |y,

then
“P'”e,l, = |zywpr + ...+ Zp—1WHR—1] (14.38)
= |w||zipr + ... + Zn—1pn—1 + ln] (14.39)
= |zip1+ ...+ Zn—14n-1 + ln| - (14.40)

This implies (14.37).

14.5 Prove Proposition 14.7.

Solution: We endow My, »,(CB(E, F)) with the norm it inherits through its identification with CB(E, M, »(F)).
Let @ = (pi,;) € My n(CB(E, F)) and let X = (xy,) € M, (E). Let A € My, and B € M, ,.We have,

(A®B):((zx1)) = ((A2B)(z,)) (14.41)
= (A®(zx,;)B) (14.42)
= (A®...09A) 0 ((zx)))(B®...®B). (14.43)
T times rtimes
Hence,
1(A2B);)((ze )l < NAlN@7((zx )] 1B - (14.44)
It follows,
|A®Bllcppry = [A2B|y (14.45)
= sup|/(A®B),|| (14.46)
r>l
= §1>111>||A|| 21| 11 Bl (14.47)
ANl 121l 1Bl (14.48)
Al @llca(E,r 1B - (14.49)

Let & € My o(CB(E, F)) and ¥ € M, ,(CB(E, F)). Now,

(@@ V)r((zr) = (20 T)(zk1)) (14.50)
D(zxy) 0 ] >
= ! . 14.51
( [ 0 U(zky) (1451
A permutation of the rows of this last matrix shows that it has the same norm as
O, ((zk,)) 0 ]
' . 14.52
[ 0 Tr((ak) (1452
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Hence,

Thus, CB(E, F') is an operator space.

12 ® ¥lcpE,r)

@

sup [|(® © ©)-||
r>1

© Y|,

sup max{|| .|, || ¥~}
r>1

max{sup || ®| ,sup ||¥-|}
r>1 r>1

max{”‘I’HCB(E,F) ) ||‘I’||CB(E,F)}-

(14.53)
(14.54)

(14.55)
(14.56)

(14.57)

14.8 Lety : Cp, — R, be the map v (- MiEi1) = > iq AiF1i. Prove that «y is an isometry and |||, =

Il = va

Solution:As 7 is the transpose map + is an isometry. Let C = (C; j) € My (Cr) where

Let

R;j =(Ci;) =

By a canonical shuffle we see that

where (Ag)i; = A7) and Ay € My, Similarly

Now,

and,

Ay

An

1(Cipll =

IR )l =

]

Ci,j =

2

: 0
[ Ag":]) AS‘J) ]
L
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A
Ay

n
D ALA;
i=1

Fa

[

)

H

[ Yis AjAi O
0

An

0

|

]

(14.58)

(14.59)

(14.60)

(14.61)

(14.62)

(14.63)

(14.64)



2 A}
” [—Al - An ] - [__Al - An ] ..o (14.65)
AL
— Z?:l A"'A:: 0
- [ ; 0 (14.66)
n
= |44, (14.67)
i=1
Since ||Ag AL || < |>57, AiAf|| we see that,
Saal < Y4l (14.68)
i=1 i=1
= >4 (14.69)
i=1
n
< n|> A4 (14.70)
i=1
A similar argument shows that | > ; A;A?|| < n |37, AYA;|. Therefore
vmll < VA and ||y < v 14.71)
forall m > 1.
To prove equality in (14.71) we consider E € M,,(C),) given by
€1
E=]| :{o]. (14.72)
€n

by permuting rows we see that || E|| = y/n. Note that a permutation of the rows of -y, (E) brings it to the form

I, 0
[ 0 0 ] (14.73)

Therefore ||y, (E)|| = 1. It follows that ||y, || > v/n. By considering

T ... T
E = [el%] , (14.74)

we get |7 ]| > +/n. Combining these with the inequalities in (14.71) we get

1l = I, = V- (14.75)
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CHAPTER 15: INJECTIVE ENVELOPES

15.1

15.2

15.3

Verify that an operator space [ is injective in O; if and only if every completely bounded map into I has a
completely bounded extension of the same completely bounded norm.

Solution: Let ¢ : E — I be a completely bounded map and let E C F'. We may assume that ¢ # 0. If every
completely bounded map into I has an extension of the same completely bounded norm, then trivially every
completely contractive map into I has a a completely contractive extension.

For the converse let @ = ¢/ ||| - Then |[@||,, = 1 and since I is injective in O, there exists 3/; : F — I'such
that [$lles = 1. Let ¥ = ||l ¥, 1t is straightforward that 1 extends i and [[¢]l = oll ¥l = lelep

Let E C B(H) be an operator space. Prove that E is injective if and only if there exists a completely contractive
map ¢ : B(H) — E suchthat p(e) =eforane € E.

Solution: Assume first that E is injective. Extend the identity map on E to amap ¢ : B(H) — E. The map ¢
is completely contractive, because the identity is a complete isometry. If e € E, then

p(e) =idg(e) =e. (15.1)

For the converse let I C G be operator spaces and let 9 : ' — E be a complete contraction. By composing
with the inclusion map j : E — B(H) we get a complete contraction j o 3 : F' — B(H). By Wittstock’s
theorem there exists a complete contraction p : G — B(H) such that p|r = j o 9. Themappop: G — Eis
completely contractive and

(0o p)(f) = eI (£))) = B(f), (15.2)
since p extends j o 9 and ¢ fixes E.
Let M C B(H) be an operator space and let ¢ : B(H) — B(H) be an M-projection with p,, a minimal
M-seminorm. Assume that u € B(H) is a unitary that commutes with M. Prove that if y(z) = u*¢(z)u then

Dy is a minimal M-seminorm and v is a projection onto u*@(B(H))u. Prove that if P(z) = p(u*zu) then py
is a minimal M -seminorm and ) is a (possibly different) projection onto ¢(B(H)).

Solution: If z € M, then
7(z) = v*p(z)u = u*zu = u'uzr = T. (15.3)

This shows that «y fixes M. Assume that p is a seminorm such that p < p,. Note that
py(z) = [lu*e()ull = @) = po(2), (15.4)

since u is unitary. Now,
p(z) < py(z) = pp(2), (15.5)

and so by the minimailty of ¢ we have that p = p, = p,. This shows that p, is a minimal M-seminorm and
from theorem 15.4 that ~ is an M-projection. The range of v is clearly a subset of u*(B(*H))u. The fact that,

Y(B(H)) = u*o(B(H))u, (15.6)

follows directly from v(z) = u*¢(z)u.
Next consider the map . If z € M, then,

¥(z) = p(u*zu) = p(v*uz) = ¢(z) =z, (15.7)
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15.5

and so ¥ is an M-map. Assume that p < py, and define a f(z) = p(uzu*). Now,

B(z) = pluzv®) < [[Y(uzv®)|| = [lo(z)|| = pp(2)- (15.8)
From the minimality of p,, we have that = p,,. Hence,
p(z) = p(u’zu) = [p(u*zu)|| = ||[¥(z)|| = py(). (15.9)

Once again by Theorem 15.4 9 is a minimal M -projection

Let ¢ : B(H) — B(H) be a unital completely positive map that fixes the compacts. Prove that ¢ is necessarily
the identity map.

Solution: As every operator is a linear combination of at most 4 positive operators, it is enough to prove that ¢
fixes every positive operator. In fact it is enough to show that ¢ fixes every invertible positive operator. To see
this note that P + €I is invertible for e > 0 and P > 0. If (P + €I) = P + €I, then p(P) = P, since ¢ is
unital.

We will need a Cholesky-type decomposition for positive operators on a separable Hilbert space which we now
describe.

Cholesky Decomposition Let P = (p; ;)75 € B(£?) be positive and invertible.

_ |1 A
P= [ 4 B ] , (15.10)
with p; ; > 0. By the Cholesky decomposition described in exercise 3.9 we see that the operator
0 0 p“l/2 0 p-l/2 A
P = _ =P~ | f1l 1,1 >0 15.11
! [0 B—pl,iA*A} A* 0 0 0]~ (10

-1/2
LetR; = [ P 16 gl ] . If we now repeat this process we get a sequence Ry, of rank one operators such that

n
_ * 0 0
0<P-) RiR: < [ 0 B, ] (15.12)
k=1
where B,, denotes the compression of P to the subspace
My = {(zp)i, : T1=... =z, =0} (15.13)
Therefore,
n
. T
lim > RjR.=P, (15.14)
k=1
in the SOT.

Let P be positive. Then there exists a sequence of operators {Ry}$2, such that Ry is rank one, K, =
Y k1 RiRx < Pforalln > 1and ) ;2| Ri Ry, = P in the strong operator topology.

Since ¢ fixes the compacts we see that K, = ¢(K,) < ¢(P). Hence,

(Pz,z) = nlirrolo (Knz,z) < (p(P)z,2), (15.15)
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15.6

15.7

15.8

which says that P < ¢(P). By choosing a constant « such that ol — P is positive and using the arguments
above we see that
p(al —P) > al — P. (15.16)

As @ is unital we get ¢(P) < P.

We now deal with the non-separable case. Let z be in H. Let M be the closed linear span of {P"z : n > 0},
which is a reducing subspace for P. With respect to the decomposition H = M @ ML the matrix of P has the

form A
0
P—[ 0 B]’ (15.17)

with A, B > 0. By the Cholesky decomposition we see that there is a sequence {K,} of positive compact
operators on M which are bounded above by A and converge to A in the SOT. We have,

Kn Kn 0 A0
[0 8]=¢[ . 0]g<p[0 B]:(p(P). (15.18)

(Pz,z) = (Az,z) = nlinéo (Knz,z) < (p(P)z,z). (15.19)

Therefore,

Arguing as in the separable case we see that p(P) = P.

Let S C B(H) be an operator system which contains the compacts. Prove that I(S) = B(H).

Solution: Recall that I(S) is the image of a completely positive map ¢ : B(H) — B(H) which fixes S. This
map therefore fixes the compacts and is unital. By the previous exercise, ¢ must be the identity map. Therefore,

I(S) = p(B(H)) = B(H).

Let A C B(£2) be the algebra of upper triangular operators. Prove that C;(A) = B(£?).

Solution: Let P be a positive invertible operator. Note that by the Cholesky decomposition described in exercise
15.5, there exists a sequence of operators K, = Z;::l R} Ry such that K, — P in the SOT. Therefore
P = U*U where U is an upper-triangular operator whose rows are the Ry’s. It follows that U is bounded
and so the C*-algebra generated by the upper-triangular operators contains every positive invertible operator.
Therefore, C*(A) = B(¢%). By Hamana’s theorem (Theorem 15.16) there exists a onto *-homomorphism
7 : B(€2) — C*(A) which fixes A. If 7 is not one-one, the kernel of m, which is a two-sided ideal in B(¢?)
must contain K (), the ideal of compact operators, and so (K (H)) = {0}. Since A contains non-zero
compact operators we see that 7 is a *-isomorphism. We have

n(P) =m(U*U) =n({U)*=(U)=U*U = P. (15.20)
Thus, 7 fixes all the positive invertible operators and must therefore be the identity map. Hence, C;(A) =
B(£%).

Prove that 9s A(D) = T.

Solution: As A(D) C C(T) we see that 9sA(D) C T. We know that the restriction map r : C(T) —
C(8sA(D)) given by 7(f) = flaga() is isometric on A(D). For each z € T, let f,(e¥) = z + €. It is clear
that || fellg(ry = 2 and that this is attained at & = z. Also, | £2(¢)| < 2 at all other points on the circle.
Therefore, r cannot be an isometry on A(D) unless s A(D) = T.
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15.9

15.12

Prove that if A C M,,, then C?(A) is finite-dimensional.

Solution: By Hamana’s theorem there exists an onto, *-homomorphism = : C*(A) — C*(A). Being a
subspace of My, C*(.A) is finite-dimensional and C*(A)/ker () is *-isomorphic to C*(A). Hence, the C*-
envelope of A is finite-dimensional.

Let {uy,...,un} denote the unitaries in C*(F,) and let M denote the (n + 1)-dimensional subspace spanned
by these unitaries and the identity I. If A C M3(C*(Fy)) denotes the (n + 3)-dimensional operator algebra

Ml oz
A_{[ 0 M].,\,uec,zeM}, (15.21)
then prove that C;(A) = M,(C*(F,)). Thus, a finite-dimensional operator algebra can have an infinite-
dimensional C*-envelope.

Solution: By Hamana’s theorem there exists an onto *-homomorphism from C*(A) — C2*(.A) such that
7(a) = a. We will show that the C*-algebra generated by A is all of M2(C*(F,,)) and that this homomorphism
is one-one.

We see that . -
0 I 00 .
[0 0] =\ O}EC(.A). (15.22)
If u is one of the generating unitaries, then
00 0 u ] 00 .
[I 0][00_—[0 u}EC(A). (15.23)

Therefore, Ma(C*(F,)) = C*(A).
We now check that 7 is one-one??

By matrix factorings similar to the ones used above we can check that 7 fixes all of M>(C*(F,,)). Therefore,
My(C*(Fy)) = C*(A).
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CHAPTER 16: ABSTRACT OPERATOR ALGEBRAS

16.1

16.2

Let C,, denote n-dimensional column Hilbert space. Prove that I(Sc,, ) = My, in such a way that

511(Cr) = M(Cr) = My, and Iz = M (C,) = C. (16.1)

Solution: Since C,, inherits its operator space structure from M, 1, the operator system

Se,, ={[):;{" Z} :/\,,uE(C,:E,yGCn}, (16.2)

is naturally identified as an operator system in My,1. My is an injective C*-algebra containing Sc,, and
we claim that it is minimal. Suppose that E is injective and S¢, € E C Mp4,. Then there is a completely
positive map ¢ : Mpy1 — E C Mp4 which fixes S.,. We claim that the only completely positive map
¢ : Mpy1 — My, which fixes S, is the identity map on My,1. To prove this we will show that ¢ is the
Schur multiplier induced by the matrix of all 1’s.

If o fixes Sc,, then ¢ is unital and fixes the matrix units Ej 541 and Epyq; forall j = 1,...,n + 1. Let
1 < j <n+1 and note that

©(Ejj) = @(Ejn+1En+1;5) (16.3)
= @(Epy1,iBn+14) (16.4)
> @(Ent1)*@(En+1,5) (16.5)
= Epiy;En+1 = Ejj;. (16.6)
Now,
o(I—Ej;)=0(> Exx) 2> Epr=1-Ej; 16.7)
ks k#i

It follows that (E; ;) < E; ;. We have established that ¢ fixes the diagonal matrices and is consequently a
Schur multiplier. Let J be the (n + 1) x (n + 1) matrix all of whose entries are 1. The matrix which induces
the multiplier is given by ¢(J). Let R = Z;’;Lll Ent1,5. We have,

¢(J) = p(R*R) 2 p(R)*¢(R) = R"R = J. (16.8)

From the fact that ¢ in unital it follows that the diagonal entries of ¢(J) are all 1. The matrix ¢(J) — J is
positive and has zeros on the diagonal and must therefore be 0. Hence ¢(J) = J and so ¢ is the identity map.
Having established that I(S¢, ) = Mp+1 we see that I11(Cy) is the n x n top left corner of M, ,.; which is
M,,. Similarly Inp(C,) is the bottom right 1 x 1 corner which we identify with C.

Prove, by showing that the Blecher-Ruan-Sinclair axioms are met, that the matrix-normed algebra (Pp,, ||- ”u,k)’
introduced in Chapter 5, is a unital operator algebra.

Solution: Note that the universal operator algebra has matrix norms defined only for square matrices. It is easy
to check that ||-||, satisfies the conditions of exercise 13.2 and so Py, is a matrix normed space. We now claim
that it is an L° matrix normed space. If {1, . .., T} are n commuting contractions on a Hilbert space H then
note that the operator matrices (p; j(T1, - . - , Tn)){=, are elements of the concrete operator algebra B (H™),

72



16.3

If A, B € My and X = (p; ;) € My(P,), then

k
|AXB|| = sup (Z ai,lpl,m(Tl,...,Tn)bm,j) (16.9)
Im=1
< sup|[(aig DI 1 (pii (T2, - - -, T))I | (B s D)l (16.10)
= A} i)l . 1Bl (16.11)

which shows that (Py, ||-||,, ) is 2 matrix normed space. Let (p; ;) € My(Py) and (gs:) € M (Py).

(Pij) @ (@s.t)(T1,-- -, T)l = N(@i(T1,- .., Tn)) @ (g5 (T1, ..., T)) |l (16.12)
= max{||(pij(T1,. .., T, gse(Th, ..., TN} (16.13)

where the last equality follows from the fact that we are in a concrete operator algebra, as (p; ;(T1,. .., Ty))
and (gs¢(T1, ..., Ty)) are operators on a Hilbert space. It follows that,

1) © @)lypsm = 59 1(7i) @ (@0) (T, ..., To)| (16.14)
= sup{max{(p;;j(T1,...,Tn)), (¢s2(T1,--., Tp))}} (16.15)
= max{sup{(pi;(T1,...,Tn))},sup{(gs¢(T1,.-.,Tn))}}  (16.16)
= ma{[[ (Bl 100y} (16.17)

It remains to show that the multiplication on M} (7;,) is contractive. We have,

”(piyj)(qi,j)”u’k = sup “(p‘hJ (T17 sy Tn))(qz,] (TI) ey T’n))” (1618)
< s @i, T i (T, .. T (16.19
< @il g (@i g (16.20)

Finally the polynomial that is identically 1 is the unit for (Py, |||, 4)-

Let A be a unital operator algebra and let J be a non-trivial 2-sided ideal in .A. Prove that the algebra A/J
equipped with the quotient operator space structure is an operator algebra.

Solution: We have already seen that .A/J is an operator space and the unit is 1 + J. It is enough to show
that the multiplication is contractive. Let (a;),(bi;) € Mn(A/J). Choose (z;;), (vi;) € J such that
(@i 3) + (i)l < (@i + ), + € and [|(big) + @i )l < [(Big + I, + €. Tt follows that,

((ais + N, + )5 + Dl,,, +€) > Mais) + @)l N0ig) + @il (16.21)
> [|((@i) + (:,5))((bi5) + ®ii))l, (16.22)
= |(ai;)(bij) + (Z Tikbrj + @i kYk,; + xi,kl/k,j) “16-23)
k=1 m
> (ai)®ig) + I, (16.24)

By letting € — 0 we get our result.
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