LECTURES ON THE KADISON-SINGER PROBLEM
FALL 2007

VERN I. PAULSEN

ABSTRACT. These notes cover various topics in C*-algebras and func-
tional analysis related to the Kadison-Singer Problem[?]. They are in-
tended for an audience that is familiar with some of the basic results
in the theory of Banach and C*-algebras, but have sufficient references
that they can be read with somewhat less preparation.

These notes are based on a course taught in the Fall 2007 at the
University of Houston. I am grateful to the students of that course, Ali
S. Kavruk, Sneh Lata, Meghna Mittal, Mrinal Raghupathi, Preeti Singh
and Blerina Xhabli, for taking notes and helping with the initial texing.

1. INTRODUCTION

The field of C*-algebras has become so broad and diverse that it is truly
a heroic effort to attempt to learn the entire field without a particular goal
in mind. On the other hand this is rarely the way that active research
mathematicians learn a new field. Generally, we learn the parts of a field
that are revelant to the problem that we are focused on, while, hopefully,
learning enough about each subarea that we are comfortable with that area
and at least know where to look if we need further details.

I’ve designed these lectures around the material that one needs to know in
order to study the still unsolved Kadison-Singer problem[?]. Of course, we
must assume that the reader knows something, so we will assume that the
reader is familiar with the material in Chapters VII and VIII of Conway’s
book [?] or Chapter I of Davidson’s book [?]. Although we will review some
of these ideas below, but not in a comprehensive(or perhaps comprehensi-
ble!) manner.

The goal of these lectures isn’t necessarily to prepare the student to do re-
search on the Kadison-Singer problem, although these notes should prepare
you for that. But instead they use the Kadison-Singer problem as a point
of departure to introduce an array of topics in C*-algebras. This approach
wouldn’t work for every unsolved problem in C*-algebras, but, fortunately,
the Kadison-Singer problem is a problem that seems to be so fundamen-
tal(although at first it doesn’t look that way at all!) that it impinges on
many areas.

So without further ado, we state the problem and outline our lectures:

Date: December 10, 2007.
2000 Mathematics Subject Classification. Primary 461.15; Secondary 47L25.
1



2 V. I. PAULSEN

The Kadison-Singer Problem: Let 7{ be a separable Hilbert
space and let D C B(H) be a discrete MASA. Does every pure
state on D extend to a unique pure state on B(H) ?

Clearly, to understand precisely what the problem is asking we will need
to first understand what are pure states and what is a discrete MASA. Here
is the rough plan of our lectures:

I. Some C*-algebra basics,

II. States and pure states on C*-algebras,

II1. Discrete and continuous MASA’s,

IV. The Stone-Cech compactification,

V. Ultrafilters,

VI. Ultrafilters and ON,

VII. Anderson’s paving results,

VIII. Other paving results,

IX. Introduction to frames,

X. Frames and paving,

XI. Introduction to groups actions and crossed-products,

XII. Crossed-products and Kadison-Singer,

XIII. Dynamical systems and SG,

XIV. Algebra in SG.

2. SOME C*-ALGEBRA BASICS

Let V be a complex vector space. By an involution on V we mean a
map, * : V — V), satisfying:

o (v*)* =, for every v € V,
o (v+w)* =v*+w", for every v,w €V,
e (\v)* = \v*, for every A € C and v € V.

A complex vector with an involution is often referred to as a
space.

If V is a *-vector space, then we call v € V self-adjoint or Hermitian,
provided that v = v*. We let V}, denote the set of all self-adjoint elements
of V. It is easily seen that V} is a real vector space.

Given an arbitrary element v € V, we set Re(v) = # and Im(v) =
U= so that Re(v) and Im(v) are both self-adjoint elements and v =
Re(v) + iIm(v). This is often referred to as the Cartesian decompos-
tion of v.

If, in addition, a *-vector space V is a complex algebra, then we require
that an involution also satisfy,

*_vector

(a-b)" =b"-a".

Thus, when we say that we have an involution on a complex algebra, we
mean that all 4 properties are satisfied.
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A C*-algebra is a Banach algebra that is equipped with an involution
satsifying,
la* - all = [|a]?,
for every element. This equation is often called the C*-property.
We make no attempt to give a thorough course on C*-algebras in these
notes, only a quick overview, emphasizing the things that we will need. For
more complete treatments see [?], [?] and [?].

Proposition 2.1. Let A be a C*-algebra, then for every a € A, ||la]| = ||a*|.

Proof. We have that ||a||? = ||a*a|| < ||a*||||a]|, and canceling ||a|| from each
side yields, ||a]| < ||a*|| < for every a € A. Applying this inequality to the
element a*, yields, [|a*|| < ||a**|| = ||a||, and equality follows. O

A few key examples of C*-algebras to keep in mind follow.

Example 2.2. Let H denote a Hllbert space, B(H) denote the algebra of
bounded operators on H, and for T € B(H), let T* denote the usual adjoint
operator. Then B(H) is a C*-algebra.

When H = C™, then we will often identify B(H) with the n x n complex
matrices, M,,, in which case T™ is just the conjugate transpose of T.

Example 2.3. Let X be a compact Hausdorff space and let C(X) denote
the algebra of continuous, complex-valued functions on X and for f € C(X),
let f* denote the function, f*(x) = f(x). Then C(X) equipped with the
supremum norm, || f|| = sup{|f(z)| : z € X} is a C*-algebra.

This last example can be generalized in two ways. If X is only locally
compact and Hausdorff, then we can replace C'(X) with Cy(X), the algebra
of continuous, complex-valued functions that vanish at infinity, i.e., func-
tions, f, such that for every € > 0, the set {x : [f(x)| > €} is compact and
obtain a C*-algebra. If X is completely regular(so in particular locally com-
pact Hausdorff), then we may also replace C'(X) by Cy(X), the algebra of
continuous, complex-valued functions that are bounded, i.e., those functions,
f, for which || f|| = sup{|f(z)| : * € X} is finite and Cy(X) is a C*-algebra.

2.1. Units and adjoining units. We now take a look at properties of
C*-algebras with units and how units may be adjoined.

Proposition 2.4. Let A be a non-zero C*-algebra and assume that e € A
satisfies, a - e = e -a = a, for every a € A, i.e., that e is a two-sided unit,
then e = e* and ||e|| = 1.

Proof. For every a € A, we have that (a-e*)* = e -a* = e-a* = a*.

Applying * to both sides yields, a - ¢* = a. Similarly, e - a = a and hence, e*
is also a two-sided unit. Hence, e* = e* - e = e. Finally, |le|| = ||e*e|| = |le]|?,
and hence, |e|| is either 0 or 1, and hence, |le|| = 1.
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Proposition 2.5. Let A be a C*-algebra, then for every a € A, we have
that |lal| = sup{[laz| : = € A, [lz]| < 1} = sup{|jyal : y € A |yll <1} =
sup{|lyaz| : z,y € A, ||lzf| < 1, |ly|| < 1}

Proof. The equality is trivial for a = 0, so assume that a # 0. Since |Jazx| <
llal|l|z|| < ||la||, the supremum is smaller than the norm. Conversely, let
xg = a*/||a||, then ||xg|| = 1, and hence, sup{||laz]| : ||z|| < 1} > |laxo|| =
laa*]l _

T = ||la||, and the first equality follows. The second equality follows by
taking adjoints. The third equality follows by noting that

sup{|lyaz| : z,y € A, [lz]| <1, [yl < 1} =
sup{sup{[lyaz|| : 2 € A, [lz]| <1} :y € A [ly] <1} =
sup{[laz|| : = € A, [lz]| <1} = [|al|.

(|

Given a complex algebra, A if we let 4; = AGC = {(a,\) : a € A, \ € C},
then A; is a complex vector space in the usual way and setting (aj, A1) -
(a2, A2) = (araz + A2a1 + Ajaz, A1 A\2) can be easily shown to make A; into
a complex algebra with unit e = (0, 1).

Moreover, the map ¢ : A — Aj, defined by ¢(a) = (a,0), is easily seen to
be an algebra isomorphism onto its range. Identifying a € A with ¢(a) we
see that A1 ={a+ Ae:a € A\ € C}.

The algebra A; is called the algebra obtained by adjoining a unit
to A. Note that if A already had a unit, u € A, then u # e € A1, but still
au = ua = a, for every a = 1(a) € A;.

Also, note that if we set (a, \)* = (a*, A*), then this defines an involution

on Aj.

Proposition 2.6. If A is a C*-algebra and we let Ay denote the algebra
obtained from A by adjoining a unit, then Ay is a C*-algebra when we set
(@, My = sup{[laz + Az[| : 2 € A, [lz]| <1}

Proof. Note that for any =z € A, |lax + Az|| < ||(a, \)|1]|z]]. Also, using
Proposition 5, we have that ||(a, \)||1 = sup{|lyaz + Ayz| : z,y € A, ||z|| <
Lyl <1} = sup{flya + Ayl : y € A |yl < 1} = sup{lla™y” + Ay*|| 1 y €
Allyll < 13 = [1(a, V7.

We leave the details that this is a norm to the reader and only check the
Banach algebra and C*-property. To this end note that,

[(a, A) (b, p)[[1 = sup{[|a(bz + pz) + A(bx + pa)|| : [lzf| < 1} <
sup{||(a, M[[1]lbz + pa| = [lz| < 1} = [[(a; M)[1(6; @)1,

hence A; is a Banach algebra.
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To see the C*-property, note that ||(a, \)*(a, \)||1 < [|(a*, M)||||(a, N)|1 =
I(a, M)]3. Also,

I(a, V)17 = sup{||(z"a” + 2*N)(az + Az)]| : [l]| < 1} =
sup{l|(z*a*a + o a* A+ o Aa + 2 M)al : o] < 1} <
sup{[a*a*a + e a*A + 2*ha + N ¢ lal] < 1} =
sup{[|lz*(a*a + a* A+ Aa+ M) : ||z| < 1} =

l(a*a +a™ X+ aX, ANl = [[(a®, M) (a, M1
and the C*-property follows. n
Note that t(ax + Ax) = (a, A)(z,0).

2.2. The Positive Cone of a C*-algebra. If A is a unital C*-algebra,
then an element p € A is called positive, denoted p > 0 or 0 < p provided
that p = p* and the spectrum of p,o(p) C [0,+00). The set of all positive
elements of A is denoted by A'. The following results give the key facts
that we shall need about the positive elements.

Theorem 2.7. [?, Theorem VIIL.3.6] Let A be a unital C*-algebra and
a € A, then the following are equivalent.
(a) a >0,
(b) a = b for some b € Ay,
(¢) a=x*x for some x € A,
(d) a=a* and ||te — a|| <t for all t > ||al|,
(e) a=a* and |[te — a|| < t for some t > |a|.

Proposition 2.8. [?, Proposition VIIL.3.7] Let A be a unital C*-algebra,
then A* is a closed cone.

Proof. Recall that a cone is a convex set with the property that it is closed
under scalar multiplication by non-negative scalars. Using (b), if @ > 0, and
r > 0,7 € R then a = b?, and hence, ra = (1/rb)?, so that ra > 0.

To see that AT is convex, it is enough to show that if a,b € AT, then
(a+b)/2 € AT. We use (d), to see that for ¢ > max{||al|, ||b]|, ||a+ b|}, then
lte — (a+b)/2] < ||(te —a)/2|| + ||(te —b)/2|| < t/2+1/2 =t and hence, by
(e), (a+b)/2>0.

Finally, to see that A" is closed, let a,, € A" be a sequence converging in
norm to a. Since a,, = a}, we have a = a*. Also for ¢ > sup{||a,||}, we have
that |[te — a|| = lim, |[te — ay|| < t, and so by (e), a > 0. O

3. STATES AND PURE STATES

Given a C*-algebra A, a linear functional, f : A — C is called positive,
provided that f(p) > 0, for every p € AT. If A is a C*-algebra with unit e,
then a state is a positive linear functional s on A, such that, s(e) = 1.
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Proposition 3.1. Let A be a C*-algebra with unit e and let f : A — C be
a positive linear functional, then for every x € A, f(z*) = f(x).

Proof. First note that if a = a*, then there exists r € R, such that re + a €
A*. Hence, 0 < f(re+a) =rf(e)+ f(a), and it follows that f(a) € R. Now
given any x € A, f(z*) = f(Re(x) — iIm(z)) = f(Re(z)) —if(Im(z)) =
f(Re(z) +ilm(x)) = f(z). O
Proposition 3.2 (Cauchy-Schwarz Inequality for states). Let A be a C*-

algebra with unit e, and let s be a state, then for any x,y € A, |s(y*z)|> <
s(z*x)s(y*y) and s is a bounded linear functional and ||s|| = 1.

Proof. First note that if p € AT, then |[p|le —p € A". Hence, 0 < s(||p|le —
p) = 7]l - 5(p), 50 that |s(p)| = 5(p) < [Ip], for every p € A*.

Now let z,y € A and choose A € C,|\| = 1 so that s(Ay*z) = |s(y*z)].
Then for any ¢ € R, we have that 0 < s((Az — ty)*(\z — ty)) = s(z*x) —
2t|s(y*x)|+t2s(y*y). So the roots of this polynomial are complex or repeated
and hence(as in the proof of Cauchy-Schwartz), [s(y*z)|? < s(z*x)s(y*y).

Finally, for the last statement, taking y = e, we have that |s(z)|? <
s(z*x) < ||z*z| = ||=||?, and so ||s|| < 1, but s(e) = 1, implies that |/s|| >
1. [l

There is also a converse to this last result.

Proposition 3.3. Let A be a C*-algebra with unit e and let s : A — C be
a linear functional such that ||s|| < 1 and s(e) = 1, then s is a state.

Proof. We must show that if p € AT, then s(p) > 0. First we show that s(p)
is real. Write s(p) = a+1if3, with o, 3 € R. Note that for t > 0, ||p+itBe||> =
Ipl|* + 252, Hence, (t+1)25% < |s(p + itBe)|* < |[p+ itBe|* = ||p|* + 2.
Canceling terms from both sides yields, 2¢3? < ||p||?> for all ¢ > 0, which
impies that g = 0.

Now we have that |a — p|| = |s(o  lplle)] < llp — Ipllell = [l2, which
implies that o > 0. Thus, s(p) > 0. O

Given a unital C*-algebra A we let S(A) denote the set of states on .A.
By the above results this is a subset of the unit ball of the dual of A and
hence, can be endowed with weak*-topology. When we refer to the state
space of A we mean S(A) endowed with this topology.

Proposition 3.4. Let A be a unital C*-algebra, then the state space of A
is a weak*-closed, convex subset of the unit ball of the dual.

Proof. Clearly convex combinations of states are states. Also, if a net of
states converges in the weak*-topology to a linear functional, f, then f(e) =
1, and || f|| <1, so that f is a state. O

By the Krein-Milman theorem|[?, Theorem V.7.4], S(A) not only has ex-
treme points but it is the closed, convex hull of its extreme points. We define
the pure states on A to be the extreme points of the state space.
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3.1. States and the GNS Construction. We outline/recall the famous
Gelfand-Naimark-Segal construction.

Given a state s on a C*-algebra A with unit e, by the Cauchy-Schwarz
inequality for states, setting B(x,y) = s(y*z) defines a positive, semidefinite
sesquilinear form on A.

If we let N = {z € A: s(z*x) = 0}, then it can be shown that N is
a vector space and that for a € A,a- N C N. From these facts one can
see that there is a well-defined map B on the vector space A/N defined by
setting B(z+N,y+N) = B(x,y) and it is easy to check that B is a positive
semidefinite sesquilinear form. Thus, A/N is a pre-Hilbert space which after
completion becomes a Hilbert space, which we denote by H;, to indicate its
dependence on the state s.

There is a map ms : A — B(Hs) defined on the dense subspace by
ms(a)(z + N) = ax + N. To see this note that we have that ||ms(a)(z +
M)|? = |lax + N||? = s(z*a*ax). But 0 < z*a*ax < ||a*aljz*z, and hence,
0 < s(z*a*ax) < |la*als(z*z) = |la||?||z + N||?. Thus, 7s(a) extends by
continuity to a bounded operator on Hs of norm at most ||al|.

It is easily seen that 7y is a unital homomorphism and that m4(a*) =
ms(a)*, i.e., s is a *~homomorphism.

A unital *-homomorphism from a C*-algebra A into B(H) for some
Hilbert space H is often called a representation of A on H. The map
7s : A — B(Hs) is called the Gelfand-Naimark-Segal(or GNS) repre-
sentation corresponding to the state s.

Note that if we set n = e + N, then ||n]| = s(e) = 1 and we recover the
state from the representation by the formula,

s(a) = (ms(a)n,n).

Conversely, if we start with any representation 7 : A — B(#), and any unit
vector v € H, then s(a) = (w(a)v,v) is a state.

The GNS representations have one additional property. A representation
m: A— B(H) is called cyclic if there exists a vector h € H, such that the
set m(A)h = {m(a)h : a € A} is dense in H, and in this case h is called a
cyclic vector. If we let n = e + N, then the set m5(A)n = {ms(a)n : a €
A} = {a+N : a € A} is a dense subset of Hs. Thus, the GNS representations
are always cyclic.

In fact cyclicity characterizes the GNS representation.

Proposition 3.5. Let A be a C*-algebra with unit e, and let m: A — B(H)
be a representation with a unit cyclic vector v. If we let s(a) = (w(a)v,v)
denote the corresponding state, then there exists a unitary, U : Hs — H,
with Uns(a)n = m(a)v.

Proof. One has that ||7s(a)n||?> = |la + N|? = s(a*a) = (r(a*a)v,v) =
|7 (a)v||?. This equation shows that the map U is well-defined and an isom-
etry. The rest follows readily. O
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The GNS representations are used to prove that for every C*-algebra A,
there exists a Hilbert space H and an isometric representation of A on H.
We already have all but one of the results necessary to prove this facts.

Lemma 3.6. Let A be a unital C*-algebra and let p € A", then there ewists
a state s such that ||p|| = s(p).

Proof. Let S denote the span of e and p and define a linear functional,
;8 — C by f(ae + Bp) = a+ B|p||. We use the fact that ||ae + Bp|| =
sup{|a + BA| : A € o(p)}, where o(p) denotes the spectrum of p and that
2]l € o(p)-

JFrom this is follows that |f(ae + Bp)| = |a + Bp||| < |lee + Bpl|, and
so f is a contraction. By the Hahn-Banach theorem, we may extend f to a
contractive linear functional, s : A — C, but since s(e) = 1 and [|s|| = 1,s
is a state. U

Theorem 3.7 (Gelfand-Naimark-Segal Representation). Let A be a C*-

algebra, then there exists a Hilbert sapce H and an isometric *-homomorphism
w: A— B(H). Moreover, if A is unital, then one may chose 7 to be unital

too.

Proof. We only do the case that A is a unital C*-algebra, the non-unital
result follows by adjoining a unit to A.

For each state s on A, let 73 and H, denote the GNS representation and
corresponding Hilbert space. Let H = ) . @®Hs, be the orthogonal direct
sum over all states and let 7 = Y @®n, : A — B(H) be the representation
that is the direct sum of al the GNS representations. Then 7 is a unital

*_homomorphism and for each a € A, we have that [|a||?> > |7(a)|? =
|m(a*a)|| = sup{||ms(a*a)||} > ||a*al|, where the last inequality follows from
the lemma. Hence, 7 is an isometry. O

The representation 7 = ) 7 is called the universal representation
of A.

We now look at what distinguishes the pure states. Given a representation
m: A — B(H) of a C*-algebra, a subspace H; C H is called invariant
for m(A) provided that 7w(A)H; € H; and reducing for 7m(A) provided
that the orthogonal projection onto #Hi, say Pj, commutes with 7(A), i.e.,
Pimt(a) = m(a)P, for every a € A. A representation is called irreducible if
the only reducing subspaces are H and (0).

Proposition 3.8. Let 7 : A — B(H) be a representation of the C*-algebra
A and let Hy be a subspace. Then Hy is invariant if and only if Hy is
reducing.

Proof. Clearly, if H; is reducing, then it is invariant. Conversely, if H; is an
invariant subspace, then for every a € A, we have that Pym(a)P; = 7(a)P;.
But then it follows that Piw(a) = [r(a)*P1]|* = [r(a*)Pi|* = [Pym(a™)P1]* =
Pirw(a*)*Py = Pim(a)P; = w(a)P1, and so P; commutes. Hence, H; is
reducing. O
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Proposition 3.9. Let A be a unital C*-algebra and let s be a state. Then
s is a pure state if and only if w5 is an irreducible representation.

Proof. We prove only one implication, namely, that if s is pure, then 7y is
irreducible. For the proof of the converse see [?, Theorem 1.9.8].

To this end assume that 7, is reducible and let H; be a non-trivial reduc-
ing subspace. Let P; denote the projection onto H; and let P, = PlL and
let 1 denote the cyclic vector for m,. If n = Pyn, then it easily follows that
Hy, = Hs. Hence, n # Pin. Similarly, n # Pan.

Thus, Pin # 0, and Pon # 0. Let n; = ﬁ%”,i = 1,2 and define states by
si(a) = (ms(a)n;, ;)i = 1,2. Tt is easily checked that s(a) = ||n1]|?s1(a) +
[72]%s2(a), a convex combination.

Now since s is pure, we must have that s = s; = s9. Thus, in particular
there exists a unitary, U : Hs — H;, where H; is the closed cyclic subspace
generated by 7s(A)n, satisfying, Ung(a)n = ms(a)n = || Py~ trs(a)Pin =
| Pin|| =t Pims(a)n. Since the vectors {ms(a)n : a € A} span the Hilbert space,
we have that U = ||Pyn|| =1 P, but the left side is an isometry while the right
side is not.

This contradiction completes the proof. O

3.2. States and Pure States on C(X). Let X denote a compact, Haus-
dorff space. By the Riesz Representation Theorem, every bounded linear
functional on C(X) is given by integration against a regular, complex-
valued Borel measure on X and the positive linear functionals are inte-
gration against a positive regular, Borel measure. Thus, a state s cor-
responds to integration against a positive, regular Borel measures p with
1 =s(e) = [y ldp and hence, pu(X) = 1.

To get Hs we complete C(X) in the inner product, (f,g) = s(gf) =
[x gfdp. Thus, Hs = L*(X,pn) ! Moreover, m,(f) = My the operator of
multiplication by f on L?(X, u).

Now given any measurable set F, if we let Pg denote the operator given
by multiplication the characteristic function of E, then Pg is an orthogo-
nal projection that commutes with 74(C'(X)). Thus, Pr defines a reducing
subspace.

Hence, s is pure if and only if for every E either Pg = I or Pg = 0. This
last condition holds if and only if the support of the measure i consists of
a single point, that is, if and only if there exists a point x € X, such that
1 = 6, where J, is the measure defined by

e ={y 155

Note that in this case the state is given by s(f) = [y fdé, = f(x), the
functional of evaluation at z.

Thus we see that the pure states on C(X) are all *-homomorphisms given
by evaluation at points.
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3.3. States and Pure States on M,,. We now look at the states and pure
states on M,, = B(C"). First note that every vector in C" is cyclic for M,,,
i.e., the identity representation of M, is irreducible. Thus, if we take any
unit vector v € C", then the state s,(A) = (Av,v) is pure. These states are
called vector states.

On the other hand, it can be shown that if = : M, — B(H) is any
representation, then up to conjugation by a unitary, H is a direct sum of
copies of C"(so that if the dimension of H is finite, then it is divisible by
n) and w(A) is a direct sum of the same number of copies of A(so that
m(A) = A® A® ...). To see this claim, let E;; denote the canonical
matrix units for M, let K = w(E;1)H and choose an orthonormal basis
{fa}taca for K where A is some index set. If we let e; o = 7(Ej 1 fo, and set
Hao = span{eiq : 1 < i <n}, then each of these spaces is n-dimensional and
reducing for 7(M,). The restrictions of 7 to each of these spaces is easily
seen to be the identity representation of M,, with respect to the orthonormal
basis, {€iq: 1 <i<mn}.

These representations are reducible, unless dim(K) = 1, in which case we
are back to the first example. Thus, every pure state on M, is a vector
state.

This decomposition of representations does yield a representation of arbi-
trary states. For if we are given a state s and 7,, then m,(A) = ADAD ...
and relative to this decomposition n = 71 @ 72 @ ..., with 1 = ||n|*> =
Iml[* + llm2l|? + . .. Thus, if we let v; = 7,[|n;]|, then

s(A) = (A, m) + (Ana,ma) + ... = |Im]*su, (A) + [[m2]* 50, (A) + . ..

and we have expressed s as a convex series of pure states.

3.4. States and Pure States on B(?). The same argument as for M,,
shows that if we take any unit vector, v € H, then setting s,(A) = (Av,v)
defines a pure state. However, when H is infinite dimensional, then these
are not all of the pure states! In fact, in some sense, it is the fact that
there are other pure states on B(H) that we shall see is at the heart of the
Kadison-Singer problem.

To see that there exist other pure states, we need only recall that the
compact operators, (H) form a two-sided ideal in B(H) and so we may
form a quotient algebra, Q(H) = B(H)/K(H). This quotient algebra is
called the Calkin algebra.

The Calkin algebra is itself a C*-algebra(quotients of C*-algebras by two-
sided ideals are always C*-algebras) and so there exist states and pure states
on Q(H). Note that every state § on Q(K) by composition with the quotient
map yields a state s(A) = §(A+/K(H)) on B(H) that is 0 on K(#). Moreover,
it is easily seen that if § is a pure state, then s is also pure.

Since the vector states obtained above do not vanish on IC(#), the states
on Q(H) yield new non-vector states and non-vector pure states.
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Thus, we see that there are two types of pure states on B(H), vector
states and states that are the composition of a pure state on the Calkin
algebra with the quotient map.

There is still a great deal that is not understood about pure states on the
Calkin algebra and the corresponding irreducible representations. Remark-
ably, some results about the representations of Q(H) and hence of B(H)
depend upon the axioms of set theory. Some of the deepest work can be
found in [?], [?], [?], and [?].

3.5. The Generalized Kadison-Singer Problem. We now return to the
Kadison-Singer problem and see what the above knowledge of states and
pure states tells us.

Proposition 3.10. Let B be a unital C*-algebra and let A C B be a subal-
gebra that contains the unit of B. Then every state on A extends to a state

on B.

Proof. Let s : A — C be a state, then ||s|| = 1, and so by the Hahn-Banach
theorem there exists a linear map §: B — C extending s with ||5]| = 1. But
since §(e) = s(e) = 1,5 is also a state. O

The following result is implicitly contained in [?].

Proposition 3.11. Let B be a unital C*-algebra and let A C B be a subal-
gebra that contains the unit of B. Then the following are equivalent:

e cvery pure state on A extends to a unique pure state on B,
e cvery pure state on A extends to a unique state on B.

Proof. Fix a pure state s : A — C and let C denote the set of all states on B
that extend s. Then it is easy to see that C is a weak*-closed, convex subset
of the unit ball of the dual space of B.

Let § € C be any state on B that extends s. If we express § as a con-
vex combination of states on B, then the restriction of each of these states
to A expresses s as a convex combination of states. But since s is an ex-
treme point, each of these restricted states must be s. Thus, whenever we
express § € C as a convex combination of states on B, each of those states
is necessarily also in C.

Hence, every extreme point of C is a pure state.

Now assume the first statement. If there exists more than one extension
of s, then there is more than one point in C and hence, by Krein-Milman C
would have at least two extreme points. But both of these extreme points
would be pure states that extend s.

If we assume the second statement, then C is a singleton and that singleton
is an extreme point of C and so necessarily a pure state. O

This result leads to the following equivalent re-formulation of the Kadison-
Singer problem:
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The Kadison-Singer Problem: Let 7{ be a separable Hilbert
space and let D C B(H) be a discrete MASA. Does every pure
state on D extend to a unique state on B(H) ?

It also leads to the following generalizations of the Kadison-Singer prob-
lem.

Let B be a unital C*-algebra and let A C B be a subalgebra that
contains the unit of B. Find necessary and sufficient conditions on
the pair of C*-algebras so that every pure state on A extends to
a unique state on B.

Since states are the same as linear functionals of norm one which send the
identity to 1, this question makes sense even when B is not a C*-algebra.
Consequently, the following problem is also studied.

Let A be a unital C*-algebra, X a Banach space with A C X.
Find necessary and sufficient conditions on the pair so that every
pure state on A extends uniquely to a contractive linear functional
on X.

Since MASA’s are abelian C*-algebras(as we shall see in the next section),
these last two questions are most often studied in the case where A = C(X)
for some compact, Hausdorff space X, in which case the pure state is just
evaluation at a point of X.

4. DISCRETE AND CONTINUOUS MASA’S

A subalgebra A C B(H) is a maximal abelian self-adjoint subal-
gebra or MASA provided that if A C B C B(H) with B an abelian
self-adjoint subalgebra, then A = B. These always exist by Zorn’s Lemma.

Definition 4.1. Let S € B(H) be a non-empty set. Then commutant of
S is
S'={T € B(H):TS=ST, foral SeS.}
The following are some basic properties of commutants that we will make
use of.
1) fSCT,then T"C &,
2) &' is a unital subalgebra of B(H).
3) &' is norm-closed.
4) We call a set S self-adjoint if whenever S € S, then S* € S. If S
is self-adjoint, then &’ is self-adjoint. to see this note that T € S’
implies T'S = ST for all S € § and so S*T™* =T*5* for all S* € §
which shows that T* € S'.
5) If S is abelian, then S C §'.

Proposition 4.2. Let A C B(H) be an abelian self-adjoint algebra. Then
A is a MASA if and only if A= A'.

Proof. If B € A’, then BA* = A*B for all A € A. This implies AB* = B*A

B+ B*
for all B* € A’. This implies Re(B) = —; € A'. Let B be the algebra
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generated by {A, Re(B)}. B is an abelian, self-adjoint algebra in B(H), and
A C B. By the maximality of A we get A = B. We have shown Re(B) € A
and a similar argument whows Im(B) € A. Therefore, A" C A, but A C A
by our earlier remark.

If AC BC B(H), then B C A" = A. Since B is abelian, B C B’ C A.

Therefore, B = A, which implies A is maximal, i.e. A is a MASA. O
Corollary 4.3. If AC B(H) is a MASA, then A= A" = A".
Proof. A=A'= (A) =A"= A O

Example 1 Consider the Hilbert space H = ¢*(N) with its standard or-
thonormal basis {e; : j € N}. If T € B(¢*(N)), then we may identify 7' with
a matrix T = (t; )i jen, where t; ; = (Te;,e;). An operator T € B(I*(N)) is
called diagonal if ¢; ; = 0, for all 7 # j. Let D denote the set of diagonal
operators on ¢?(N). The algebra of diagonal operators D is self-adjoint.
Let D € D, then (Dej,e;) = 0 for all ¢ # j. If follows that (ej, D*e;) = 0
for all i # j and so (D*e;,e;) = 0 for all ¢ # j and so D* € D. To see
that D is abelian we note that if 7 = (t;;) and R = (r;;) in B(I*(N)),
then TR = (35 tikTkj)ij=n. Firstly, each row and column of the matrix
of such a bounded operator is in £2(N). We have, Te; = > 52, (Te;, e;)e;.
The Parseval identity yields

oo
(1) > Teje]” < oo

i=1
Similarly, we have T%e; = >, (T"e;, e;)e; and so

o0
(2) D [T e)]” < o0

i=1
By (?7), 352 (Tej e = 3752, [ti5]°, and by (27), 332, [(T*ej, )] =

S22, [tjil*. This shows for any T, R € B(I*(N)) that Y 72 ; t;x7k; converges.
We compute

(o]
(T'Rej,e;) = Z Rej,ep)er), e;) = Zrk]ek,el
k=1
[o¢] (o)
= () riTer,ei) =Y (Tey, ei)ry; = thk?“kg
k=1 k=1

Finally to show that D is a maximal we need only to show D = D’ . Since
D is abelian, D C D'. If T € D', then T D = DT for all D € D. In particulat
T must commute with E;; for all i € N. We have,

0 -~ 0 t1;, O
TE;; = 0 .-+ 0 t2; O

)
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and
0 -+ 0
BT = tin - tig
0 - 0

On comparing these two matrices we see that ¢; ; = 0 for ¢ # j. Therefore
T € D= D CD,hence D is a MASA.
Note: For any D = diag(d; ;) € D, we have |d;;| = |(De;, e;)| < || D||. Hence,
sup;{|di;|} < [|D]||. On the other hand D(}_, ae;) = >, cyidize;, which im-
plies | D(3Z; aie) I = 37, |ail?|diil* < sup;{|diil} 32, |eil* = sup{|dii |} 32; cvies|.
Therefore, || D|| < sup;{|di;|} and ||D|| = sup{|d;| : i € N}.
This allows us to identify ¢*°(N) = Cy,(N), which is an abelian C* alge-
bra with D. Consider the representation 7 : £>°(N) — B(¢?(N)) given by
7((ej)) = D, where D = diag(d;;) with d;; = a;. We will often identify D
with ¢>°(N).
Example 2 Consider the Hilbert space H = L?([0,1],)), where ) is
Lebesgue measure. Given f € L*(]0,1]) define the multiplication opera-
tor on L?([0,1]) by M¢(g) = f - g. Denote by M = {M¢|f € L>[0,1]} C
B(L?[0,1]). Recall that || M| = esssupl||f| = || f]loo- It can be checked eas-
ily that M is an abelian, self-adjoint subalgebra (recall (My)* = M).
We claim that M is maximal, i.e. a MASA. Let '€ M'. Set g = T(1),
where 1 is the function constantly equal to 1. For f € L™ C L% T(f) =
T(Mg(1)) = MfT(1) = Mg(g9) = f-g. Therefore, T(f) = f - g for all
f € L. It remains to be shown that g € L>®. Let E, = {z : |[g(x)] >
n}, let £ = xg, € L. Then [T(HIE = llg- fIP = fo.y loxe,Pdr >
JPIxe, Pd\ = n? [ |xg, [Pd\ = 2®| f|* = ||T||* > n® provided ||f]|* # 0.
Therefore m({z : |g(z) > n}) = 0 whenever n > ||T’||. Hence, g € L>. Note
T(f) = Mgy(f) for all f € L. Since both T" and My are bounded operators
and L* is dense in L%, we get T = M. Hence, M’ C M C M.

Definition 4.4. Let A C B(H) be a unital C* subalgebra, a projection P =
P? = P* ¢ A is called minimal, if 0 # P and whenever E = E?> = E* € A
with 0 < E < P, then either E=0 or £ = P.

Definition 4.5. A MASA A C B(H) is called discrete or atomic if it is
the commutant of the set of its minimal projections.

Definition 4.6. A MASA A C B(H) is called continuous if it has no
minimal projections.

Example 3 Let D C (*(N) C B(¢*(N)), each E; € D is a minimal
projection and {Ej; : i € N} = D. Thus, D is a discrete MASA.

Example 4 Let M = L*[0,1] C B(L?0,1]). We know that P € M,
P? =P = P*iff P = M,,, for some Borel measurable subset E C [0,1]. If
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P # 0, then m(E) # 0. If m(E) # 0, then there exists Borel measurable
sets E7 and Ey such that £ = Fy U Ey and m(E;) # 0.

Since 0 < m(E1) < m(E), we have 0 < M, < M, which gives a non-
trivial projection My, . Therefore, M = L* [0, 1] is a continuous MASA.

Proposition 4.7 (Da, 11.1.2). Let A be a unital C* algebra, 7 : A — B(H)
a unital x-homomorphism. Assume that H is seperable. There exists an
at most countable collection of orthogonal subspaces {H,} of H with H =
> ®Hy such that each My, is reducing for m, and there exists hy, € H, such

that [m(a)hy] = Hy.

Proof. Given any x € H, x# 0. Look at H, = [r(a)z]™, then H, is invariant
for m and hence reducing.
On H,*, if we pick any y € H, ", [r(a)y]™ = H, will be othogonal to H,.
By Zorn’s lemma we may pick maximal set {X,}aca such that H,, 6 =
[1(a)zq]” are all orthogonal for z, # xg.
Since zo € Haz,, g € Hzy, implies that x, L xg. and so A is atmost
countable.
Lastly, > ,c4 @ Heo = H, by maximality. O

Lemma 4.8. Let A C B(H) MASA, where H is seperable. Then there
exists x € H such that [Az]” = H,.

Proof. Write H =), ®H,, where each H,, = [Az,]”, [Jz.| = 1.

Let P,= projection on H,, = Py, then P, € A'= A.

Let @ = > 0% shap, [Az]” D [APz]” = [Az,]” = H,, which implies
that [Ax]” D Y &H, = H. O

Theorem 4.9 (MASA Representation theorem). Let H be a seperable Hilbert
space, A C B(H) MASA. Then there exists a compact Hausdroff space X, a
Borel measure 1 on X with u(X) =1 and a unitary U : L*>(X, n) — H such
that A={UMU* : f e L>®(X,n)}.

We sketch the proof of this result.

Proof. Let A C B(H) MASA, H seperable. By the lemma, there exists
h € H, with [|h|| = 1 such that [Ah]™ = H. Since A is an abelian C*
algebra A = C(X). Let 7 : C(X) — A, be the isomorphism such that
A={n(f): feC(X)}. Define s: C(X) — C via s(f) = (x(f)h,h). Since
s is a state there exists a measure p such that s(f) = [, fdpu.

For f € C(X) C L?(X,p), set Uf = n(f)h € H.

IUFI1? = llw(£)RI* = (m(|f1*)h, ) = / | PPdp = [I£1I°.

Since U is an isometry on C(X), U extends to a map on the closure of C(X)
in L?(X, ). Therefore, U : L?(X, u) — H is an isometry.

To see that U is onto, note that {n(f)h : f € C(X)} = {Ah : A €
A} which imples {UMU* : f € L™®(X,p)} 2 {UMU* : f € C(X)} =
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{m(f): feC(X)} =A However, {UMU*: f € L>®(X,p)} is an abelian
selfadjoint algebra which contains the MASA A. Therefore, A = {UM;U* :
f e L2(X, )} O

Theorem 4.10 (MASA decomposition theorem). Let H be a seperable
Hilbert space, and assume that A C B(H) is a MASA. Then there exists
H, CH such that

1) Py, C A.

2) Ay = {Pu,Aln, : Ac A} C B(H,) is a discrete MASA.

3) Ac={Py 1Al 1 : Ac A} C B(H) is a continuous MASA.

Once again we sketch the proof. We can assume without any loss of
generality that H C L*(X, u) and A= {M;: f € L>(X, u)}.
The rest follows from a decomposition theorem theorem for measures into
atomic and continuous parts.

Given z € X, {z}-Borel set. Let X, = {x : u(x) # 0}. Write X = X,UX,
and argue that the fact that H is seperable forces X, to be at most countable.

Let pia = pilx,, pe = ptlx, and Ho = span{dy,y v € X}

Theorem 4.11 (Kadison-Singer). Let A C B(H) be a MASA. H = H,BH..
If H. # 0, then there exist a pure state on A which has a non unique state
extensions to B(H).

Hence, the only case where could have uniqueness of extensions of pure
states is when the MASA A is discrete.

4.1. The Strong Operator Topology (SOT) and The Weak Opera-
tor topology(WOT). Given anet {Th}xen € B(H) we say that T\ — T
in SOT iff |T\h — Thi| — 0, Vh € H.

A net Ty — T in WOT iff [(Tyh, k) — (Th, k)| — 0, for all h, k € H.

Theorem 4.12 (von-Neumann Double Commutant Theorem). If I € A C
B(H) be a C* algebra, then A" = A=50T = A=WOT,

Proposition 4.13. Let A C B(H) be a discrete MASA, then every minimal
projection is rank 1.

Proof. Let {Ex}xen € A be the set of minimal projections so that A =
{Ex}\ca- If E, and E) are two minimal projections such that Ey # E,, then
E)\EM = EAEMEA < EM' AISO7 (E)\Eu)2 = E)\E = (E)\Eu)*. Therefore,
E\E, is a projection in A. Either EyE,, = 0 or E\E, = E,,. However,

E, = E\E, = E,E,E, < E\

which contradicts the minimality of E. Therefore, E\E,, = 0 for all minimal
projections. Now fix a minimal projection E,, and assume tha the rank of
E, # 1. This implies that £, = F' + G, where F' and G are non-zero
orthogonal projections. Now, 0 < E\FE, < E\E,E)\ = 0 for A # pu.
Therefore, E\F = 0 for all A # p. Similarly, ExG =0, FE, =0, GE, =0
for all A # p. Let B be the C* algebra generated by I, {E\} U{F} U{G}.



KADISON-SINGER 17

The algebra B is abelian and B C [{Ex} U{F}U{G}] C [{Ex}U{E,}] =
A, Thus, A = A" C B = B 99T, Let T1,T, € B59T, there exists
{B»},{C,} C B such that By — T and C,, — T in SOT. Now for any
B e B,

T\Bh = liin B\Bh = li}\nB(BAh) = BT1h
Similarly 75 B = BT for all B € B. Finally,
TlTQh = llin B)\Tgh = hiIlTQ(B)\h) = T2T1h.

Therefore T;, T» € B~59T implies T1T5> = T»Ti. Hence B” is abelian. Since
Ais a MASA, A= B". Now F,G € B" = A contradicts the minimality of
E,,. Therefore, E,, has rank 1. O

Theorem 4.14. Let ‘H be a separable, infinite dimensional Hilbert space
and A C B(H) be a discrete MASA. There exists a unitary U : £2(N) — H
such that A= UDU* = {UDU* : D € D}, where D = {*(N) C B({*(N)) is
the MASA of diagonal matrices.

Proof. Let A = {E)\};\EA, where E\ has rank 1. Choose ey € clH such that
llexll =1, Exex = ey and Eye, = 0 for A # p. Thus ey L e, for A # p We
claim that {e)}xea is an orthonormal basis for H. Assume v € H, |Jv]| = 1,
and v 1 ey, for all A € A. Let P be the rank one projection onto v. For
all \, PE\ = E\P = 0. Hence, P € {E)\} = A, which implies that P
is a minimal projection in A, which is a contradiction. Therefore, {e)} is
an orthonormal basis for H. The cardinality of A is given by card(A) =
dim(H) which implies that A is countable. Write A = {\,, }pen and define
U : ?(N) — H by Ue, = ey,. U is clearly a unitary. Since D C B(I*(N))
is a MASA, UDU* C B(H) is also a MASA. Now, UE,, ,U* = E), and so
E\, € UDU*. Since {E)}xen C UDU* we get (UDU*) C {Ey}\c, C A
and so UD'U* C A. The diagonal operators D are a MASA and so D =D'.
It follows that UDU* C A and so UDU* = A. O

The above result leads to an equivalent statement of the Kadison-Singer
Problem.
Kadison-Singer Problem. Does every pure state on (*°(N) = D
extend uniquely to a state on B(/?(N)?

5. THE STONE-CECH COMPACTIFICATION

Let X be a locally compact Hausdorff space (LCH). A compactification of X
is a pair (Y, f) where Y is a compact Hausdorff space (CH) and f: X — Y
is a continuous function such that f: X — f(X) is a homeomorphism and
f(X) is dense in Y.

Theorem 5.1 (Stone-Cech). Let X be a locally compact Hausdorff space.
Then there exist a compactification (Y, f) of X such that if Z is any compact
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Hausdorff space and g : X — Z is any continuous function, then there exists
h:Y — Z continuous such that ho f = g.

xe oy

J{ g
ok

z

We make note of a couple of facts about the Stone-Cech compactification.
(1) Since f(X) is dense in Y, h is unique.
(2) If (Z, g) was another compactification of X, then since g(X) is dense
in Z, h(Y) = Z. In this sense, the Stone-Cech is the largest or
maximal compactification of X.

Corollary 5.2. If (W, j) is another compactification of X with the properties
of (Y, f) then there exists a homeomorphism h : Y — W such that ho f = j,
h=loj=f.

There exists amap f: X — Y and j : X — W and so there exists h and
g such that ho f = j and goj = f. Hence, goh(f(z)) = g((j(z)) = f(z) and
so g o h is the identity on a dense subset of Y so by continuity g o h = idy
and similarly h o g = idy. So h is a homeomorphism with g = h~! and so
hof=j.

Definition 5.3. The space (Y, f) is called the Stone-Cech compactification
of X and we denote this fX.

Let X be an LCH and recall Cy(X) the space of bounded continuous
functions on X. Given f € C(BX), f: X — Cso foi: X — Cis
continuous and f(X) C f(8X). The latter set is a compact subset of C and
so is closed and bounded. Hence f oi € Cp(X).

Theorem 5.4. The map i* : C(BX) — Cy(X) given by f — foi is an
(onto) x-isomorphism.

Proof. (fi + f2) oi = fioi+ faoiand so i*(f1 + f2) = i*(f1) + i*(f2).
*(fife) = (fife) oi = (frod)(faoi) =i (f1)i*(f2), i*(f) = foi=foi=
i*(f). Hence, i* is a homomorphism.

To see that it is one-to-one assume that i*(f) = foi =0 and so f =0
on i(X). But i(X) is dense in fX and since f is continuous f = 0.

Let g € Cy(X) and let M := sup{|g(z)| : z € X}. Let Z = {\ €
C: |\ <M} g: X — Z and so by Stone-Cech there exists a function
g : X — C so that g oi = g. But this just means i*(g) = g. O

f

Remark the map g — ¢ maps Cy(X) — C(5X) is the inverse of i*.

Recall the maximal ideal space of Cp(X), which we denote M(Cy(X)).
We know this is the set of functions § : C,(X) — C such that 4 is a non-zero,
multiplicative linear functional.
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We have seen that ||6]] = 1 and that the set of multiplicative linear func-
tionals is a weak*-closed subset of the the ball of the dual space Cy(X)7.
Hence it is a weak™-compact Hausdorff space when endowed with the weak®
topology.

Suppose that we are given a point w € X then define §,, : Cp(X) — C
by dw(g) = g(w). This gives a map I' : X — M(Cy(X)).

Proposition 5.5. I' : BX — M(Cy(X)) is a homeomorphism.

Proof. If wy — w in X this implies that g(wy) — g(w) for all g € C(5X).
It follows that d,, (¢9) — 0w (g) for all g € Cp(X). Conversely if 6, — 0.
in the weak™ topology then for all § € C(8X) we have g(wy) — g(w). this
implies that wy — w. To see that it is onto let § : Cp(X) — C and define
5 :C(BX) = C by §(j) = d(g) and so § € M(C(BX)). It follows that there
exists w € X such that § = 4. O

This shows we could define X to be M(Cy(X)) and then show that
this has the universal property given in the Stone-Cech theorem. This is
essentially Stone’s proof.

An important example for us is the space £*°(N). We can view this as the
set of continuous bounded functions on N so (*°(N) = C,(N) = C(5N).

6. ULTRAFILTERS

Ultrafilters will give us another approach to understanding SN. Let S be
a set. A non-empty collection F of non-empty subsets of S is called a filter
provided

(1) fn>1and F,...,F, € F, then (\;_, Fj € F.

(2) If Fe Fand F C G, then G € F.
Note that the second property forces S € F. Note that if ' € F, then
FNF¢ =0 and so F¢ ¢ F. A filter is called an ultrafilter if it is not
contained in any other filter, i.e. it is a maximal filter.

Therefore U is an ultrafilter if and only if U/ is a filter and if F is a such
that filter F D U then F =U.

Let sp € Sand let U, := {A C S : sp € A}. It is straightforward to check
that Uy, is a filter. Now suppose that 7 C U/ and that ¢/ # F. There exists
A € F such that A € U. This implies so ¢ A. However, {so} € Us, C F and
so 0 = {so} N A € F, which is a contradiction. Hence, Us, is an ultrafilter.
The ultrafilters of the form U, for some sy € S are called the principal
ultrafilters.

Proposition 6.1. Let S be a non empty set. Then a collection L of subsets
of S is an ultrafilter if and only if it is a filter and for each A C S either A
e U or A° € 4.

Proof. (=) Let A C S and A ¢ $[. We must show that A¢ € 4l
Let WW={YCS:3UeUY, A°’NUCY }
For Yq,..., Y, € 20, there exits Uy,..., U, € U such that Y; D A°NU;.
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=N, Y; 2 AN (ﬂ?lei)

=N, U; € 2.

Therefore finite intersections of sets in 27 is in 2. Clearly, every superset of
a set in 2 is in . If ) € 2T, then there is some U in U such that ) DANU.
This impies A°N U is an empty set. Therefore U C A and so A€ 4 which
is a contradiction. So, () ¢ 2. Hence 20 is a filter. But Ue U, UD AN U.
This implies Ue 2. Thus & C 0. Therefore 4 = 2. But A° = A°NS and
Se L. Therefore A€ € 25 = L.

(<) Suppose 4 is not an ultra filter. So, there exists a filter 20 such that
4 S 0. This implies that there exists A in 20, A¢ 4. Then A® € 4 C . This
gives ) = A°N A is in 20 which is not possible. Hence 4 is an ultrafilter. [

6.1. Convergence along an ultrafilter. Let S be a set, 4l an ultrafilter
on a set S, X a compact Hausdorff space. Assume we are given zs € X for
each s in S. We want to define limy .

For each set A € U, let Cy ={zs:s€ A} C X

Theorem 6.2. Let S, {zs}ses € X and Y be as above.Then :

1) There exists xo € X such that (.4 Ca = {20}
2) Given an open set V in X, xy € V there exists A in Y such that
zo€ Cy CV.

Proof. 1. Given Ay, Ay € Y, Ca, NCyu, 2 Cajna, # 0.

Therefore Cy, N---NCy, 2 Ca n..na, # 0 for each n > 0 and so, {Ca} acy
has finite intersection property.

Therefore NeyCa # 0

Assume there exists z,y € (¢ Ca, # y.

Pick open sets U, Vsuch that z € U,y € Vand UNV = 0. Let B={s: z, €
U}. Either B € { orB® € Y. If B € 4, then (), Ca CCp CU C V"
This implies y ¢ NaecyC4, which is a contradiction.

Hence B¢ € 4l. But B¢ = {s: x5 ¢ U} which implies Cge C U°.

Therefore = ¢ Cpge and thus x ¢ NgecyC4 which is a contradiction.

Thus NacyC'a cannot have more than one element. So, it has exactly one
element.

2. For each y € Vy ¢ (\4ey Ca. Then there exists A, € 4 such that
y ¢ Ca, this implies y € €5 . Thus {C} :y € V°} is an open cover of V°.
By compactness there exists y1,...,yn € V°such that V¢ = ijl U-- ‘UC’jyn
=VD>D CAy1 N ﬂCAyn D) CAylﬂ'“ﬂAyn =Cypfor A=A, N---NA,. 0O

Definition 6.3. Given S,{zs: s € S}, as above, we call {xo} = [,y Ca
the limit along the ultrafilter and denote it by xy = limy x4

Here is the simplest example of an ultrafilter limit. Let sg € S and let
sy ={A CS: sp € A} be the principal ultrafilter generated by sg.. Note

that {so} € Us, and Cs, = {f(s0)} = {f(s0)}. Hence limy, f(s) = f(so0).




KADISON-SINGER 21

Proposition 6.4. Let S be a set, b an ultrafilter, {xs : s € S} C C,{ys :
s € S} C C both bounded, o € C. Then

limg axs = alimg z,, limg(zs + ys) = limg x5 + limg ys,

limg 2,y = (limgy xs) (limg ys).

Proof. We will only do the product. Let z = lim Ux,, y = limy ys. Given
€ > 0, pick 0 > 0 such that |z — x| < §, |w — y| < § implies |zw — zy| < e.
Let Cyh ={xs:s€ A}, Ba={ys:s € A}, Dg = {xsys : s € A}.

Since V. ={z:|z—z| <}, W ={w: |w—y| <} are open therefore there
exists Aj, A € U such that Cy, CV,Bg, CW.

Look at A3 = A1 N Ay € 4l

Dap, CCyyBa, CCaABa, CVW

This implies that Dg, C {zw : |z —z| <, |lw—y| <0} C{a:|a—zy| <€}

Nacy Da € B(zy;e) for each € >0
Therefore (4o Da = {zy}. O

Lemma 6.5. Let S be a set with discrete topology. Then every subset of S
is open in BS.

Proof. Tt is enough to show that for every sy € S, {sg} is open in §5S.
Since the inclusion i : S — S is a homeomorphism and {sp} is open in
S, {so} is relatively open in 5S. So there exists an open set U in S such
that U NS = {so}. We claim that U = {so}. Indeed if not then the set
U — {s0}, which is necessarily open, will not be empty. But this implies that
the elements of U — {so} is not in the closure of S which is dense in SS.
Contradiction. Hence {so} is open in 5. O

Theorem 6.6. Let S be a set with discrete topology. Then:

1) For every ultrafilter $ on S, there exists w € 8S such that limy f(s) =
f(w) for all f € Cy(S) .

2) If shy # A, are ultrafilters then wy # wo ( one-to-one).

3) Given any w € S there exists unique ultrafilter 8\ such that f(w) =
limy f(s) for all f € Cy(95).

Proof. 1. Define 6y : Cp(S) — C by 0y(f) = limg f(s). By the last proposi-
tion dy is a multiplicative linear functional. Therefore there exists w € 8.5
such that

limg f(s) = 6u(f) = f(w).

2. Let Uy # Lo be two ultrafilters on S. By the maximality of ulatrafilters
there exists A € U; with A ¢ Us. So A € Uy. Define f : § — C by
f(s)=1ifse Aand f(s) =0if s ¢ A. Clearly f € C(S) and we have that
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Ca={f(s): se€ A} = {1} and Cye = {0}. Let w; and wy be two points
in 85 satisfying the conditions in partl for l; and s, respectively. Then

1=1lim=f(w;) and 0=lim= f(wy).
ih L[2

So wy # wa.
3. Given w € S let M, = {U C S : Uisopen,w € U} and let
Uy ={UNS: U € Ny} We claim that i, is an ultrafilter. First note
that U NS # () for all open sets U since S is dense. If U; NS € 4, for
i=1,2,...,n then
(UiNS) =WNTN...N0,)NS € thy.
i=1
Let UNS € Uy and UNS C B C S. Let V =UU{B—(UNS)}. Then V € N,
andso VNS =({UNS)U{B—(UNS)} =B isin i,. This shows that L,
is a filter. To see that ,, is an ultrafilter let A C S. We claim that either A
or A¢is in il,. Define f: S — {0,1} CR by f(s) =0if s€ A and f(s) =1
if s € A°. Since f is bounded on S it extends uniquely to a continuous
function f: S — {0,1} CR. Let U = f~1((=1/2,1/2)) = f~1(—1) which
must be both open and closed. Let V = f~1(1). Then V = U and both
open and closed. Since f~'(w) € {0,1} we get one of the following;:
If f'w)=0 = welU = UNS=Aec4,or
if f-lw)y=1 => weV = VNS=A°ci,.
So iy, is an ultrafilter. Now we claim that limg, f(s) = f(w). Let A € $l,,.
So A=UnNS for some open set U in 55 containing w.

Ca={f(s): se A} C{f(w): w €U} ={f(U)}
— () cac () TGO - ()

Aetl, Uen,
= (] Ca={f(w)}
Aetl,,

Hence we have f(w) = limg, f(s). O

Summary: There is a one-to-one correspondence between points in 8.5 and
the ultrafilters on S which can be described as

wepS «— U, ={UNS: Uisopenin S and w € U}.

Here is the simplest example of this correspondence. Let sg € S, then
since every subset of S is open, every subset of S that contains sg is an open
neighborhood of sg.. Hence, 4, = {UNS:U € Ny, } ={ACS: sp€ A},
which is what we called the principal ultrafilter generated by sg. Also, note
that the earlier notation that we used for the principal ultrafilter is consistent
with the notation that we are using above.
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6.2. Some Types of Ultrafilters.

Definition 6.7. Let N be a countable set and 4 be an ultrafilter on N.
Then s is called

selective if for all partition {P;}; of N either there is an ig such that
P, € Y or there exits B € U such that card(B N P;) <1 for all i.

rare if for all partition {P;}; of N into finite sets there exits B € 8l such
that card(BN P;) <1 for all 3.

0-stable if for all partition {P;}; of N either there is an iy such that
P, € Y or there exits B € U such that card(B N P;) < 400 for all i.

Fact 1. selective <= rare and J-stable.

Recall that continium hypothesis says there is no set with cardinality
greater than card(N) and less than card(R).
Fact 2. These ultrafilters not known to exists without assuming continium
hypothesis. But under the assumtion of continium hypothesis these there
types not only exist but also form a dense subset in SN — N.

Recall that a subset of a topological space is called a G set if it can be
written as intersection of open sets.

Definition 6.8. Let X be a compact Hausdorff space. A point xo € X is
called a P-point if every Gs set containing xo contains a neigborhood of xq.

Remark. If N* = BN — N is a compact Hausdorff space then an element
w of N* is a P-point if and only if 4, is d-state.

6.3. Some Topological Properties of 55 when S is a Discrete Space.
Let S be a discrete topological space, A C S and B = S\ A4, so that S =
ATl B a disjoint union. Under this context we would like to see what the
relationship is between the closure of A and the closure of B in 5.

Proposition 6.9. If x4 : S — {0, 1} is the characteristic function of A and
h=xa:pS — {0,1} its unique extension to the Stone-Cech compactifica-
tion of S, then

{weBS; hw)=1} = AinBS, and
{wepS; h(w)=0} = B inBS.
Moreover, ANB =0, AUB = S, and h = x.
Proof. From the point set topology we have AUB = AUB, but AUB =

S = 35 by the fact that S is dense in 3S.
Now S is discrete, so the map x4, hence h, is continuous, thus

h(A) ={1} = h(A) =1, and similarly
h(B) = {0} = h(B)=0.
Therefore, we must have that AN B = (). From this it follows that h =
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Note that 35 = AUB and AN B = () ensure that both A and B are open
and closed sets. Recall, a set is called clopen if it is both open and closed.

With ultraflters in mind, we want to use these facts to sort out a bit more
carefully what happens when we take open sets in 4S5 and intersect them

with S.

Proposition 6.10. Let S be a discrete space, U C BS an open subset, and
set A=UNS. Then U = A, hence U is clopen. Furthermore, UNS = A =
uns.

Proof. Well, A C U, so A C U. As for the reverse inclusion, let w € U, and
take any open neighborhood of omega V' € N,,. By the definition of closure,
VNU # 0, and since S is dense, VN U NS # (. That is, VN A # (). Since
V was arbitrary, w € A, whence U = A.

Denoting as before the complement of A in S by B = S\ A, the previous
proposition guarantees that A N B = (). Subsequently,

UNnB=ANB

)=UNB=0=UnNnS=A.
O

In the above context, notice that the closure of any open set in 8S is
actually open too. That is quite remarkable topologically. Also, one would
think that U N S 2 U NS, but in fact we have equality here, that is, no
points are being added by closing the open set and then intersecting with

S.

The preceding two propositions grant the following corollary.

Corollary 6.11. Let S be a discrete space, U C 58S an open subset, and
A=UnNS. Then Xa = Xz

Proof. By the propositions, X4 = x7 = X7 O

Definition 6.12. A topological space is called extremally disconnected,
or Stonian, if the closure of every open set is open.

The Stone-Cech compactification of a discrete space is Stonian. The lit-
erature uses the word extremally to distinguish from the adverb extremely
which is often used interchangeably with very. So one may say that the
Cantor set is extremely disconnected but it is not extremally disconnected
in the above sense.

7. PAVING THEORY

In this section we derive Anderson’s[?], [?] paving results and many re-
lated results inspired by his work. Our approach is a little different from
Anderson’s and is partially inspired by Hadwin’s lecture notes [?] and the
recent paper [?]
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Definition 7.1. Let A be a unital C*-algebra, and S C A be a subspace.

(1) S is called an operator system if it contains the unit e4, and is
closed under involution, that means x € S = x* € S.

(2) If B is C*-algebra, a linear map ¢ : S — B is said to be positive if
0<peS ensures p(p) > 0 in B.

Notice at once that the properties of S ensure that in writing the cartesian
decomposition

1 1
x = Q(x + ") +i 51(95* —x)

u v
of an element = in &, both u,v belong to the operator system &. However,
when looking at the orthogonal decomposition v = p — ¢ of a hermitian
u € R(S), p and g both belong to the norm closed x-algebra generated by
x, namely C*(a) = cl({p(z,z*) ; p € C[X,Y]}), but are not necessarily
members of the operator system. Regardless, we can still write x as the
difference of two positive elements belonging to S. Indeed,

1
z = S (llzlle +2) = S(llzlle — ).

2

p1 P2

Here are a few facts about operator systems and positive maps.

Proposition 7.2. Let S be an operator system, and s : S — C a positive
linear functional.

(1) If h=h* € S, then s(h) € R.

(2) For every x € S, s(z*) = s(x)

Proof. Write h = p — q where p and ¢ are positive elements in S, then
s(h) = s(p) — s(q) € R because both s(p) and s(q) are real.

For z € S, write x = u + v where u,v € R(S). Then since s(u) and s(v)
are real numbers,

s(z*) = s(u —iv) = s(u) —is(v) = s(u) +is(v) = s(u+iv) = s(x).
|

Proposition 7.3. Let S C A be an operator system, and s : S — C a linear
map with s(e) = 1. Then

s is positive <= |s|| = 1.

Proof. (=): Let x € S with ||z|| = 1. If s(x) = A, pick |w| = 1 such that
wA = |A|. Then s(wx) = |A|. Also ||wz|| = 1 which gives ||wz + (wz)*|| < 2.
Using the fact that s is Hermitian and considering spectra, we get
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—2e <wzx + (wz)* <2 = s(—2¢) < s(wz+ (wr)*) < s(2e) =
-2 <s(wz) +s(wr) <2 = =2<|N+|A<2=|A <1

Therefore |s(x)| < 1 for every ||z|| = 1. At the same time s(e) = 1, hence
|| = 1.
(«<): The argument in Proposition ?? works perfectly well here. O

Definition 7.4. A positive linear map s : S —> C defined on an operator
system S with s(e) = 1 is called a state.

Corollary 7.5. If S C A is an operator system, every state on S extends
to a state on A

Proof. If s : S — C is a state, then ||s|| = 1, so we can employ the Hahn-
Banach theorem to get § : A — C with ||§|| = 1 and 5|s = s. Then
5(e) = s(e) =1, so § is also a state. O

The existence of the extension having been shown, let us investigate the
uniqueness. To that end we give the following definition.

Definition 7.6. Let S C A be an operator system, and s : S — C a state.
Set

Cs={5:A—C; 5ls =s, § positive },
and let

U(s) ={z € A; 51(z) = 52(z) V51,52 € (s}
U(s) is called the uniqueness domain of s.

It is not to hard to see that C, is weak*-closed and convex.

Proposition 7.7. Let S C A be an operator system, s a state on S,

(1) S CU(s), and U(s) is an operator system.
(2) If r =u+iv e A, then x € U(s) <> u,v € U(s)

Proof. (1) Clearly S C U(s), and U(s) is a subspace. Let §1,352 € Cs,
then

§1($) = §2($) = §1($) = 52(33) = 51($*) = §2(IE*),
therefore z* belongs to U(s), and the latter is an operator system.
(2) Since U(s) is an operator system, = u + iv € U(s) implies that
u,v € U(s). The opposite direction relies on the fact that U(s) is a
subspace.
O
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Definition 7.8. Let S C A be an operator system, s : S — C a state, and
k=k*e A. We set

ls(k) = sup s(h),
heS,h<k
us(k) = he:lsnl£<h s(h)-

the respective lower envelope and upper envelope of k € A.
Theorem 7.9. Let S C A be an operator system, s : S — C a state, and
k=k*ec A. Then

(1) Ls(k) < us(k).

(2) For anyt € [ls(k),us(k)], there is a state s; € Cs such that si(k) = t.
Proof. If k € § everything is clear, so assume that k£ does not belong to S.
Well if h and A’ are real in S with h < k < &’ then s(h) < s(h’). Fixing

s(h’) and taking supremums of all such s(h), and then taking infimums of
all such s(h') yields the desired inequality.

Let &1 = lin span{S, k}. This is indeed an operator system. Now define
a linear map f: S — C as

flx+ ak) =s(z)+at, x€S.
We claim that f is a state on S;. Well f(e) = 1. Now let’s show that f is
positive. To that end, if z + ak > 0, then

¥ +ak =x"+ak” = (z+ ak)" =z + ak.
Therefore, x = z*, and « = @ is real. There are three cases.
e a=0. Then x >0, so f(z) = s(z) > 0.
e a>0.

r+ak>0 = ak>-z = k>-a 'z = s(k)>s(—a ')
= t>—-al's(z) = flz+ak)=s(z)+at>0.
e a < 0. Then

ct+ak>0 = z>-ak = —alz>k = s(—alz)>s(k)=t
= f(x+ak) =s(z) +at > 0.
Therefore, f is a state on S;. Now we proved that we can always extend a

state to the whole of A, so extend f to f : A — C, and set f = s;.
O

Corollary 7.10. Let S C A be an operator system, s : S — C a state, and
k=k*e A. Then
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kEeU(s) <= ls(k) = us(k).

Remark: Conversely, if 5 : A — C is any state extending s : § — C, then
lIs(h) < 5(h) < wug(h). This interval exactly characterizes the set of values of
extensions of s at h.

Corollary 7.11. Let S C A be an operator system, s : S — C any state.
Then x € U(s) if and only if ls(Re(x)) = us(Re(z)) and ls(Im(x)) =
us(Im(z)).
For the following corollary, let a,b € R,a < b, denote H[a,b] = {h = h* €

A:a-e<h<b-e}.
Corollary 7.12. Let S C A be an operator system, s : S — C any state,
let a,b € Rya <b. Then, the followings are equivalent:

1) s extends uniquely to a state in A,

2) YVh=h* € A, I5(h) = us(h),

3) Yh € Ha,b], ls(h) = us(h).
Proof. (1) = (2) : Assuming (1) is true, we get U(s) = A, which implies (2),
using the last corollary.
(2) = (3) is trivial.
(3) = (1) : Assume (3) is true, then given any h = h* € A, there exist
a, B € R,a # 0, such that ah 4+ fe € H]a,b], which implies Is(ah + fe) =
us(ah + Be) = ah + Be € U(s). So, h = ah+ fe = fe
self-adjoint element is in U(s) = U(s) = .A. Done. O

Example 5 Let A = [*°([0,1]), the bounded functions on [0, 1], let S =
C([0,1]) € A be an operator system(easy to show). Define s : S — C by
s(f) = fol f(t)dt, the Riemann integral, which is a state. Let g = g* € A be
a real-valued bounded function. Then

lIs(g9) = sup{/o1 f)dt: f<g,feC(0,1)} = /1g(t)dt, lower Riemann integral,
o

€ U(s), i.e. every

and

—1
us(g) = inf{/o1 f@)ydt:-g < f,feC(0,1])} = /Og(t)dt, upper Riemann integral.

Therefore U(s) is the set of Riemann Integrable functions.

Apply these ideas to the Kadison-Singer case: Say & = D = [®(N) =

C(BN) C B(I*(N)) = A, the state s, : D — C as s, (D) = fp(w), the point

evaluation function, which is in fact, a pure state.

Lemma 7.13 (PR). Let H,K be any two Hilbert spaces, H = H* =
A B
B* C

6 >0, such that H 4+ 0P = [

} € B(H & K), with A positive and invertible. Then there exists

A

B* C_‘_MIJ 18 positive.
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Proof. Let X = A~1/2B, then for any h € H,k € K,

(o oo (1) G p= (ot o ) (1)
+0Ic| \ k k B*h+ (C + )k k
= (Ah,h) + (Bk,h) + (B*h, k) + (Ck, k) + & k>
= (AY21h, AY2R) + (AY2XE, B + (X*AY2h, k) 4 (Ck, k) + 8||k||?
> || A2 = 2| XK [ AY2R] = ([CIl[[E]* + 6]k
> (| AY2h|| = | XK + [[EI*(6 = IOl = 1 X[*) > 0,
whenever 6 > ||C|| + || X% O

Theorem 7.14 (Kadison-Singer). Let n € N, and let s, : D — C, given
by $n(D) = dun, be a pure state. Then s, extends uniquely to a state on

A = B(2(N)).

Proof. Using the lemma above, it’s enough to show that for all H = H* =
(hij) € B(I?(N)), we have ls, (H) = us, (H) = hpp.

Let H = span{e,}, K = H*, then H ® K = [2(N). For any € > 0, look at
(hpn — €)Enp, then we have H — (hyy, — €)Epy = [i I] inHoK.
Therefore, 35 > 0 such that H — (hpy — €)Eny + 0P > 0. This implies
H > (hpyn — €)Eny — 0P € D, where P = Ix — Enpy,.

So, ls(H) > Sn((hnn - 6)Enn - 5PIC) = hnn — € = hpp, < lsn(H) < usn(H)
Similarly, we show that H < (hpn, + €)Epn, + 0’ P, which gives ug, (H) <
hon + €, 1. us, (H) < hpp. Hence, ls, (H) = us, (H) = hpn. O

Lemma 7.15. Let s : A — C be a state, P = P* = P2 ¢ A. If s(P) =1,
then VX € A, s(PXP) = s(PX)=s(XP)=s(X).

Proof. Using GNS, we have s(Y) = (n(Y)n,n), where 7 : A — B(Hx)

is a *-homomorphism, and ||| = 1. Then 1 = s(P) = (n(P)n,n) and

m(P) is a projection. Decompose n = w(P)n+ (I — w(P))n = n1 + 12, then
——

m 72
L= (x(P)n,n) = (m,m +n2) = (m,m) = |lm? which implies 72 = 0
and 7(P)n = n. Therefore, s(XP) = (n(XP)n,n) = (n(X)nw(P)n,n) =
———

U
(m(X)n,n) = s(X). The rest is similar. O

Definition 7.16. Given A C N, we define Py = diag(d;;), dii = xa(7).

Theorem 7.17. Let w € BN, s, : D — C be the *-homomorphism given by
evaluation at w and let H* = H € B(I*(N)). Then ls,(H) = us,(H) =t
if and only if for every e > 0 there exists A € U(w) such that (t — €)Py <
PyHP4 < (t + G)PA.

Proof. Let s : D — C be any state that extends s,. If U € 9, and
A = UNN then P4 € D corresponds to x5 = xg € C(BN). Note that
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s(Pa) = sw(Pa) = x5 = 1. Thus, if the second condition holds, then
t—e=s((t—e€)Py) < s(PyHP4y) = s(H) < t+ e and hence, s(H) =t for
all s that extends s,,. Thus ls,(H) = us, (H) = t.

Conversely, if the first condition holds, then given ¢ > 0 there exists Dy, D9 €
D with D1 < H < Dy such that (t — §)Pa < s4(D1) < 54(D2) < (t+ §)Pa.
Now D; € P4 corresponds to a function f; € C(SN) , f1 < fa since Dy < Ds.
Therefore, s,(D;) = fi(w) and hence (t — §) < fi(w) < fa(w) < (E+ 5).
Pick U € My, such that for all w' € U, (t — §) < fi(w') < fo(w') < (T4 5).
Let A= U NN, Py corresponds to xi and thus, P4D; P4 corresponds to
xgfixg > (t—E)XU = PyD1Py > (t—€)Py. Similarly, PADy P4 < (t+€)Py
which implies (t —€)Py < PAD1Py < PAHP4 < PyD3yPy < (t+¢€)Py4. This
proves the theorem. O

Theorem 7.18. Let H = H* € B(I1*(N)). Then every pure state on D
extends uniquely to H, i.e. H € $l(w)Vw € BN if and only if for each e > 0, 3
finite collection of disjoint sets, By, Bo, ..., By with B UBy U ...U B = N
and t1,ta, ...t € R such that (t; — €)Pp, < Pp,HPp, < (t; +¢)Pp

e

Proof. Suppose the first condition holds true then for each w € SN there ex-
ists Ay, € Y, and t,, € R such that (t,, —€)Pa, < Pa,HPa, < (tw+e€)Pa,,
where A,, = U, UN, Uy, € ny,. The collection {U,, : w € SN} of open sets in
BN covers the compact space SN, therefore, we can choose Uy, , Uy, ..., U,
such that SN C Uy, U Uy, U ... UU,, which implies N C A4,,, U...U A,,,.
From here we may pick finitely many disjoint sets By, Bo, ..., By such that
N = BjU...UBy and each B; € A,,,. For each i,1 <14 <k, pick w; such that
B; C Awl and set t; = oy, - Then (twl —E)PAwl < PAwl HPAwl < (twl —i—e)PAwl
= (tw, — G)PBiPAwl Pp, < Pp,Pa, HPa,, Pp, < (tw, + e)PBZ.PAwl Pp, which
by using Pp, PAwl Pp, = Pp, and t; = t,,, gives the required inequality.
Conversely, fix w, let € > 0, then there exists finite collection of disjoint sets,
Bi,Bo, ..., By with B U By U ...U B, = N and ty,ts,...,tx € R such that
(ti — E)PBZ' < PBiHPBi < (ti + E)PBZ..

We claim that 3 ¢ such that B; € ,,.

To see the claim, note that P, + Pp, + ... + Pg, = I which implies
sw(PB,) + sw(PBy) + ... + sw(Pp,) = 1. But s, is a homomorphism =
sw(Py,) € {0,1}. Therefore, 3 i such that s,,(Py,) = 1 which further implies
that Pp, corresponds to a function XB, = XU, where B; = U; " N,w € Uj;.
This establishes the claim.

Thus we have that s, (Pp,) =1 = (t;—€) = sy ((ti—€)Pp,) < s(Pp,HPp,) <
sw((t; + €)Pp,) < t; + ¢ where s is any state on B(I?(N)) that extends s,,.
=t —e< lsw(H) < usw(H) <t;+e

= U, (H) — 15, (H) <2 Ve

= us, (H) =15, (H) V w.

This proves the theorem. O

Anderson saw we could make k independent of H !.
Let N x N = J,cy N; where N; = {(i,j) e Nx N:j e N}.
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Lemma 7.19. Fiz ) : J;cyNi — N 1-1, onto map. Let H; € H[a,b] and let
H=Uj(Hi&H®...8...)Uy, where Uy : 2(N) — >, ®l2(N;) is a unitary.
Then for each € > 0, 3 finite collection of disjoint sets, By, Ba, ..., B with
BiUBsU...UBr = N and t1,ts, ..., t;, € R such that (ti_e)PBl < PBZHPBL <
(t; +€)Pp, for every l < Vi 3 t;,ta,....tx and Bl UBLU...U B} = N; such
that (t; — E)PBli < PBliHiPBl" < (t; + E)PB;’.

Definition 7.20. We will call a collection of sets B, ..., By and real num-
bers ti,. ..ty that satisfy the conclusion of 7?7 a generalized (€, k)-paving of
H.

The space U = ﬂwe,BNu (w) will be called the uniqueness domain. Note
that U is an operator system and that an affirmative answer to the Kadison-
Singer problem is equivalent to the condition that U« = B(¢?*(N)).

Theorem 7.21. The following are equivalent.
(1) U = B(*(N))
(2) for all e > 0, there exists k such that every H € H[a,b] has a gener-
alized (e, k)-paving.
(3) for all € > 0 and for all H € H|a,b] there exists k such that H has
a generalized (e, k)-paving.

Proof. 1) implies 3). If U = B((?(N), then every state on the diagonal
extends uniquely to H and so by the last theorem 3) follows.

3) implies 1) By the last theorem every state extends uniquely to every
self-adjoint element H € H[a,b]. Given H = H* there exists a, § such that
aH + I € H|a,b] and so aH + I € U. Hence,

H=a YaH+BI-BI)eU.

Since U is an operator system that contains every self-adjoint element of
B(3(N)), we see that U = B((*(N)).

2) implies 3). This is clear.

3) implies 2). Suppose that 3) is true but 2) is false. There exists € > 0
and a sequence H,, = H} € H[a,b] such that H, can be (e, ky,)-paved but
not (e, k)-paved for k < k;, and k,, — oo as n — oo.

Let H = Uj(H1 @ ...)Up, Uy is the unitary in [REF]. H € H[a,b] and
hence by 3) there exists a generalized (e, koo )-paving of H. By the lemma
each of the operators in the direct sum has a generalized (e, koo )-paving.
This contradiction proves our result. O

We now descibe an expectation operator from B(¢?(N)) onto D. Given
an arbitrary bounded operator T = (t;;) € B({*(N)), define E(T) =
diag(t;;) € D. The operator E is linear, E(D) = D for all D € D, if
T >0, then E(T) >0, |[E(T)|| < ||T|| and E o E = E. The porjection E is
called the a conditional expectation of B(¢2(N)) onto the diagonal D.

Proposition 7.22. Given s, : D — C a pure state, s, o E is a state that
extends s,,.
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Proof. s,(E(I)) = s,(I) =1. If T'> 0, then E(T) > 0 and so s, o E(T) >
q0. U

This is called the canonical extension of s, to B(¢2(N)). The Kadison-
Singer problem is equivalent to asking if s, o F/ is the only extension of s,,.
Note that T'— E(T') is a bounded linear operator with 0 diagonal and if we
use the canonical extension we see that

50 0 E(T — E(T)) = $0 0 E(T) — 8., 0 E(E(T)) = 0.

Conversely, suppose that s is any extension of s, such that s(X) = 0 for
all X such that F(X) = 0. For any T, s(T'— E(T)) = 0 and so s(T) =
S(E(T)) = su(T') = sy, o E(T'). We have proven the following simple result.

Proposition 7.23. The Kadison-Singer problem has an affirmative answer
if and only if every state that extends s, is 0 on the B({*(N))g = {X €
B(/2(N)) : B(X)=0}.

The proof of the following result follows from the results that we have
proved up to this point.

Proposition 7.24. Fiz a pure state s, on the diagonal. The following are
equivalent.

(1) s, has a unique extension

(2) s(H) =0 for all H= H* € B({*(N))o

(3) ls,(H) = us,(H) =0 for all H= H* € B({*(N))o

(4) For all e > 0, there exists A € U,, such that —ePy < PAHP4 < €Pj.

Note that if H = H*, then —ePy < PAHP, < €Pj is equivalent to
HPAHPAH <ee.

Definition 7.25. Given H = H* € B({*(N)) we say that H has an (e, k)-
paving if there exists disjoint sets By, ..., B C N such that BiU... By =N
and ||Pp,HPg,| < €. Let Ho[—1,1] = H[-1,1] N B(F3(N))o.

Theorem 7.26 (Anderson). The following are equivalent

(1) The Kadison-Singer problem is true, i.e. U = B(£*(N)).

(2) For all e > 0, there exists k € N such that every H € Ho|—1,1] can
be (e, k)-paved.

(3) For all e > 0 every H € Ho[—1,1] can be (e, k)-paved.

(4) There exists r < 1 and k € N such that every H € Ho[—1,1] can be
(r, k)-paved

(5) There exists v < 1 such that every H € Ho[—1,1] can be (r, k)-paved

(6) for each H € Ho|—1,1] there exists r < 1 and k € N such that H
can be (r, k)-paved.

Proof. The equivalence of (2) and (3) and the equivalence of (4)and (5)
follows from the direct sum lemma as in earlier proofs. Clearly, (5) implies

(6).
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(3)implies (1). Let w € OGN and s be a state extension of s,. Given
H € Ho[—1,1] and € > 0, the there exists a finite collection of disjoint sets
such that 41 U As U...UAg = N and ||P4,HP4,|| < e. This implies that
—ePy, < Pg,HPj, < ePy, and thus —es,(Pa;) < su(Pa,HPa,) < €s,(Pa,)
We know that there exists an ig such that Pa,, € Uy, and SW(PAi()) =1. So
we have [sy,(Pa, HPa, )| < € which implies that s, (Pa, HPa, ) = su(H).
Therefore |s(H)| < € for all € > 0. This implies that s(H) = 0 for all H €
Ho[—1,1] and for all s extending s,,. Given any H, H — E(H) € Ho|—r, 7]
which implies that X(H — E(H)) € Ho[—1,1]. Thus, s(2(H — E(H)) =0
which implies s(H — E(H)) =0 or s(H) = s(E(H)).

(1)implies (3). We have seen that (1) implies every H € U,,. When H €
Ho[—1, 1], by proposition 7.24, there exists A € U,, such that |PaH P4l < e.
As before for each w € SN, we get an A, € U, such that ||Pa,HPa,| < e.
Fach A, = U, NN, U, is an open neighborhood of w. Choose finitely many
that cover and then make disjoint.

(2) implies (4) is trivial.

(4)implies (2). Given ¢ > 0, choose [ such that v/ < e. Given H,
there exists finitely many disjoint sets such that A1 U Ay U... U Ag =
N and |[Pa,HPa,| < r. Thus, 2Py, HPa, € Ho[-1,1]. So there ex-
ists finitely many disjoint sets such that B U B} U... U B] = N and
H%PBZJ (Pa,HPy,;)Pp|| < r. This implies that || Py, HPpsc, Il < r2. We
now have k? disjoint subsets, C; UCyU. ..UCy2 = N such that || Po, H P, || <
r2. Inductively obtain k' disjoint subsets such that By U Ey U...U Eu = N
and || Pg, H Pg,|| < r!. Therefore every H € Ho[—1,1] can be (e, k') paved,
k! depends only on e.

Thus, statements (1)—(5) are equivalent and imply (6). We now show that
(6) implies (5). Suppose that (6) is true but that (5) is not. Then statement
(5) fails to hold for r,, = 1 — 1/n. Hence, there exists H,, € Ho[—1, 1], which
can not be (ry, k)-paved for any k. Again we use the direct sum lemma,
let H=U;(Hy® Hy & ...)Up € Ho[—1,1]. By (6) there exists some r < 1,
and k € N such that H can be (r,k)-paved, and hence, each H,, can be
(r, k)-paved. But for r < r, this is a contradiction. Hence, (6) implies (5).

([

Given H € Ho[—1,1] and k, let pp(H) = z'nf{lrglag%”PAlHPAlH AU

AyU...UAg =N, A;NA; = ¢,i # j}. If Kadison Singer Problem is true,
given € > 0, there exists a k such that py(H) < € for all H. This implies
that sup pr(H) <e.
HeHo[—1,1]
Some important things that we know are:
(1)  sup po(H) =1 that is 2-paving fails.
HeHol[-1,1]
(2) Do not know if the ps = sup p3(H) < 1 or not. Weiss -
HeHo[-1,1]
Zarikian shown ps > 0.92
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Definition 7.27. Let Ro = {H = H*: H> =1,E(H) =0}

Note: H? = I, o(H) C {—1,1}. This implies that Ro C Ho[—1,1]. Ge-
ometrically these are reflections as there exists I4,l_ € [?(N) such that
I+ Ll_andly®l_ =I*N). Thus, H(hy+h_) = hy—h_, reflection about
L.
Theorem 7.28. The following are equivalent
(1) Kadison Singer Problem is true
(2) For all € > 0, there exists k such that every H € Ry can be (¢, k)
paved.
(3) For alle >0, every H € Rg can be (€, k) paved.
(4) There ezists 1 < 1 and k € N such that every H € Rg can be (r,k)-
paved
(5) There ezists v < 1 such that every H € Ry can be (r, k)-paved

Definition 7.29. Let P1 = {P € B(I*(N)) : P = P* = P? E(P) = I}
2

Theorem 7.30 (CEKPT). The following are equivalent

(1) The kadison-Singer problem is true.

(2) For all €, there exists k such that for every P in 77%, there exists
disjoint sets Cy,Co, ..., Cy with C1U---UC, = N such that for each
I, (3 —€)Po, < Po,PPc, < (3 —€)Pc,.

(3) There exists r < % and k such that for every P in P%, there exists
disjoint sets C1,Co,...,Cy with C1U---UCy = N such that for each
L, (3 =r)Pc, < Po,PPc, < (3 — )P,

(4) There exists r < % such that each P € P%, there exists k ,disjoints
sets Cq,...,Cy with Cr U ---UC, = N such that (% —r)Pg, <
Po,PPo, < (3 —1)Pg,.

(5) foreach P € 77% there existsr < 1/2 and k € N, such that there exists
k disjoint subsets, C1 U ---Cy = N with (% —1r)Pc, < Po,PPc, <
(% +7)Pc,, for 1 <1 <k.

Proof. (1 = 2) Let P € 73%. Then 2P — I = U € Rg. There by the last

theorem given an € > 0 there exists k& and disjoints sets C1,...,Cy with
C1U---UC, =N such that —2ePc, < Po,UPg, < 2eFg,.

= —2ePg, < PC’;(QP — I)PC’Z < 2ePg,

- (1 — QG)PCl < PC’l(QP)PCl < (1 + 26)Pcl

= 1326P01 < Pg, PP, < 1;26P01

= (3 —€)P, < Po,PPc, < (5 +¢)Pc,.

(2= 3) and (3 = 4) are clearly true.

(4= 1) Given U € Ry, let P = UH ¢ 73%. then there exists k and disjoint

T2
sets C1, . .., C), with C1U- - -UC, = N such that (1 —r)P¢, < P, (Y Pe, <
(% + T)PCZ
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— —rPg < PCZ(%)PCZ <rlg,

— ||PC’ZUPCZ|| <2r <1.

Hence, this 4 implies 4 from last theorem which further implies the Kadison-
Singer problem.

Thus, we have shown that (1)—(4) are equivalent. Clearly, (4) implies (5)
and we complete the proof by showing that (5) implies (4).

To this end suppose that (5) is true, but that (4) is false. Then for each
rn =1/2—1/n,n > 3, there exists P, € 73% which can not be r,-paved in
the above sense for any k& € N. Form the operator P = U;;(Pg DP@...)Us.
Note that P € 73% and so this operator has a paving of the above type for
some r < 1/2 and some k € N, and hence each P, will have an (r, k)-paving
of the desired type. But as soon as r < r, this is a contradiction, and,
hence, (5) implies (4).

O

8. INTRODUCTION TO FRAMES IN HILBERT SPACES

Definition 8.1. Let H be a Hilbert space. A set {fi}icr in H is called
a Riesz basis for H if there exists {u;}icr, an orthonormal basis for H
and an invertible, bounded linear operator S € B(H) such that for each i,

Ji = S(uy)

Definition 8.2. A set {f;}icr in H is called a Riesz basis set if it is a
Riesz basis for Ho = span{f; : i € I} and a Riesz basic sequence when
the index set is countable.

Definition 8.3. A set {f; : i € I} in H is called a Bessel set if there exists
a constant B such that

Sieq . f)I2 < Blle|%, for cach z in M.

If the index set is countable, then we call a Bessel set a Bessel sequence.

Note that saying {f;}:cr is a Bessel set is equivalent to saying that the
map F : H — 12(I) given by F(x) = ({z, f;))icr is bounded with || F||? < B.
In this case,

(F*(ei), x) = (ei, ((z, fi))ier) = (@, fi) = (fi, )
Therefore F*(e;) = f; for each i € I.
So, Bessel is same as e; — f; extends to a bounded map from 1?(I) to H.
F™* is called synthesis operator.

Definition 8.4. A set {fi}icr in H is called a frame if there exists A, B
with 0 < A < B such that

Azl < Xieq (2, fi)|? < Bll||? for each z € H
Equivalently, {fi}icsr is a frame if and only if {f;}ics is Bessel and F is

bounded below. When the index set for a frame is bounded below, we will
refer to the set as a frame sequence.
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Example 6 Let {u;}icr, {vj}jes be orthonormal basis for a Hilbert space
‘H. Then for each z € H we have

> (€@, u) [ + [z, ) ?) = 2|22
Therefore {u;}icr U {vj}jcs is a frame for H with A =2,B =2
Example 7 Let {fi}icr be a frame.{f;};cr U {0} is still a frame for H.

Definition 8.5. A frame is called a tight frame if A = B and is called a
Parseval frame if A= B =1.
Equivalently,

{fi}ier is a Parseval frame. < F is an isometery. < F*F = I.
Note: {f;}ier is a frame iff Bessel and F*F > Al.

Proposition 8.6. Let {f;}ic; is a Riesz basis for a Hilbert space H. Then
{fi}ier is a frame for H.

Proof. Let S € B(H) be an invetible operator and {u; };e; be an orthonormal
basis for H so that for each i, S(u;) = fi. Then

Yier (@, fi)P = Eier lw, S(wa))|? = Xier (S (), ui) [* = [15*(2) ]2
As, S € B(H) and is invertible therefore

IS*@)I12 < 1Pl 15" (@) > iy
Hence {f;}ics is a frame with A = ||S*71||72,b = ||S*|).
(]

Proposition 8.7. Let {f;}je; C H, then {fj}jcs is a Riesz basis for H if
and only if {f;}jes is a Bessel set whose closed linear span is H and there
exists ¢ > 0 such that FF* > clp ).

Proof. First, we assume that the set is a Riesz basis, so that there exists an
orthonormal basis for H, {u;}je.; and a bounded invertible operator S : H —
H such that for all j, f; = Su;. Clearly, the closed span of {f;} is all of H
and by the above result or by noting that . [(z, f;) 2=N"|(S*(2), f)]? =
15*(z)|1> < [|S|1?||z]|?, we see that {f;} is a Bessel set.

Let U : £3(J) — H be the unitary operator uniquely defined by U(e;) =
uj. Since F*(e;) = f; = S(uj) = U(ej), we have that F* = SU, and so
FF* = U*S*SU. Now, (S71)*S~! < ||S71||2I3, and hence, I, = S*(S*)~1S~1S <
1S~H2S*S. Finally, [|S~| "2y = |S7HIT2U*InU < U*S*SU = F*F,
and we have the desired lower bound.

Conversely, assume that {f;} satisfies the three conditions. Since it is a
Bessel set, F' and F* are bounded and the condition, cly < FF* implies
that F™* is bounded below and so its range, R(F™), is closed. But since each
fj = F*(e;) is in the range we have that R(F™*) = #H. Hence, F** is one-to-
one and onto. Let U = F*(F*F)~Y/2, then U*U = Ip2( 5y, so that U is an
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isometry, but U is also invertible, and hence, U : £?(.J) — H is a unitary. Let
uj = Ul(ej),j € J, since U is unitary this set is an orthonormal basis for .
Finally, S = F*U* : H — H is invertible and S(u;) = F*U*Ue; = f;. 0O

Corollary 8.8. Let {fj}jcs C H. Then {fj}jcs is a Riesz basic set if and
only if { fj}jer is a Bessel set and there exists ¢ > 0 such that FF* > clpz( .

Proof. Let Ho be the closed linear span of {f;};cs; and let Fj, denote the
restriction of F' to Hy, then Fj(e;) = f;. Note that for x L Hg, F(x) = 0.
Now {f;};cs is a Riesz basic set if and only if {f;};cs is a Riesz basis for
Ho, which by the above result is equivalent to {f;};es being a Bessel set
and FoFg > clp(y), for some ¢ > 0. Finally, note that FF*(e;) = F(f;) =
Fo(f;) = FoFj(ej), and so FF* = FyF{, and the result follows. O

A Bessel set {f;}jc; € H is called bounded(below) if there exists a
constant, § > 0, such that for all j,6 < ||f;[|. Note that if >, |z, f)12 <
Bl|z|]?, for every @ € H, then &%||f;[|* < | fill* < X, 1{fi. f)I> < BIfill%,
and hence § < v/B. We shall call a bounded Bessel sequence {f;}jewpn with
upper Bessel bound B and lower bound § a (B, ¢)-Bessel sequence.

When we say that a sequence {f;};en can be partitioned into k Riesz
basic sequences we mean that there exists a partition of N into k subsets,
CiUCyU---Cy = N, such that {f;j}jec, is a Riesz basic sequence for
1<I<k.

The equivalence of (1), (3) and (4) were proven by Casazza and Tremain
in [?] and by Casazza, Fickus, Tremain and Weber|[?].

Theorem 8.9 (Casazza and Tremain). The following are equivalent:

(1) Kadison-Singer is true,

(2) for each 0 < & < /B, there exists k € N, such that every (B,0)-
bounded Bessel sequence can be partitioned into k Riesz basic se-
quences,

(3) each bounded Bessel sequence can be partitioned into finitely many
Riesz basic sequences,

(4) each bounded frame sequence can be partitioned into finitely many
riesz basic sequences.

Proof. 1t is clear that (2) implies (3) and that (3) implies (4). We begin by
proving that (1) implies (2).

Fix 0 < € < 62/4 and since Kadison-Singer is true by there is a k so that
every H € H|[0, B] has a generalized (e, k)-paving. If {f;}en is a (B,0)-
bounded Bessel sequence, then F'F* = ((f;, f;)) satisfies 0 < FF™* < Blp ).
Hence, there exists a partition Cy U Co U ---Cr = N, and real numbers,
t1,to, ..., such that (tl — G)Pcl < PC'IFF*PCZ < (t; + G)PCZ~ Taking j € C;
and considering the corresponding (j, j)-entry, yields t; —e < || f;]|* < t; +e.
Hence, 62 < ||fjl> < i + € Thus, 0 < §%/2 < §? —2¢ < t; — ¢, and so
& Pe, < Po,FF*Pg,.
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Hence, we have that each of the Bessel sequences, {f;}jec, has analysis
operator Fy satisfying Fi F}* = ((f}, fi))ijec, = %IKQ(CZ), and thus, is a Riesz
basic sequence.

We now prove that (4) implies (1), by showing that (4) implies condition
(5) in Theorem 7.30. To this end, let P € Py /y, so that P = P* = PP*. If
we let {fj}jen denote the columns of P(which are also the rows of P), then
P = ((fj, fi)). Let H = R(P) C ¢*(N). Note that {f;} is a Parseval frame
sequence for H, since for h € H, we have that h = P(h) = ((h, f;)). Also,
since 1/2 = p;; = || f;||>, we have that {f;} is a bounded Parseval frame.

Hence, by the hypothesis, there exists a finite partition of N = C U
Cy U --- U Cp, such that each set {f;}jec, is a Riesz basic sequence. This
implies that there exists ¢; > 0, such that ((f;, fi))ijec, > alp(c,), which
is equivalent to P, PPc, > ¢;Pc,. Note that we may assume that ¢; < 1/2.

Applying similar reasoning to @ = I — P € Py, we get a partition,
N = D1UD3sU- - - Dy, and numbers 0 < dj, < 1/2, such that Pp, (I—P)Pp, >
diPp,, which is equivalent to (1 — dy)Pp, > Pp,PPp, .

Thus, we have that (1_dk)PC’lﬁDk = PCl(l_dk:)PDkPCl > Pc,Pp, PPp, Pc, =
Peynp, PFPc,np,, and Peynp, PPonp, = Pp,Fc,PPc,Pp, =2 Pp,cPc,Pp, =
aPe;npy,-

Letting r = min{ci, ...,cm, d1, ..., dn }, and E; , = C;N Dy, which is a finite
partition of N and setting € = 1/2—r, we have that (1/2—¢)Pg,, = rPg,, <
Pg,, PPg,, < (1—-7)Pg, = (1/2 —€)Pg,, and so condition (5) is met.

[l

There are many more equivalences worked out in [?]. In particular, it
is shown that Kadison-Singer is true if and only if every bounded Bessel
sequence is a finite union of frame sequences.

9. FURTHER PAVING RESULTS

In this section we discuss some other paving results that are related to
the Kadison-Singer conjecture. The first results show that it is enough to
consider paving of strictly upper triangular operators and use some new
ideas that came from function theory and they are taken from the paper [?].

Lemma 9.1. Let B be a unital C*-algebra and let s : B — C be a state. If
p € B is positive and invertible, then s(p)s(p~!) > 1.

Proof. Let q be positive and invertible, and let ¢ € R, then 0 < s((tq +
¢ H?) = t25(¢?) + 2t + s(¢~2). Hence, this second degree polynomial either
has no real roots or a repeated real root and so 4 — 4s(q?)s(q~2) < 0. Thus,
1 < s(¢*)s(g™?), and the result follows by letting ¢ = /p. O

Theorem 9.2 (P-Raghupathi). Fiz 0 < a < 1 < b, let B be a unital
C*-algebra and let s; : B — C,i = 1,2 be states. Then the following are
equivalent:

(1) s1 = sg,
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(2) for every positive invertible p € B, s1(p)s2(p~1) > 1,
(3) for every p € Hla,bl,s1(p)s2(p™") > 1.

Proof. If s1 = s2, then (2) holds by the above lemma. Clearly, (2) implies
(3). It remains to show that (3) implies (1).

To this end let h = h* € B, so that for ¢ in some neighborhood of 0,
we will have that e € H[a, b]. This implies that the real analytic function,
f(t) = si(et™)sa(e™™) > 1. Since f(0) = 1, we see that t = 0 is a critical
point of the function. Hence, 0 = f/(0) = s1(h)—s2(h). Thsu, s1(h) = so(h),
for every h = h*, and it follows that s; = so. ([

Given an operator system & C B, and a state s : § — C, recall the
definition of I5(h) and of us(h).

Theorem 9.3 (P-Raghupathi). Let B be a unital C*-algebra, let S C B be
an operator system, let s : S — C be a state and fix 0 j a j 1 b. Then the
following are equivalent:

(1) s extends uniquely to a state on B,
(2) for every positive, invertible p € B, ls(p)ls(p~!) > 1,
(3) for every p € Hla, b, ls(p)ls(p~t) > 1.

Proof. Assuming (1), let § : B — C be the unique extension of s. Then
3(p) = ls(p) and 3(p~1) = Is(p~1), and (2) follows.

Clearly, (2) implies (3), so it remains to show that (3) implies (1). Let
si : B — C,i = 1,2 be states that extend s. Then for any p € HJa,b], we
have that s1(p)sa(p~!) > ls(p)is(p™t) > 1. Hence, by the above theorem,
s1 = S9, and so the extension must be unique.

O

Theorem 9.4. Fix numbers a,b € R with 0 < a < 1 < b, and a point
w € PN. Look at the state s, : D — C (evaluation at w). Then the
followings are equivalent.

(1) s extends uniquely to a state on B(£%(N)).
(2) Given e > 0, and 0 < P € B(*(N)) invertible, there exist A € U,,
c,d > 0 with
e 1l—e<ucd,
o cPy < PAPPy,
o dPy < PAP_IPA.
(3) Givene >0, and P € Hla,b], there exist A € U, ¢,d > 0 with
e l—c<ucd,
e Py < P4PPy,
o dP, < PApflpA.

Proof. 1) = 2): Let ¢ > 0 and take 0 < P € B(¢*(N)) invertible. By our
previous Theorem we know that if s, extends uniquely,

ls, (P)ls, (P71 > 1.
By property of supremums we may find D; < P and Dy < P~! with

Sw
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1-— 6/2 S Sw(Dl)Sw(Dg).

Now pick numbers ¢ < s,(D1) and d < s,(Dz2), with 1 — e < cd. Denoting
by f1 and fs the continuous functions on SN corresponding to D; and Do
respectively, choose an open neighborhood U € N, where f; > c and fy > d
on U. Consequently, cxy < fix and dyy < fax. Set A=UNN e U, so

cPy < PyDy = P4D1Py, and dPy < PyD9 = PyDoPy,

but D; < P and Dy < P71, so in conjunction with above and by pre and
post multiplying by P4 we obtain

cPy < PyD1Py < PyPPy,
dPy < PaDyPy < PAP7'Py.
2) = 3): This is trivial.
3) = 1): Let 51,2 : B({?(N)) — C be two states that extend s,,.

Given any ¢ > 0 and P € HJa,b], 3) says that we can find A € U, and
numbers ¢, d > 0 which obey those three bullets. We know that

51(Pa) = s2(Pa) = sw(Pa) =1,
and therefore,

¢ = $1(cPy) < 51(PsaPPy) = s1(P),
d = 59(dPa) < s9(PaP7'Py) = so(P71).
Thus, s1(P)s2(P~!) > c¢d > 1—¢. Since ¢ > 0 was arbitrary, s;(P)sg(P~1) >

1. Now this can be done for any P € Hla,b], so by a previous result
S$1 = $9. O

<
<

Theorem 9.5. Fiz numbers 0 < a < 1 < b. The followings are equivalent

(1) Kadison-Singer is true.

(2) Given e > 0, and 0 < P € B(*(N)) invertible, there is a K € Z*
with a partition A1 U ... U Ax = N, and positive sequences {cj}JKzl,
{dj}]Kzl satisfying

el —c< dej,
o ¢jPa; < Py, PPy,
o djPy, < Py,P7'Py,.

(3) Given e > 0, and P € H[a,b|, there is a K € Z* with a partition
A1U...UAg = N, and positive sequences {cj}f-{:l, {dj}szl satisfying

e 1l—e< dej’
o ¢jPa; < Py, PPy,
o djPy, < Py,P7'Py,.
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(4) Given € > 0, there is a K € Z* so that for each P € H[a,b], there
is a partition A1 U ... U Ax = N, and positive sequences {Cj}szl,
{dj}JK:1 satisfying

el —c< dej,
° CjPAj < PAjPPAj,
° deAj < PAjpflpA]..

Note how 4) differs from 3). In 3), our epsilon and P are fixed, and out
comes this integer K, whereas in 4) only epsilon is fixed and we get a K
that works uniformly for all P.

Proof. 1) = 2): Given £ > 0, and 0 < P € B(£?(N)) invertible the previous
Theorem ensures that for each w € SN, there is an B,, € U,, (where B, =
U, NN for U, € N,) and positive numbers ¢, d,, > 0 which satisfy

cody, > 1—c¢
CwPBw S PBWPPBw
d,Pp, < Pp,P 'Pp,.

The open cover {U, }wepn of BN must have a finite subcover {U,, }~ ;. Out
of the sets {B,,}, whose union is N, make disjoint sets {Aj}JKzl where for
each j, A; C B, for some [, and whose disjoint union is also N. In the case
where A; C B,,, we will have

CwlPAj < CwlP

wB

, < P PP

wg, wp;
which implies
CwlPAjPAjPAj < PAj [PwBl PPUJBl]PAj = PAjPPAj.

Therefore, CwPa; < Pa;PPy;. In similar fashion dy, Pa; < PAjP_lPAj,
and 2) holds.

2) = 3): This is clear.
4) = 3): Also clear.
4) = 1): Let w € fN and € > 0 and P € H|[a, b] be given. If 4) holds then

each A; = U; NN, with

K
JU; = 5N

j=1
Now for some 1 < k < K, w € U, so
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CkPAk PAkPPAk
dipPa, Pa, P 'Py,
1—¢ < cpdg.

<
<

So by the previous Theorem s, extends uniquely. But w was arbitrary, so
Kadison-Singer holds.

3) = 4): Assume 3) true but 4) not true. Then there is an ¢ > 0 and
sequences P, C H[a,b], (K,) C Z* such that each P, satisfies the conditions
in 3) for the integer K, but not K, — 1,(basically, K, is the smallest integer
for which the conditions in 3) hold for P,), and K,, ' co. Now let

P = U;(Pl PP .. .)Uqg,
where the

Uy : 2(N) — éﬂ(Ni)
=1

is our famous unitary corresponding to the bijective map ¢ : |J;2; N; — N.
Now for each n, o(P,) C [a,b] so when taking a direct sum and unitary
equivalence we get P € H][a, b]. Therefore for this P we can do some paving
for some K, but that K would actually pave all the P,,, a contradiction. [J

Definition 9.6. Given T € B({*(N)) and its corresponding matriz T =
(tij)ijen-
(1) We call T upper triangular if t;; = 0 for i > j, and denote by
T(N) the set of all upper triangular matrices.
(2) T is said to be strictly upper triangular if t;; =0 fori > j, and
we write To(N) for the set of strictly upper triangular matrices.

A few facts:

(1) T(N) C B(3(N)) is a subalgebra. This is straightforward.

(2) This is a little surprising, {T'+ 7% ; T € To(N)} & Ho. A famous
example is the matrix A = (a;;);jen, where a;; = 0 and for i #
Jrai; = % This skew-symmetric matrix gives rise to a bounded
operator on ¢*(N), but its triangular truncation, 7 = (t; ;) defined
by t;j = a;j,i < j,and t; ; = 0,7 > j, is not bounded. Thus, H = iA
is Hermitian and if H = Ty 4+ T}, with 71 € T(N), then necessearily
Ty = ¢I' + D, with D diagonal. Which shows that H can not be
written as a sum of an upper triangular operator and its adjoint.

(3) If P is positive and invertible, then there exists an invertible upper
triangular operator T' such that P = T*T. This can be shown by
using the famous algorithm for LU-decomposition for finite matrices
and showing that it converges.
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(4) Let T € T(N) be invertible. Then inverse of T" is also in 7T (N).
Morover if write T' = D + T, where D is a diagonal operator and T
is a stricly upper triangular operator, then necessarily D is invertible
and T~! = D~! + T for some strictly upper triangular operator Tj.

For proofs of these facts see [?].

Theorem 9.7 (P-R). Let w € N and s, : D — C. TFAE

(1) sy estends uniquely to a state on B(£%(N)).
(2) For all T € To(N), ls,(T'+T*) =0.
(3) For all T € To(N) and € > 0 there exists A € Uy, s.1.

—€Py < PA(T +T*)Py < €Py.
(4) For all T € To(N) and € > 0 there exists A € Uy, s.t. ||PATP4| < e.

Proof. (1) = (2) Let s be the unique extension then s(X) = s(E(X)). So
for all T € To(N), s(T'+ T*) = s(T') + s(T) = 0 and hence I,, (T +T"*) = 0.

(2) = (1) Let T € To(N). Since —T is also in To(N), I, ((=T)+ (=T7)*) =0
equivalently —us, (T'+ T%*) = 0. So for all T' € To(N), T + T* is in U,
the uniqueness domain of s,,. This also means that (¢7") + (¢7)* is in U(w),
equivalently, i(T'—T™*) € U(w). We know that U,, is a linear subspace. Since
both real and imaginary part of T" are in U(w), T is in U,, for all T € To(N).
Note that this also means 7 (N) C U,, since an upper triangular operator
can be written as sum of two operators, namely the diagonal part and strict
upper part, which belong to uniqueness domain. Now let s; and sy be two
positive extensions of s,,. Let P € B(¢£2(N)) be positive and invertible. Then
there exists invertible 7" in 7 (N) such that P = T*T which also means that
P! =T-1(T*)~!. Now by using the facts above we obtain

s1(P)s2(P™Y) = si(T"T)so(T~H(T*) 7Y
> [si(D) s2(T 7))
= [s1(T)s2(T7HP
= [sw(E(D))su(E(T)7 )] =1.
Since P is arbitrary, s; = s2 by Theorem ?7. O

Theorem 9.8. The following are equivalent.

(1) Kadison-Singer is true.

(2) For each € > 0 and for each T € To(N) there exists a k-partition
{A;}r_| of N such that |Pa,TPa,|| < €||T.

(3) For every € > 0 there exists k € N such that if T € To(N) then there
exists a k-partition {A;}F_, of N such that ||Pa,TPa,| < €|T).

(4) There exists 0 < r < 1 such that for any T € To(N) there exists a
k-partition {A;}¥_, of N such that ||Pa,TPa,| < r||T|.

We will not prove this theorem.
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Anderson-Akemann Paving Conjectures. Let P = (p;;) € B(*(N))
be an orthogonal projection (P? = P = P*). We define §(P) = sup{p;; :
i=1,2,3,..}.

A-A Conjecture 1. For each P = P* = P? there exists S € D with
S?% = T such that ||PSP|| < 25(P).

A-A Conjecture 2. There exists 0 < v < 1/2 such that if §(P) < ~
then there exists S € D with S? = I such that |PSP| < 1.

Anderson and Akemann proved that A-A Conj. 1 = A-A Conj. 2 = K-S
is true. But later CEKPT showed that A-A Conjecture 1 is false.

10. INTRODUCTION TO GROUP C*ALGEBRAS AND CROSSED PRODUCTS

10.1. Unitary Representations and Group Algebras for Discrete
Groups. .

Let G be a group, H be a Hilbert space, U(#H) be the group of unitaries in H.
The homomorphism 7 : G — U(H), w(e) = I, w(gh) = w(g)n(h), T(g71) =
7(g)~! = 7(g)*, is called a unitary representation of G on H.

Let Uy = 7(g), and consider the span{U, : g € G}.

Let A,B € span{U, : g € G}, i.e. A= Zgggte AUy, B= Z{Llenge prUn,

= A-B= Z AgtnUgn € span{Uy : g € G},
g,heG

and
= Z AUy = Zj\gUgfl € span{U, : g € G},
geG

i.e. the span{U, : g € G} is a *-algebra, i.e. an algebra and an operator
System.
Letting § = gh, h = ¢7'§, g = gh™ ', we can rewrite the product

A-B= g’hZeG)‘g:U'hUgh = Z <Z)\g,ug g> Z (Z)‘gh 1Mh)

This motivates the definition of a group algebra.
Recall the free vector spaces: Let X be any set, then the free vector space
over X, C(X) is just a vector space with basis given by the elements of X,

i.e. one defines
C(X) = { S hwihe C},
zeX, finite

and

ZAI$+ZMI$:Z)\ + pg)x <Z)\ $>:Z()\)\x>$-
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Alternatively, one can define C(X) as a vector space of finitely supported
functions,

C(X) = {f : X — C| support(f) is finite subset}.

1, ==

0, x;é

of finitely supported functions. The following correspondence takes place
Z)‘fx — Z/\xd'” +— f with f(z) =\

Definition 10.1. Let G be a given (discrete) group, then the vector space
C(G) together with the product and *-operation given by

( > Ag-g>< > uh-h)—%;Agﬂh-(gh), ( > Ag-g)*—%jxg-g-l,

g,finite h, finite g, finite

Let 0, : X — C, 0,(y) = , then {d,} is a basis for the space

respectively, is called the group *-algebra.
Note: If e € G is the unit element, then 1-e € C(G) is the unit element of
the algebra, hence . is the identity of C(G).

Alternatively, identifying fi <> > Ag- g, f2 > > pp - h induces a product

fixfa= <Z)‘g59> : (Zﬂh5h> = Z)\guh'5gh-
g h gh
As a function,
(f1 % f2)(§ ZAgug-lg Zfl )f209719) =Y f1(Gh ") fa(R)
h

This product is called the convolutlon of functions.

Also, note that (f{)(g) = fi(g~1).

Let m : G — U(H) be a unitary representation, which, clearly, can be
extended to a linear map 7 : G — B(H), T(3_, Ag - 9) = >, Agm(9)-

Also, having

fr(@ by i) ) = (X Oupnah ) = 3 Orpn)e(at)

g,h g;h

= Aarlan() = (gwg)) (;umm) - ﬁ(%:Agg>7~r<zh:Mhh),
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gives that the extension 7 is a *-homomorphism.
Conversely, given 7 : C(G) — B(H) a unital *~homomorphism, setting
m(g) = 7(1 - g) defines a unitary representation of G.

Proposition 10.2. 7 < 7 is an one-to-one correspondence between unitary
representations of G and unital *~homomorphisms of C(G).

Definition 10.3. The full group C* algebra denoted as C*(G), (or C}(G) )
is the completion of C(G) under the norm defined as follows: Let a = A\g-
g € C(G), define ||a| = sup{Hfr(Z)\g : g) || : Vm unitary representations},
then for any a € C(G), one shows

o |la*a] = |lall?,
o Jlall 0 fora#0,
o || || is really a norm.

Why finite? Let a =) A, - g € C(G), then
@)l =1 > Aml@ll< Do Al JInl@)l] = D gl < oo,

g, finite g,finite g, finite

=1,unitary

therefore we get [lal| <)~ [Ag| < +o0.
Examples of C*(G)

1. Group of integers Z: Let m : Z — B(H) be a homomorphism with
m(0) = I,m(1) = U, unitary. Let a = ) Ayn € C(Z), then 7(a) = > A\ U™
Look at ||7(a)|| =sup{| 3> Me??| : e € o(U)} which forces
lallczy = |5 A" et

Therefore, C*(Z) = C(T).

2. Zs = {[0],[1]}: Here we let my :— B(H), m2([0]) = I, m2([1]) = U-unitary
with U2 = I.

o(U) C {£1} and the most general such unitary will be U = (1) _01 . Any
clement a € Zs, a=Xo[0] + Mi[1], #(a) = AT + MU = (AO PR >
0= A1

H7~r(a) = max {|/\0 + /\1’, ‘)\0 — )\1‘}

= |lallcx(z,) = max {[Ao + A1, [Ado — Au[}
Therefore, C*(Zy) = C @ C under the mapping
A0[0] + A1[1] — (Ao + A1, Ao — A1).

3. 2% = {(m,n) : m,n € Z}: Here 7 : Z — B(H),n((0,0)) = I,7((1,0)) =
U,7((0,1)) =V, U and V commuting unitaries since Z? is an abelian group.
7((m,n)) = UT™V™, any element of Z2, a=>" App.n(m, n) then 7(a) = > Ay n U™V™.
U and V are commuting unitaries therefore, C*{U,V} = C(X). Suppose U
corresponds to a function f; and V to fs.

We Know: 1). C(X) = C*(f1, f2). We claim that z — (f1(z), fo(x)) is
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1-1.

Let x,y € X, (fi(z), f2(z)) = (f1(y), f2(y)) which implies that every func-
tion in C*{f1, fo} is equal at x and y. Therefore by Urysohn’s lemma, x=y
which establishes the claim.

2) We have U* = U~ ! = fi(z) = fi(z)"' = fi(z) € T.

Similarly V* = V! = fy(z) € T.

AFR@T = 1D AmaU™ V=11 A f1 ()™ f2 ()™ o)
= sup{| Y Amna™B"| : (o = fi(2),8 = fo(z)) € T}.

lall = 1> A (m,n)|oxzz) = sup{| D Amna™B"| : (@, 8) € T2} = | Amin "2 || o(r2).
- CH(Z2) = O(T?).

4. Non Abelian group, s -free group on 2 generators: Let the gen-
erators be g1, g2 then a typical element w € Fy is often called a word in

g1, g2 and written as w = gZIgZQ...gZP where i; # ij11, 7 € Z.

Let v € Fy,v = g;?flggQ...ng where j; # ji41,mg € Z and the identity of

the group e is any word where all n; = 0.

RIS g;“ g;ZQ...g;Zq.gZI girf...gz.;” if j, # 11 called concatenation and equals
mi . me mg—1 ( mg+ny np

951 9ja “'gjq*l 9, )9?22"'9'

—ny
ip :

. s -1 __ —MNp
if jo=101. w ' = 9i, Y,

Universal property: Given any group G and hi, ho € G 3! group homo-
morphism 7 : Fo — G via g1 — h; and go — ho. is called the universal

property.

Let 7w : Fo — G be a unitary representation < m(g1) = U and 7(g2) = Us.
Let a € C(Fa),a = > A\yw

7(a) =3 Apm(w) = 7(a) = Z)\ngl...Uizp.

2 Nallex @,y =sup{l| 22 Awm(w)|| : all pairs of unitaries Uy, Uz} is sometimes
referred as “Non Commutative Torus”.

10.2. The Left Regular Representation.
Let G be a discrete group, look at I2(G).

PG ={f:G—=C:) |f(9)f <o} ={D Ageg: Y [A]* < o0}

geG geG

where {e, : g € G} is an orthonormal basis.

Inner Product: < fi, fo >p2(q)= deG fi(g) f2(9)

<22 Agegs Do Hgeg >= D gl
Here e, corresponds to d, therefore, )  A\je, corresponds to a function f
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where f(g)=M4. The left regular representation of G, is the group rep-
resentation A : G — B(I?(g)) where A(g) is the unitary uniquely defined by
A(g)en = egh.

Note: ghi = ghs < h1 = ha, M(g)eg-15, = en, each A(g) is just a permutation
of the basis vector and A(g)(D>_ Anen) = > Anegh.

(From the function view point, A(g)dy = d4h

(A(9)0n) (k) = dgn(k) = on(g~ k).

A9) Nk = f(g~ k).

The reduced C*algebra of G is denoted C5(G) = C;(G) = C*({\(g) :

9 € G}) € B((G)), C*(G) = {X agA(9)}

We define the group von Neumann by VN(G) := {\(g) : g € G}’ C
B(f*(G)). An application on von Neumann’s double commutant theorem
shows that VN(G) = C{(G)" = WOT — closureC5(G).

We have not yet shown that the seminorm defined on C(G) is actually
a norm. The reduced representation shows that ||-|| is actually a norm on

C(G). To see thislet a = > ayg € C(G) and let AMa) = >gec AgA(g) €
B(f%(@)). We have A(g)e. = > gec @gA(g)ee = D o eg- Hence HS\(a)H >

- 1/2
Hx\(g)ee - Hdec ageq|| = (dec |a912) £ 0 for a # 0. This yields the
estimate,
1/2
Slagl | < M| < lallee) < Y lal
9geG geG

We will now look at some examples of C5(G).
Example 8 Let G = Z and note that (*(Z) = span{e, : n € Z} and let
B = X(1). Note that Be, = A\(1)e,, = e,4+1 and A(n) = B™. The operator
B is called the bilateral shift on ¢?(Z). Every A € B(¢*(Z)) has a matrix
A = (a;;). The matrix is infinite in both directions and when we write our
matrices we distinguish the (0,0) entry by drawing a box around,

a-1,-1 a-10 G-11

A= | ap-1 ao,1

ai,—-1 Q10 a11

For example since Be,, = e,1 we see that the matrix of B is
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o o o =
o O = O
= o O O

0
0]
1
0

Let a = ZQL_N ann and note that A(a) = Zﬁ;_N apB™ and so the

matrix of A(a) has the form

a1 O 1 O«_9
Sy | o[G0
az Q2 a1 (7))

a4 Q3 (6% a1

Note that the entries of the matrix are constant on diagonals and so there
is a function a : Z — C such that a;; = a(i — j). A bounded operator on
(?(Z) whose matrix is constant on the diagonal is called a Laurent operator.

In order to identify C}(Z) we need the Fourier transform. Let L*(T) be
the usual Lebesgue space of the circle and let us denote 2" = €™ Given
f € L*(T) we write

Fn) = (o= L [ () dg

:27TO

n=—oo

2(Z) by 2" — e, and so f = >.°° ___ f(n)e,. Now,

n=—oo

and we write the association as f ~ S2°°__ f(n)z" and let U : L*(T) —

U'BU2" =U'Be, = U te,p1 = 2" = M, (2")
and so U~'BU = M,. Hence,

N N

U~ Z an B"U = Z a, B" =Msny o
n=—N n=—N neN

and so C(Z) is the norm closure of the set of polynomials of the form
Zg:_ ~ an 2" which by the Stone-Weierstrass theorem is C(T). In particular
U~IC(Z)U = {My : f € C(T)}.
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When f € C(T) we have UM;U~! € B({*(Z)) and the matrix of this
operator is given by

O o) f(=1) f(-2)
My — {(2) Ji(l) Ji(O) fE—l)
@) F@) ) f0)
f@ fe) f@ fo)

We will show that the group von Neumann algebra is UMU ! = {U]\/.I'fU_1

f € L>=(T)}. Since M is a MASA, UMU ! is also a MASA and we see that
UMU=UM"U"' 2 C}{(Z)" =VN(Z). If R € C5(Z)', then RB = BR
and this shows that 7= U~'RU commutes with multiplication by z. If we
set g = T'(1) we see that T'(2™) = gz" for all n € Z. For any f € L"O(T) we

get (TMyz',27) = <T(Z;’Lo:7Oo f(n)z”)zi,zj> =3 _fn ) (92"t 20 ) =
((fg9)z',27) = (MyTz",27). Hence, T = My € M’ and we get C}(Z) C
UM'U~L which implies VN(Z) 2 UM'U~t = UMUL.

Example 9 Consider the case G = Zs = {0,1}. Here (*(Z3) can be

identified with C2. Under the representation A\(0) = Iy and \(1) = [(1) (1)}

A general element of C}(Zs) is of the form [g ﬁ for a, 8 € C.

Example 10 To identify C(Z?) we can carry out a similar analysis to the
one used for Z and we see that C}(Z) can be identified with C(T?) and that
the group von Neumann algebra can be identified with L°°(T?). Once again
we can define a matrix for each operator on A = (*(Z?). However since
L%(T?) is spanned by the orthonormal basis e, , = e™%1e™%2 we see that
the matrix is naturally indexed not by pairs of integers but tby 4-tuples.

In general if G is discrete abelian group, then we can define the dual group
G wheih is the set of all homomorphisms from G into T. This is a group
under pointwise product and it has we give it the topology of pointwise
convergence. Under these conditions G is a compact group. As an example
the group dual to Z is T where the pairing is given by A(n) = A™. In general
for a discrete abelian group G we have C§(G) = C(G) and VN(G) = L®(@).
Example 11 We now look at Fa, the free group on two generators u,v.
An element w € F9 can be thought of as a word in u,v and so the action of
By, = Aw) on e4 is Byey = eyq. Let W, be the set of words that begin with
a non-zero power of v and define /2 = span{eyn,, : w € W,}. The direct
sum of the spaces 2 is (*(F3) and B, maps { isometrically onto ¢ ;. This
gives us a sense of how “large” the Hilbert space £2(Fs) is.
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Comparison between C*(G) and C5(G): By the definition of C*(G), if
we are given any 7 : G — B(#H) unitary representation and a € C(G),
then |lallc=q) > [|7(a)||. Hence if {a,} C C(G) Cauchy in C*(G), then
{7(an)} € B(H) is Cauchy. So there is a well defined map 7 : C*(G) —
C*({n(g) : g € G}) C B(H). For by, by € C*(G), there exists {an},{al} C
C(G) such that ||by—ay| — 0,||b2—al,|| = 0. Thus, |biba—anal,|| — 0 which
implies ||7(b1b2) — 7(anal,)|| — 0. But 7(ayal,) = 7(apal,) = 7(ay)7(a),) —
7(b1)7(b2). Hence, m(bib2) = (b1)7(b2). Similarly, 7(b7) = 7(b1)*. so 7 is
a *-homomorphism. In particular, there is always a *-homomorphism from
C*(G) onto C5(G).

One of the question that arises is that when is this map one-to-one? When
G is an amenable group, this map is one-to-one. Amenable groups include
all abelian groups, finite groups. Also, O - N - G - H — O and N, H
amenable implies G amenable.

The free group on two generators, o, is not amenable and the map from
C*(G) to C3(GQ) is not one-to-one.

10.3. Group Actions.

Definition 10.4. Groups acting on sets: Given a group G and a set X.
We let Perm(X) = {h : X — X|h — invertible}. Then, Perm(X) is a
group under the operation of composition. We will define an action of G on
X in the following three ways:

(1) An action of G on X is a homomorphism o : G — Perm(X).
(2) If we let a(g) = hyg € Perm(X), then hg, o hgy, = hg,g,, he =
where {hg : g € G} C Perm(X) is a group.
(3) Giveng e G, x € X, set g-x = a(g)(x). This is a map Gx X — X
such that (g,z) — g - © having properties
(a) e-x=x forallz € X
(b) g1-(g2-2) = hg, (g2-2) = hg, (hg,(2)) = hg, 0hg, (x) = hg,g,(x) =
(9192) - @

idx

Assuming the third definition, if we define hy(z) = g -z and because
(hg-1 0 hg)(x) = g~' - (9-2) = ez = x, and similarly we can prove that
(hgohg_,)(z) = x. Thus each hy is an invertible map and so hy € Perm(X).
Note: When X is a toplogical space, by an action of G on X, we mean that
each hy is a homeomorphism.

Example 12 : Let X be a toplogical space. Fix h : X — X homeomor-
phism and define

AW =hoh...oh n>0
—_—
n—times
an)={ (hH"M=pton™'...oh™l n<o0
|n|—times
1dx n=>0

Then « defines an action of Z on X. Let us see few examples of this action:
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(1) When X =R, h(r) =r+1, the h"(r) =r +n.
(2) when X =T, fix 6, 0 < 0 < 1, h(\) = ™0\, h*(\) = 2™\, If
= %, h4(X) = X and if € is an irrational, h™(\) # A for all n # 0
but given € > 0, there exists {n;} such that [e>™¢ — 1| < ¢ which
is equivalent to [R(™)(X\) — \| < €

Definition 10.5. Given an action of G on X, a point x € X 1is called
recurrent if for every neighborhood U of x, there exists e # g € G such that
g-xelU

In the above example when X = T, all points are recurrent.

Definition 10.6. A point x € X is non-recurrent if there exists a neighbor-
hood U of x such that g-x ¢ U for alle # g € G.

In the above example when X = R, every point is non-recurrent.

Definition 10.7. A point x € X is called wandering if there exists a neigh-
borhood U of x such that (g1 -U) N (g2-U) = ¢ for all g1 # g2.

Note that wandering implies non-recurrent. When X = R in Example 12,
every point is wandering.
Example 13 (Cayley): Let G be a group and X = G. Define hy : G — G
as hy(g') = gg'. Clearly hy is one-to-one and onto, hy, o hg, = hg, 4 and
he =idg. So, a(g) = hg is a group action.
Example 14 Let G be a discrete group and X = 8G. Fix g € G. By above
example and by the properties of G, there exists a unique continuous map
hg : BG — PG such that hg(g/) = gg for all ¢ € G. Given w € 3G,
since G is dense in G, there exists a net {gy,} C G such that g, — w.
Thus, hg(w) = li)r\n hg(g;\) = li/r\ngg;\. Now he(g) = ¢ which implies that

he(w) = w for all w € BG. By uniqueness, he = idgg. Also, hg, 0 hg, = hg, g,
on G and G is dense in 8G, so hg, 0 hg, = hg g, on SG. Hence G acts on
BG denoted by w — g - w.

11. DYNAMICAL SYATEMS AND G

Utrafilters in dynamics motivates why people in dynamical system are
interested in G and the action of G on SG.
Let X be any compact Hausdroff space with a continuous action.Pick a point
ze € X. To study dynamical propeties of the point X. only need to look at
{9 zc: g€ G} = X, closed orbit.

8G
JA 1l
LS

g—g-Te
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Since h(G) = {g - z¢ : g € G}, therefore h(5G) = X..

If g» — w € BG, then h(ggy) = ggx - Te. Let h(w) = x4.9x — w which
implies that gy - £e — x. Therefore h(ggy) = g- (g xe) —> g - Ty. So,
h(g-w) =g-h(w) =g - Tyw.

This shows that in a sense every dynamical system is a “quotient” of the
action of G on SG. In this sense SG is “universal” dynamical system.

The semigroup N
In a similar fashion we fix n and look at the map N — N given by
m— n-+m.

Given w € SN we write n + w = hy(w).

The corona is defined to be G* = G \ G. Note that G is open in 8G.
This implies that G* is closed and so compact.

Lemma 11.1. Let w € G* and g € G.Then g-w € G*.

Proof. Let w € G* and let g, — w.Suppose g-w = h € G. Then ggy, — h.
Let U = {h},open. Then there exists Ay such that ggy € U for every A > Ag.
Therefore, ggy = h for each A\ > \g which implies gy = g~ 'h for A > \g.So,
gx — ¢~ 'h which implies w = g~ 'h € G.

Hence G* is G-invariant subset.

O

Back to Kadison-Singer

Recall by Reid, we know that if w is a rare ultrafilter then the extension
was unique.

Anderson conjectured If w is §— stable ultrafilter then the extension is
unique.

Natural Question !

What are the dynamical properties of such ultrafilters ?

(From now in this section we assume that G is a countable group with
discrete topology. Recall by a theorem of Choquet, w is — stable if and
only if w is a P-point.

Proposition 11.2. Let w € G* be d— stable. Then w is non-recurrent in
G*.
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Proof. By a theorem of Veech, for w € G*, g1-w = go-w if and only if g1 = g9
(such an action is called free). For each g in G, let U, = G \ {g - w},
open. As w # g-w, w € Ugy.this gives w € N{U, : g € G,g # e} which is
a (G5 set. Because w is a P-point, there exists an open set U, w € U,U C
MUy :9€G,g#e}

= g-w ¢ U for each g # e.

— w is non-recurent.

]

Proposition 11.3. Let w € N be a rare ultrafilter. Then w is wandering in
N*.

Proof. Write N = {1} U{2} U {3,4} U{5,6} U{7,8,9} U {10,11,12} U---
Let A={1}U{3,4}uU{7,8,9}U---

As U, is an ultrafiter, therefore either A € U,, or A¢ € U,,. Assume A € U,,.
Since w is rare, there exists B € U, such that B intersected with each of
the above finite sets has atmost one element. Look at C' = AN B € U,,.

Picture:
1 2 3 4 5 6 7.8 9 10 11 12 13 14 15 16...

C can have atmost 1 element from each of the underlined sets in this picture.

Note, card{(n + C)NC} <n —1 for each n.
Now, C' € U,,, therefore there exists an open neighbourhood U of w in SN
such that C'=U NN.
= card{(n+U)NU NN} <n—1 for each n
= (n+U)NU is a finite set and contained in N.
(n+U)NN*)N(UNN*) =1
..V =UNN*is an open set in N* and (n+ V)NV = () for every n.
With a similar argument it can be shown that for every n # j,
n+V)NG+V)=0.
This proves that w is a wandering in N*
O

Corollary 11.4. Assuming the continuum hypothesis, then N* contains a
dense set of wandering points.

Proof. The continuum hypothesis imples that rare ultarfilters exist and are
dense in N*. U

Theorem 11.5 (Davidson). Let G be a countable discrete group with w €
BG a rare ultrafilter. Then w is a wandering point in G* = SG\G.

Proof. Choose an ascending chain of finite subsets of G

{e} =Gy CG1 CGy...
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such that G, = G, and | J2, G, = G. The former statement just means
that each G, is closed under taking inverses. Now we let

P,=G, G,_1---G1-Ggp, forn=0,1,2,...

Notice at once that since the identity e belongs to G,, for each n, we have
P, C P,+1. Now set

AO = {6}, A1 = PI\P(), ey An = n\Pnfl.

Each A, is finite because each P, is. Moreover, the A,’s are pairwise dis-
joint with (7, A, = G.

Claim: For g € G, and [ > k, we have gA; C A;_ 1UAUA;11 = Py1\P—o.

Fix g € Gi. Keeping in mind that k¥ < [ and that the G,’s are nested,
we know that g € G4 for s > [ — 1. Therefore, gPs C P;1q for s > 1 — 2.
Take p € A; C P, from above we have that gp € Py1. Now suppose that
gp € P_5 as well, then by above and the fact that the G,,’s are closed under
inverses, p = g '(gp) € P,_1 a contradiction because p € 4; = P\P_;.
This proves the claim.

Since w is a rare point, there exists a U € U, such that |U N 4, | < 1 for
every n. Let

o0 o0
E = U Agn, and E°=0 = U A2n+1.
n=0 n=0
Then U, being an ultrafilter, either £ € U, or O € U,,. Assume the former,
andset V=UNFKE€eU,.

Claim: For g € Gi, card(gV NV) < k/2.

To see this write V' = {agm ; aam € Aapm, for some m's}. If we take
x € gV NV, then x = g- agy, = asgy for some m,n € N. If 2m > k, we know
from our previous claim that as, = g - aom € Aom—1 U Aoy U Aoyy1, which
forces 2n = 2m and in turn ag, = a9, a contradiction. Therefore the only
elements in gV NV are for those m satisfying 2m < k. That proves the claim.

Let V C BG be the open neighborhood of w such that VNG = V. This says
that gV NV C G and a finite set. Therefore, V = V N G* is our relatively
open neighborhood such that gV NV = 0 for all g # e. This condition
ensures, by multiplying by suitable inverses, that g1V N g2V = 0. O

The following corollary is somewhat eye boggling when thinking in terms
of topological dynamics.
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Corollary 11.6. Assuming the continuum hypothesis, if G is any countable
discrete group, the set of wandering points in G* is dense.

Proof. Under the continuum hypothesis, rare points are dense in G*. O

Notes:
(1) Consider the set of pairs

G ={(G,¢) ; Gis a countable discrete group and ¢ : N — G is a bijection }

For each pair we have a homeomorphic extension ¢ : SN — AG.
Notice that a rare ultrafilter w € SN maps to a rare ultrafilter
¢(w) € BG. Hence when w € SN is rare, for every pair in G, ¢(w) is
wandering in the Corona G*. Is the converse statement true? More
precisely, given w € N, if for every such pair (G, ¢) qg(w) is wandering
in G*, can we say that w is rare?

(2) We can also inquire as to whether the above Corollary holds without
assuming the continuum hypothesis.

(3) Reid showed that for w a rare ultrafilter, the corresponding state
S, has a unique extension. Now we know that rare ultrafilters are
always wandering. This motivates the following conjecture.

Conjecture: Let G be a countable discrete group and w € G*
wandering. If ¢ : N — G is a bijection, and @ = ¢~ !(w) € N*, does
S5 have a unique extension?

12. GROUPS ACTING ON ALGEBRAS
Definition 12.1. Let A be an algebra and G a group. By an action of G
on A we mean a homomorphism
a: G — Aut(A).
Example: If a group G acts on a set X, G also acts on F(X) = CX as
follows
a: G — Aut(CY)

lag - f(x) = flg™! - 2)
There are two things to check. First, it is not too difficult to verify that oy
is actually an automorphism. Second, « is a homomorphism. Indeed,

lagn(Hl(@) = fllgh)™ -a) = f((hg™h) - 2) = f(h g™ - )
= lan-fllg7" - 2) = [(an o ag) - (H](2),

so that agy - f = (agoay,) - f forall f e CX, whence Qgh = Qg O Q.
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Example: Now X is a topological space, and a group G acts by homeo-
morphisms of X, that is we have a homomorphism of groups

0:G — Perm(X)
G>g9 +— o04€Perm(X)

where each 0,4 is a homeomorphism of the space X. We the define

a:G— Aut(C(X)), g+ ag,

where ay(f) = foo,-1. The latter is clearly continuous, being the com-
position of continuous functions, and by same argument as in the above
example, « is a homomorphism.

Example: Take H a Hilbert space, A C B(H) a subalgebra, and {U,}4 a
group of unitaries whereby Uy AU~ 1 C A for all Uy’s. Then the mapping
A — A given by

-1
a—> UgaUg

is easily seen to be a homomorphism from the algebra A to itself for every
fixed unitary Uy. Now since Uy AU~ 1 C A holds for all g, replacing g by g~!

yields Uy LAU, C A as well. Together,

A= Uy (U, AU,)U, ™ C U AU C A

so that A = Uy AU, I and the above map is actually an automorphism.
Now look at

a: G — Aut(A) where a4(a) = UgaU;1

Again, « is a homomorphism of groups. Indeed,

agn(a) = UgaUg,' = UgnaUgpy-1 = Ugnalp-14-1) = Ug(UpaUp-1)Ug-r

= Uy(UpaUy YU, = (g 0 ap)(a)

thus g, = oy 0 oy, as claimed.

Comment: Given o : G — Aut(A), write ag(a) = a(g)(a) to avoid so many
parathenses. We saw that for any A C B(H), {Uy}-group of unitaries, we
get Ug.AUg*1 C A,Vg. Then, the setting a;(A) = UyAU,-1 defines an action
of the group G on A. Note that UjA = UgAUg_lUg = ay4(A) - Uy. Let
B = span{AU, : A € A, U, unitary}. Then,

(A1Uy,)(A2Ug,) = A1U91A2Ug:1Ug1 Ug, = Arag, (A2)Ugg, € B
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makes B an algebra. And, the general product
(ZAQ . Ug)(zﬁh . Uh) = ZAgOég(/ih) -U,
g h g,h

motivates the following definition:

Definition 12.2. Let A be an algebra, G a group, a : G — Aut(A) group
homomorphism. Then,

finite

AxaG={>" 4,-g:4,€ Agec)
g
is called the crossed product algebra, with product defined as
(D Ag-9)(D_An-h) =" Agag(Ay) - gh
g h g,h
Written differently, let gh = ¢/, then h = g~ '¢’ and

(ZAQ ' g)(ZAh -h) = ZAQ%(Ag*g’) g
g h 9,9

Function Viewpoint: The crossed product algebra A x, G can be thought
as the set of all finitely supported functions f : G — A with the product
given as

(f1= f2)(g Zfl 9)ag(fa(g™'9)),
which is called, in fact, ”the tw1sted convolution product”.

Suppose, for a moment, A C B(H) is a C*-algebra, then we have

(A : Ug)* = U;A* = UgflA* = Qg1 (A*)Ugfl,A € A
This shows that when A is a C*-algebra, then B = span{AU, : A €
A, Uy unitary} is a #-algebra, with B = 3° AUy, B* = > a1 (A")Uj

So, we can define a *-operation on the algebra A x, GG, whenever A is a
*

C*-algebra, as <ZA9 'g) =Y a,1(A%) gL
Function Viewpoint: (f*)(g) = ay(f(g~H)*).

12.1. Covariant Representations.
Let A be an algebra, o : G — Aut(.A) the action, denote this by (A, G, «).

Definition 12.3. A covariant representation of (A, G,«) on a Hilbert
space H, is a pair (p,m) such that:
1) p: A— B(H) is an algebra homomorphism.
Note: If A is unital, then p(1) = Iy,
and if A is a C*-algebra, then p is a x-homomorphism.
2) m: G —U(H) is a group homomorphism.
3) m(g)p(a)m(g™") = plag(a)).
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Given a covariant representation (p,7), define a map p X 7 : A Xq G —
B(H),

(p %o ZAg 9) =Y p(Ag)(g)
Since

p(Ag)m(9)p(Ay)w(h) = p(Ag)m(9)p(A,)m (g~ )m(gh)
= p(Ag)p(ag(Ap))m(gh)
= P(Agag(Ah) (gh),

then (p o m)(Ag - 9)(p Xa T)(A}, - h) = (p xa ) ((Ag - 9)(A], - h)).

This shows that any covariant representation (p, ) gives rise to a represen-
tation p x4 7 of A X4 G

Conversely, if given a homomorphism 7 : A X, G — B(H), where A is uni-
tal, and set p(A) = 7(A-e), e € G is the identity, and 7w(g) = 7(14-g), then
(p, ) is a covariant representation.

Example 15 Let G be a countable discrete group, H = I2(G), let C(BG) =
1°(@), identify [*°(G) = D C B(I*(G)), where given f € [®°(G), write
Dy for the bounded diagonal operator, such that Dy - ey = f(h) - es. So,
we really have p : [*(G) — B(I*(@)) given by p(f) = Dy, and we have
m=X:G — B(I*(GQ)), where A\(g) = Uy, Uy - e, = egp.

Now, compute 7(g)p(f)m(g7") = UgDsU,-1:

<U9Dng_leh1veh2> = < Dfe —1h1’6h2>
= < (g hl)e —1h17€h2>
= f( g Yh)en, , ens)

9 'h1), hi=hy
hi # ho ~

Therefore, UgDU,-1 = Dy,, where fi(h1) = f(g~ h1) = ag(f)(h1), which

implies UgDyU,-1 = Dy (p). Hence, 7(g)p(f)m(g7") = plag(f)) = (p, ) is
a covariant representation for the action of G on SG.

Example 16 Let X be a topological space, G a group with action on X,
pick 7. € X. Look at the homomorphism p : C(X) — I*°(G) C B(I*(G))
given by p(f)(g) = f(g-xe). Let m = X : G — B(I3(Q)).
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Then x(g)o(f)rlg ™) = Uppl£)U;
<ng(f)Ug_1€h1veh2> = <U9Df€g—1h17€h2>
= <Ugf((9_lh1) : xe)eg*1h1a€h2>
= f((g_lhl) ’ x6)<eh176h2>
_ { f(lg7 h) - we), hi=hy ‘
0, hy # hs

Therefore, Ug,o(f)Ug_1 = p(agy(f))-
(You can double check by doing inner-products with vectors.)

13. DYNAMICAL SYSTEMS AND KADISON SINGER

Let G be a countable, discrete group. By defining any 1-1, onto map be-
tween G and N. We may identify 2(G) = I2(N), I°(G) = [*°(N) and when
we look at B(I?(@)), the diagonal operators with respect to the orthonormal
basis, {e4 : g € G} are identified with [*°(G).

So we may regard [*°(G) = D C B(I>(G)) as another model for our discrete
MASA.

Fix w € BG, define s, : I*°(G) — C via s,(f) = f(w) by identifying
[*(G) = C(BG).

Let s : B(I?(G)) — C be any state that extends s,,.

By GNS representation of s, there exists H Hilbert space, v. € H and
7 : B(I*(@)) — B(H) such that s(X)=< 7(X)ve, ve >.

Let vy = m(Ug)ve and let Lo=span {v,: g € G}H'”.

Define o5 : B(I*(G)) — B(Ls) by ¢s(X) = Pr,m(X)|., -this is a completely
positive map which is to be defined later.

Let f € C(BG) = I*°(G), let Dy be the corresponding diagonal operator,
Dfeh = f(h)eh.

Look at

< m(Dyf)vg,vg >=< 1(Df)m(Ug)ve, m(Ug)ve >=< W(U;lDng)Ue,Ue >

Recall U,D;U; ' = Dy where f (h) = f(g~'h).
= U;'DsU, = D; where f(h) = f(gh).

< W(Ul;lDng)ve,ve >=< W(Df)ve,ve >= sw(Df) = f(w) = f(g.w)

Therefore the map 7(Dy) =< 7(Df)vg, vy >= f(g.w) is a homomorphism.
= v, is an eigenvector for m(Dy) with eigenvalue f(g.w).

= m(Dy) is the diagonal operator with respect to the basis vector {v, : g €
G}.

Each v, is an eigenvector of the normal operator m(Dy), vy L vp, g # h.
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Define a map W : 12(G) — Ls by W(ep,) = vy, which extends to a unitary.

W n(U)Wey, = W ta(Uy)vy,
=W n(U,)7(Un)ve
= W n(gh)v,
= W_lvgh

= egn = Ugey.

W ln(Dp)Wey, = W tn(Dy)uy,
=W Lf(hw)vy
= f(h.w)eh.

W n(Dp)W = D where flg) = flgw).

Let ¢ : B(I*(G)) — B(I*(G)) be defined by ¢5(X) =W Lo, (X)W.

Note that ¢ is a completely positive map with the action on unitaries and
diagonals as ¢4(Uy) = Uy, ¢s(Dy) = D where fl9) = flgw).

< Ps(X)ep, eg > =< W_lcpS(X)Weh,eg >
=< ps(X)Wep, Weg >
=< @s(X)vp, vg >
=< Pr,m(X)|z,vn,vg >
=< m(X)vp,vg >
=< m(X)7(Up)ve, 7(Ug)ve >
=< 7r(Ug_1XUh)Ue,ve >
= s(U, ' XUp)

In summary, given s- state extension of s, we get a map ¢5 : B(I*(G)) —
B(I3(G)) such that X — ¢5(X) = (S(Ug_lXUh))g,h is a completely positive

map and ¢,(Uy) = Uy, ¢5(Dy) = D where f(g) = f(g.w).
Define m,, : D = D, my(Dy) = Dj.

When we identify D = C(8G), then 7, (f) = f where f(g) = f(g.w).

Tw(fif2)(9) = fif2(9) = f1(9) f2(9) = mw(f1)(9)Tw(f2)(9)
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.. Tw 18 @ homomorphism on D.

< ¢s(DyUg)en,, en, > = s(U, ' DsU,Up,)
= s(U;,' DgUgn, )
=< ¢s(Df)egh,,€hy >
=< ¢s(Dy¢)Ugen,, €n, >

2 9s(DyUg) = ¢s(Dy)Ug = muw(Dy)Uy.
Similarly, ¢s(UgDys) = Ugps(Dys) = Ugmy(Dy).
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