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Abstract. These notes cover various topics in C*-algebras and func-
tional analysis related to the Kadison-Singer Problem[?]. They are in-
tended for an audience that is familiar with some of the basic results
in the theory of Banach and C*-algebras, but have sufficient references
that they can be read with somewhat less preparation.

These notes are based on a course taught in the Fall 2007 at the
University of Houston. I am grateful to the students of that course, Ali
S. Kavruk, Sneh Lata, Meghna Mittal, Mrinal Raghupathi, Preeti Singh
and Blerina Xhabli, for taking notes and helping with the initial texing.

1. Introduction

The field of C*-algebras has become so broad and diverse that it is truly
a heroic effort to attempt to learn the entire field without a particular goal
in mind. On the other hand this is rarely the way that active research
mathematicians learn a new field. Generally, we learn the parts of a field
that are revelant to the problem that we are focused on, while, hopefully,
learning enough about each subarea that we are comfortable with that area
and at least know where to look if we need further details.

I’ve designed these lectures around the material that one needs to know in
order to study the still unsolved Kadison-Singer problem[?]. Of course, we
must assume that the reader knows something, so we will assume that the
reader is familiar with the material in Chapters VII and VIII of Conway’s
book [?] or Chapter I of Davidson’s book [?]. Although we will review some
of these ideas below, but not in a comprehensive(or perhaps comprehensi-
ble!) manner.

The goal of these lectures isn’t necessarily to prepare the student to do re-
search on the Kadison-Singer problem, although these notes should prepare
you for that. But instead they use the Kadison-Singer problem as a point
of departure to introduce an array of topics in C*-algebras. This approach
wouldn’t work for every unsolved problem in C*-algebras, but, fortunately,
the Kadison-Singer problem is a problem that seems to be so fundamen-
tal(although at first it doesn’t look that way at all!) that it impinges on
many areas.

So without further ado, we state the problem and outline our lectures:
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2 V. I. PAULSEN

The Kadison-Singer Problem: Let H be a separable Hilbert
space and let D ⊆ B(H) be a discrete MASA. Does every pure
state on D extend to a unique pure state on B(H) ?

Clearly, to understand precisely what the problem is asking we will need
to first understand what are pure states and what is a discrete MASA. Here
is the rough plan of our lectures:

I. Some C*-algebra basics,
II. States and pure states on C*-algebras,
III. Discrete and continuous MASA’s,
IV. The Stone-Cech compactification,
V. Ultrafilters,
VI. Ultrafilters and βN,
VII. Anderson’s paving results,
VIII. Other paving results,
IX. Introduction to frames,
X. Frames and paving,
XI. Introduction to groups actions and crossed-products,
XII. Crossed-products and Kadison-Singer,
XIII. Dynamical systems and βG,
XIV. Algebra in βG.

2. Some C*-algebra basics

Let V be a complex vector space. By an involution on V we mean a
map, ∗ : V → V, satisfying:

• (v∗)∗ = v, for every v ∈ V,
• (v + w)∗ = v∗ + w∗, for every v, w ∈ V,
• (λv)∗ = λ̄v∗, for every λ ∈ C and v ∈ V.

A complex vector with an involution is often referred to as a *-vector
space.

If V is a *-vector space, then we call v ∈ V self-adjoint or Hermitian,
provided that v = v∗. We let Vh denote the set of all self-adjoint elements
of V. It is easily seen that Vh is a real vector space.

Given an arbitrary element v ∈ V, we set Re(v) = v+v∗

2 and Im(v) =
v−v∗

2i , so that Re(v) and Im(v) are both self-adjoint elements and v =
Re(v) + iIm(v). This is often referred to as the Cartesian decompos-
tion of v.

If, in addition, a *-vector space V is a complex algebra, then we require
that an involution also satisfy,

(a · b)∗ = b∗ · a∗.

Thus, when we say that we have an involution on a complex algebra, we
mean that all 4 properties are satisfied.
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A C*-algebra is a Banach algebra that is equipped with an involution
satsifying,

‖a∗ · a‖ = ‖a‖2,
for every element. This equation is often called the C*-property.

We make no attempt to give a thorough course on C*-algebras in these
notes, only a quick overview, emphasizing the things that we will need. For
more complete treatments see [?], [?] and [?].

Proposition 2.1. Let A be a C*-algebra, then for every a ∈ A, ‖a‖ = ‖a∗‖.

Proof. We have that ‖a‖2 = ‖a∗a‖ ≤ ‖a∗‖‖a‖, and canceling ‖a‖ from each
side yields, ‖a‖ ≤ ‖a∗‖ < for every a ∈ A. Applying this inequality to the
element a∗, yields, ‖a∗‖ ≤ ‖a∗∗‖ = ‖a‖, and equality follows. �

A few key examples of C*-algebras to keep in mind follow.

Example 2.2. Let H denote a HIlbert space, B(H) denote the algebra of
bounded operators on H, and for T ∈ B(H), let T ∗ denote the usual adjoint
operator. Then B(H) is a C*-algebra.

When H = Cn, then we will often identify B(H) with the n× n complex
matrices, Mn, in which case T ∗ is just the conjugate transpose of T .

Example 2.3. Let X be a compact Hausdorff space and let C(X) denote
the algebra of continuous, complex-valued functions on X and for f ∈ C(X),

let f∗ denote the function, f∗(x) = f(x). Then C(X) equipped with the
supremum norm, ‖f‖ = sup{|f(x)| : x ∈ X} is a C*-algebra.

This last example can be generalized in two ways. If X is only locally
compact and Hausdorff, then we can replace C(X) with C0(X), the algebra
of continuous, complex-valued functions that vanish at infinity, i.e., func-
tions, f , such that for every ε > 0, the set {x : |f(x)| ≥ ε} is compact and
obtain a C*-algebra. If X is completely regular(so in particular locally com-
pact Hausdorff), then we may also replace C(X) by Cb(X), the algebra of
continuous, complex-valued functions that are bounded, i.e., those functions,
f, for which ‖f‖ = sup{|f(x)| : x ∈ X} is finite and Cb(X) is a C*-algebra.

2.1. Units and adjoining units. We now take a look at properties of
C*-algebras with units and how units may be adjoined.

Proposition 2.4. Let A be a non-zero C*-algebra and assume that e ∈ A
satisfies, a · e = e · a = a, for every a ∈ A, i.e., that e is a two-sided unit,
then e = e∗ and ‖e‖ = 1.

Proof. For every a ∈ A, we have that (a · e∗)∗ = e∗∗ · a∗ = e · a∗ = a∗.
Applying ∗ to both sides yields, a · e∗ = a. Similarly, e · a = a and hence, e∗

is also a two-sided unit. Hence, e∗ = e∗ · e = e. Finally, ‖e‖ = ‖e∗e‖ = ‖e‖2,
and hence, ‖e‖ is either 0 or 1, and hence, ‖e‖ = 1. �
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Proposition 2.5. Let A be a C*-algebra, then for every a ∈ A, we have
that ‖a‖ = sup{‖ax‖ : x ∈ A, ‖x‖ ≤ 1} = sup{‖ya‖ : y ∈ A, ‖y‖ ≤ 1} =
sup{‖yax‖ : x, y ∈ A, ‖x‖ ≤ 1, ‖y‖ ≤ 1}.

Proof. The equality is trivial for a = 0, so assume that a 6= 0. Since ‖ax‖ ≤
‖a‖‖x‖ ≤ ‖a‖, the supremum is smaller than the norm. Conversely, let
x0 = a∗/‖a‖, then ‖x0‖ = 1, and hence, sup{‖ax‖ : ‖x‖ ≤ 1} ≥ ‖ax0‖ =
‖aa∗‖
‖a‖ = ‖a‖, and the first equality follows. The second equality follows by

taking adjoints. The third equality follows by noting that

sup{‖yax‖ : x, y ∈ A, ‖x‖ ≤ 1, ‖y‖ ≤ 1} =

sup{sup{‖yax‖ : x ∈ A, ‖x‖ ≤ 1} : y ∈ A, ‖y‖ ≤ 1} =

sup{‖ax‖ : x ∈ A, ‖x‖ ≤ 1} = ‖a‖.

�

Given a complex algebra, A if we letA1 = A⊕C = {(a, λ) : a ∈ A, λ ∈ C},
then A1 is a complex vector space in the usual way and setting (a1, λ1) ·
(a2, λ2) = (a1a2 + λ2a1 + λ1a2, λ1λ2) can be easily shown to make A1 into
a complex algebra with unit e = (0, 1).

Moreover, the map ι : A → A1, defined by ι(a) = (a, 0), is easily seen to
be an algebra isomorphism onto its range. Identifying a ∈ A with ι(a) we
see that A1 = {a+ λe : a ∈ A, λ ∈ C}.

The algebra A1 is called the algebra obtained by adjoining a unit
to A. Note that if A already had a unit, u ∈ A, then u 6= e ∈ A1, but still
au = ua = a, for every a = ι(a) ∈ A1.

Also, note that if we set (a, λ)∗ = (a∗, λ∗), then this defines an involution
on A1.

Proposition 2.6. If A is a C*-algebra and we let A1 denote the algebra
obtained from A by adjoining a unit, then A1 is a C*-algebra when we set
‖(a, λ)‖1 = sup{‖ax+ λx‖ : x ∈ A, ‖x‖ ≤ 1}.

Proof. Note that for any x ∈ A, ‖ax + λx‖ ≤ ‖(a, λ)‖1‖x‖. Also, using
Proposition 5, we have that ‖(a, λ)‖1 = sup{‖yax + λyx‖ : x, y ∈ A, ‖x‖ ≤
1, ‖y‖ ≤ 1} = sup{‖ya + λy‖ : y ∈ A, ‖y‖ ≤ 1} = sup{‖a∗y∗ + λ̄y∗‖ : y ∈
A, ‖y‖ ≤ 1} = ‖(a, λ)∗‖1.

We leave the details that this is a norm to the reader and only check the
Banach algebra and C*-property. To this end note that,

‖(a, λ)(b, µ)‖1 = sup{‖a(bx+ µx) + λ(bx+ µx)‖ : ‖x‖ ≤ 1} ≤
sup{‖(a, λ)‖1‖bx+ µx‖ : ‖x‖ ≤ 1} = ‖(a, λ)‖1‖(b, µ)‖1,

hence A1 is a Banach algebra.
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To see the C*-property, note that ‖(a, λ)∗(a, λ)‖1 ≤ ‖(a∗, λ̄)‖‖(a, λ)‖1 =
‖(a, λ)‖21. Also,

‖(a, λ)‖21 = sup{‖(x∗a∗ + x∗λ̄)(ax+ λx)‖ : ‖x‖ ≤ 1} =

sup{‖(x∗a∗a+ x∗a∗λ+ x∗λ̄a+ x∗λ̄λ)x‖ : ‖x‖ ≤ 1} ≤
sup{‖x∗a∗a+ x∗a∗λ+ x∗λ̄a+ x∗λ̄λ‖ : ‖x‖ ≤ 1} =

sup{‖x∗(a∗a+ a∗λ+ λ̄a+ λ̄λ)‖ : ‖x‖ ≤ 1} =

‖(a∗a+ a∗λ+ aλ̄, λ̄λ)‖1 = ‖(a∗, λ̄)(a, λ)‖1

and the C*-property follows. �

Note that ι(ax+ λx) = (a, λ)(x, 0).

2.2. The Positive Cone of a C*-algebra. If A is a unital C*-algebra,
then an element p ∈ A is called positive, denoted p ≥ 0 or 0 ≤ p provided
that p = p∗ and the spectrum of p, σ(p) ⊆ [0,+∞). The set of all positive
elements of A is denoted by A+. The following results give the key facts
that we shall need about the positive elements.

Theorem 2.7. [?, Theorem VIII.3.6] Let A be a unital C*-algebra and
a ∈ A, then the following are equivalent.

(a) a ≥ 0,
(b) a = b2 for some b ∈ Ah,
(c) a = x∗x for some x ∈ A,
(d) a = a∗ and ‖te− a‖ ≤ t for all t ≥ ‖a‖,
(e) a = a∗ and ‖te− a‖ ≤ t for some t ≥ ‖a||.

Proposition 2.8. [?, Proposition VIII.3.7] Let A be a unital C*-algebra,
then A+ is a closed cone.

Proof. Recall that a cone is a convex set with the property that it is closed
under scalar multiplication by non-negative scalars. Using (b), if a ≥ 0, and
r ≥ 0, r ∈ R then a = b2, and hence, ra = (

√
rb)2, so that ra ≥ 0.

To see that A+ is convex, it is enough to show that if a, b ∈ A+, then
(a+ b)/2 ∈ A+. We use (d), to see that for t ≥ max{‖a‖, ‖b‖, ‖a+ b‖}, then
‖te− (a+ b)/2‖ ≤ ‖(te− a)/2‖+ ‖(te− b)/2‖ ≤ t/2 + t/2 = t and hence, by
(e), (a+ b)/2 ≥ 0.

Finally, to see that A+ is closed, let an ∈ A+ be a sequence converging in
norm to a. Since an = a∗n, we have a = a∗. Also for t ≥ sup{‖an‖}, we have
that ‖te− a‖ = limn ‖te− an‖ ≤ t, and so by (e), a ≥ 0. �

3. States and Pure States

Given a C*-algebra A, a linear functional, f : A → C is called positive,
provided that f(p) ≥ 0, for every p ∈ A+. If A is a C*-algebra with unit e,
then a state is a positive linear functional s on A, such that, s(e) = 1.
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Proposition 3.1. Let A be a C*-algebra with unit e and let f : A → C be
a positive linear functional, then for every x ∈ A, f(x∗) = f(x).

Proof. First note that if a = a∗, then there exists r ∈ R, such that re+ a ∈
A+. Hence, 0 ≤ f(re+a) = rf(e) + f(a), and it follows that f(a) ∈ R. Now
given any x ∈ A, f(x∗) = f(Re(x) − iIm(x)) = f(Re(x)) − if(Im(x)) =

f(Re(x) + iIm(x)) = f(x). �

Proposition 3.2 (Cauchy-Schwarz Inequality for states). Let A be a C*-
algebra with unit e, and let s be a state, then for any x, y ∈ A, |s(y∗x)|2 ≤
s(x∗x)s(y∗y) and s is a bounded linear functional and ‖s‖ = 1.

Proof. First note that if p ∈ A+, then ‖p‖e− p ∈ A+. Hence, 0 ≤ s(‖p‖e−
p) = ‖p‖ − s(p), so that |s(p)| = s(p) ≤ ‖p‖, for every p ∈ A+.

Now let x, y ∈ A and choose λ ∈ C, |λ| = 1 so that s(λy∗x) = |s(y∗x)|.
Then for any t ∈ R, we have that 0 ≤ s((λx − ty)∗(λx − ty)) = s(x∗x) −
2t|s(y∗x)|+t2s(y∗y). So the roots of this polynomial are complex or repeated
and hence(as in the proof of Cauchy-Schwartz), |s(y∗x)|2 ≤ s(x∗x)s(y∗y).

Finally, for the last statement, taking y = e, we have that |s(x)|2 ≤
s(x∗x) ≤ ‖x∗x‖ = ‖x‖2, and so ‖s‖ ≤ 1, but s(e) = 1, implies that ‖s‖ ≥
1. �

There is also a converse to this last result.

Proposition 3.3. Let A be a C*-algebra with unit e and let s : A → C be
a linear functional such that ‖s‖ ≤ 1 and s(e) = 1, then s is a state.

Proof. We must show that if p ∈ A+, then s(p) ≥ 0. First we show that s(p)
is real. Write s(p) = α+iβ, with α, β ∈ R. Note that for t ≥ 0, ‖p+itβe‖2 =
‖p‖2 + t2β2. Hence, (t+ 1)2β2 ≤ |s(p+ itβe)|2 ≤ ‖p+ itβe‖2 = ‖p‖2 + t2β2.
Canceling terms from both sides yields, 2tβ2 ≤ ‖p‖2 for all t ≥ 0, which
impies that β = 0.

Now we have that |α − ‖p‖| = |s(p − ‖p‖e)| ≤ ‖p − ‖p‖e‖ = ‖p‖, which
implies that α ≥ 0. Thus, s(p) ≥ 0. �

Given a unital C*-algebra A we let S(A) denote the set of states on A.
By the above results this is a subset of the unit ball of the dual of A and
hence, can be endowed with weak*-topology. When we refer to the state
space of A we mean S(A) endowed with this topology.

Proposition 3.4. Let A be a unital C*-algebra, then the state space of A
is a weak*-closed, convex subset of the unit ball of the dual.

Proof. Clearly convex combinations of states are states. Also, if a net of
states converges in the weak*-topology to a linear functional, f, then f(e) =
1, and ‖f‖ ≤ 1, so that f is a state. �

By the Krein-Milman theorem[?, Theorem V.7.4], S(A) not only has ex-
treme points but it is the closed, convex hull of its extreme points. We define
the pure states on A to be the extreme points of the state space.
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3.1. States and the GNS Construction. We outline/recall the famous
Gelfand-Naimark-Segal construction.

Given a state s on a C*-algebra A with unit e, by the Cauchy-Schwarz
inequality for states, setting B(x, y) = s(y∗x) defines a positive, semidefinite
sesquilinear form on A.

If we let N = {x ∈ A : s(x∗x) = 0}, then it can be shown that N is
a vector space and that for a ∈ A, a · N ⊆ N . From these facts one can
see that there is a well-defined map B̂ on the vector space A/N defined by

setting B̂(x+N , y+N ) = B(x, y) and it is easy to check that B̂ is a positive
semidefinite sesquilinear form. Thus, A/N is a pre-Hilbert space which after
completion becomes a Hilbert space, which we denote by Hs, to indicate its
dependence on the state s.

There is a map πs : A → B(Hs) defined on the dense subspace by
πs(a)(x + N ) = ax + N . To see this note that we have that ‖πs(a)(x +
N )‖2 = ‖ax + N‖2 = s(x∗a∗ax). But 0 ≤ x∗a∗ax ≤ ‖a∗a‖x∗x, and hence,
0 ≤ s(x∗a∗ax) ≤ ‖a∗a‖s(x∗x) = ‖a‖2‖x + N‖2. Thus, πs(a) extends by
continuity to a bounded operator on Hs of norm at most ‖a‖.

It is easily seen that πs is a unital homomorphism and that πs(a
∗) =

πs(a)∗, i.e., πs is a *-homomorphism.
A unital *-homomorphism from a C*-algebra A into B(H) for some

Hilbert space H is often called a representation of A on H. The map
πs : A → B(Hs) is called the Gelfand-Naimark-Segal(or GNS) repre-
sentation corresponding to the state s.

Note that if we set η = e + N , then ‖η‖ = s(e) = 1 and we recover the
state from the representation by the formula,

s(a) = 〈πs(a)η, η〉.

Conversely, if we start with any representation π : A → B(H), and any unit
vector v ∈ H, then s(a) = 〈π(a)v, v〉 is a state.

The GNS representations have one additional property. A representation
π : A → B(H) is called cyclic if there exists a vector h ∈ H, such that the
set π(A)h

.
= {π(a)h : a ∈ A} is dense in H, and in this case h is called a

cyclic vector. If we let η = e + N , then the set πs(A)η = {πs(a)η : a ∈
A} = {a+N : a ∈ A} is a dense subset ofHs. Thus, the GNS representations
are always cyclic.

In fact cyclicity characterizes the GNS representation.

Proposition 3.5. Let A be a C*-algebra with unit e, and let π : A → B(H)
be a representation with a unit cyclic vector v. If we let s(a) = 〈π(a)v, v〉
denote the corresponding state, then there exists a unitary, U : Hs → H,
with Uπs(a)η = π(a)v.

Proof. One has that ‖πs(a)η‖2 = ‖a + N‖2 = s(a∗a) = 〈π(a∗a)v, v〉 =
‖π(a)v‖2. This equation shows that the map U is well-defined and an isom-
etry. The rest follows readily. �
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The GNS representations are used to prove that for every C*-algebra A,
there exists a Hilbert space H and an isometric representation of A on H.
We already have all but one of the results necessary to prove this facts.

Lemma 3.6. Let A be a unital C*-algebra and let p ∈ A+, then there exists
a state s such that ‖p‖ = s(p).

Proof. Let S denote the span of e and p and define a linear functional,
f ;S → C by f(αe + βp) = α + β‖p‖. We use the fact that ‖αe + βp‖ =
sup{|α + βλ| : λ ∈ σ(p)}, where σ(p) denotes the spectrum of p and that
‖p‖ ∈ σ(p).

¿From this is follows that |f(αe + βp)| = |α + β‖p‖| ≤ ‖αe + βp‖, and
so f is a contraction. By the Hahn-Banach theorem, we may extend f to a
contractive linear functional, s : A → C, but since s(e) = 1 and ‖s‖ = 1, s
is a state. �

Theorem 3.7 (Gelfand-Naimark-Segal Representation). Let A be a C*-
algebra, then there exists a Hilbert sapce H and an isometric *-homomorphism
π : A → B(H). Moreover, if A is unital, then one may chose π to be unital
too.

Proof. We only do the case that A is a unital C*-algebra, the non-unital
result follows by adjoining a unit to A.

For each state s on A, let πs and Hs denote the GNS representation and
corresponding Hilbert space. Let H =

∑
s⊕Hs, be the orthogonal direct

sum over all states and let π =
∑

s⊕πs : A → B(H) be the representation
that is the direct sum of al the GNS representations. Then π is a unital
*-homomorphism and for each a ∈ A, we have that ‖a‖2 ≥ ‖π(a)‖2 =
‖π(a∗a)‖ = sups{‖πs(a∗a)‖} ≥ ‖a∗a‖, where the last inequality follows from
the lemma. Hence, π is an isometry. �

The representation π =
∑

s πs is called the universal representation
of A.

We now look at what distinguishes the pure states. Given a representation
π : A → B(H) of a C*-algebra, a subspace H1 ⊆ H is called invariant
for π(A) provided that π(A)H1 ⊆ H1 and reducing for π(A) provided
that the orthogonal projection onto H1, say P1, commutes with π(A), i.e.,
P1π(a) = π(a)P1, for every a ∈ A. A representation is called irreducible if
the only reducing subspaces are H and (0).

Proposition 3.8. Let π : A → B(H) be a representation of the C*-algebra
A and let H1 be a subspace. Then H1 is invariant if and only if H1 is
reducing.

Proof. Clearly, if H1 is reducing, then it is invariant. Conversely, if H1 is an
invariant subspace, then for every a ∈ A, we have that P1π(a)P1 = π(a)P1.
But then it follows that P1π(a) = [π(a)∗P1]∗ = [π(a∗)P1]∗ = [P1π(a∗)P1]∗ =
P1π(a∗)∗P1 = P1π(a)P1 = π(a)P1, and so P1 commutes. Hence, H1 is
reducing. �
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Proposition 3.9. Let A be a unital C*-algebra and let s be a state. Then
s is a pure state if and only if πs is an irreducible representation.

Proof. We prove only one implication, namely, that if s is pure, then πs is
irreducible. For the proof of the converse see [?, Theorem I.9.8].

To this end assume that πs is reducible and let H1 be a non-trivial reduc-
ing subspace. Let P1 denote the projection onto H1 and let P2 = P⊥1 and
let η denote the cyclic vector for πs. If η = P1η, then it easily follows that
H1 = Hs. Hence, η 6= P1η. Similarly, η 6= P2η.

Thus, P1η 6= 0, and P2η 6= 0. Let ηi = Piη
‖Piη‖ , i = 1, 2 and define states by

si(a) = 〈πs(a)ηi, ηi〉, i = 1, 2. It is easily checked that s(a) = ‖η1‖2s1(a) +
‖η2‖2s2(a), a convex combination.

Now since s is pure, we must have that s = s1 = s2. Thus, in particular
there exists a unitary, U : Hs → H1, where H1 is the closed cyclic subspace
generated by πs(A)η1, satisfying, Uπs(a)η = πs(a)η1 = ‖P1η‖−1πs(a)P1η =
‖P1η‖−1P1πs(a)η. Since the vectors {πs(a)η : a ∈ A} span the Hilbert space,
we have that U = ‖P1η‖−1P1, but the left side is an isometry while the right
side is not.

This contradiction completes the proof. �

3.2. States and Pure States on C(X). Let X denote a compact, Haus-
dorff space. By the Riesz Representation Theorem, every bounded linear
functional on C(X) is given by integration against a regular, complex-
valued Borel measure on X and the positive linear functionals are inte-
gration against a positive regular, Borel measure. Thus, a state s cor-
responds to integration against a positive, regular Borel measures µ with
1 = s(e) =

∫
X 1dµ and hence, µ(X) = 1.

To get Hs we complete C(X) in the inner product, 〈f, g〉 = s(ḡf) =∫
X ḡfdµ. Thus, Hs = L2(X,µ) ! Moreover, πs(f) = Mf the operator of

multiplication by f on L2(X,µ).
Now given any measurable set E, if we let PE denote the operator given

by multiplication the characteristic function of E, then PE is an orthogo-
nal projection that commutes with πs(C(X)). Thus, PE defines a reducing
subspace.

Hence, s is pure if and only if for every E either PE = I or PE = 0. This
last condition holds if and only if the support of the measure µ consists of
a single point, that is, if and only if there exists a point x ∈ X, such that
µ = δx where δx is the measure defined by

δx(E) =

{
1 x ∈ E
0 x /∈ E

.

Note that in this case the state is given by s(f) =
∫
X fdδx = f(x), the

functional of evaluation at x.
Thus we see that the pure states on C(X) are all *-homomorphisms given

by evaluation at points.
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3.3. States and Pure States on Mn. We now look at the states and pure
states on Mn = B(Cn). First note that every vector in Cn is cyclic for Mn,
i.e., the identity representation of Mn is irreducible. Thus, if we take any
unit vector v ∈ Cn, then the state sv(A) = 〈Av, v〉 is pure. These states are
called vector states.

On the other hand, it can be shown that if π : Mn → B(H) is any
representation, then up to conjugation by a unitary, H is a direct sum of
copies of Cn(so that if the dimension of H is finite, then it is divisible by
n) and π(A) is a direct sum of the same number of copies of A(so that
π(A) = A ⊕ A ⊕ . . .). To see this claim, let Ei,j denote the canonical
matrix units for Mn, let K = π(E1,1)H and choose an orthonormal basis
{fα}α∈A for K where A is some index set. If we let ei,α = π(Ei,1fα, and set
Hα = span{ei,α : 1 ≤ i ≤ n}, then each of these spaces is n-dimensional and
reducing for π(Mn). The restrictions of π to each of these spaces is easily
seen to be the identity representation of Mn with respect to the orthonormal
basis, {ei,α : 1 ≤ i ≤ n}.

These representations are reducible, unless dim(K) = 1, in which case we
are back to the first example. Thus, every pure state on Mn is a vector
state.

This decomposition of representations does yield a representation of arbi-
trary states. For if we are given a state s and πs, then πs(A) = A⊕A⊕ . . .
and relative to this decomposition η = η1 ⊕ η2 ⊕ . . . , with 1 = ‖η‖2 =
‖η1‖2 + ‖η2‖2 + . . . Thus, if we let vi = η/‖ηi‖, then

s(A) = 〈Aη1, η1〉+ 〈Aη2, η2〉+ . . . = ‖η1‖2sv1(A) + ‖η2‖2sv2(A) + . . .

and we have expressed s as a convex series of pure states.

3.4. States and Pure States on B(H). The same argument as for Mn,
shows that if we take any unit vector, v ∈ H, then setting sv(A) = 〈Av, v〉
defines a pure state. However, when H is infinite dimensional, then these
are not all of the pure states! In fact, in some sense, it is the fact that
there are other pure states on B(H) that we shall see is at the heart of the
Kadison-Singer problem.

To see that there exist other pure states, we need only recall that the
compact operators, K(H) form a two-sided ideal in B(H) and so we may
form a quotient algebra, Q(H) = B(H)/K(H). This quotient algebra is
called the Calkin algebra.

The Calkin algebra is itself a C*-algebra(quotients of C*-algebras by two-
sided ideals are always C*-algebras) and so there exist states and pure states
on Q(H). Note that every state ŝ on Q(K) by composition with the quotient
map yields a state s(A) = ŝ(A+K(H)) on B(H) that is 0 on K(H).Moreover,
it is easily seen that if ŝ is a pure state, then s is also pure.

Since the vector states obtained above do not vanish on K(H), the states
on Q(H) yield new non-vector states and non-vector pure states.
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Thus, we see that there are two types of pure states on B(H), vector
states and states that are the composition of a pure state on the Calkin
algebra with the quotient map.

There is still a great deal that is not understood about pure states on the
Calkin algebra and the corresponding irreducible representations. Remark-
ably, some results about the representations of Q(H) and hence of B(H)
depend upon the axioms of set theory. Some of the deepest work can be
found in [?], [?], [?], and [?].

3.5. The Generalized Kadison-Singer Problem. We now return to the
Kadison-Singer problem and see what the above knowledge of states and
pure states tells us.

Proposition 3.10. Let B be a unital C*-algebra and let A ⊆ B be a subal-
gebra that contains the unit of B. Then every state on A extends to a state
on B.

Proof. Let s : A → C be a state, then ‖s‖ = 1, and so by the Hahn-Banach
theorem there exists a linear map s̃ : B → C extending s with ‖s̃‖ = 1. But
since s̃(e) = s(e) = 1, s̃ is also a state. �

The following result is implicitly contained in [?].

Proposition 3.11. Let B be a unital C*-algebra and let A ⊆ B be a subal-
gebra that contains the unit of B. Then the following are equivalent:

• every pure state on A extends to a unique pure state on B,
• every pure state on A extends to a unique state on B.

Proof. Fix a pure state s : A → C and let C denote the set of all states on B
that extend s. Then it is easy to see that C is a weak*-closed, convex subset
of the unit ball of the dual space of B.

Let s̃ ∈ C be any state on B that extends s. If we express s̃ as a con-
vex combination of states on B, then the restriction of each of these states
to A expresses s as a convex combination of states. But since s is an ex-
treme point, each of these restricted states must be s. Thus, whenever we
express s̃ ∈ C as a convex combination of states on B, each of those states
is necessarily also in C.

Hence, every extreme point of C is a pure state.
Now assume the first statement. If there exists more than one extension

of s, then there is more than one point in C and hence, by Krein-Milman C
would have at least two extreme points. But both of these extreme points
would be pure states that extend s.

If we assume the second statement, then C is a singleton and that singleton
is an extreme point of C and so necessarily a pure state. �

This result leads to the following equivalent re-formulation of the Kadison-
Singer problem:
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The Kadison-Singer Problem: Let H be a separable Hilbert
space and let D ⊆ B(H) be a discrete MASA. Does every pure
state on D extend to a unique state on B(H) ?

It also leads to the following generalizations of the Kadison-Singer prob-
lem.

Let B be a unital C*-algebra and let A ⊆ B be a subalgebra that
contains the unit of B. Find necessary and sufficient conditions on
the pair of C*-algebras so that every pure state on A extends to
a unique state on B.

Since states are the same as linear functionals of norm one which send the
identity to 1, this question makes sense even when B is not a C*-algebra.
Consequently, the following problem is also studied.

Let A be a unital C*-algebra, X a Banach space with A ⊆ X .
Find necessary and sufficient conditions on the pair so that every
pure state on A extends uniquely to a contractive linear functional
on X .

Since MASA’s are abelian C*-algebras(as we shall see in the next section),
these last two questions are most often studied in the case where A = C(X)
for some compact, Hausdorff space X, in which case the pure state is just
evaluation at a point of X.

4. Discrete and continuous MASA’s

A subalgebra A ⊆ B(H) is a maximal abelian self-adjoint subal-
gebra or MASA provided that if A ⊆ B ⊆ B(H) with B an abelian
self-adjoint subalgebra, then A = B. These always exist by Zorn’s Lemma.

Definition 4.1. Let S ∈ B(H) be a non-empty set. Then commutant of
S is

S ′ = {T ∈ B(H) : TS = ST, for all S ∈ S.}

The following are some basic properties of commutants that we will make
use of.

1) If S ⊆ T , then T ′ ⊆ S ′,
2) S ′ is a unital subalgebra of B(H).
3) S ′ is norm-closed.
4) We call a set S self-adjoint if whenever S ∈ S, then S∗ ∈ S. If S

is self-adjoint, then S ′ is self-adjoint. to see this note that T ∈ S ′
implies TS = ST for all S ∈ S and so S∗T ∗ = T ∗S∗ for all S∗ ∈ S
which shows that T ∗ ∈ S ′.

5) If S is abelian, then S ⊆ S ′.

Proposition 4.2. Let A ⊆ B(H) be an abelian self-adjoint algebra. Then
A is a MASA if and only if A = A′.

Proof. If B ∈ A′, then BA∗ = A∗B for all A ∈ A. This implies AB∗ = B∗A

for all B∗ ∈ A′. This implies Re(B) =
B +B∗

2
∈ A′. Let B be the algebra
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generated by {A, Re(B)}. B is an abelian, self-adjoint algebra in B(H), and
A ⊆ B. By the maximality of A we get A = B. We have shown Re(B) ∈ A
and a similar argument whows Im(B) ∈ A. Therefore, A′ ⊆ A, but A ⊆ A′
by our earlier remark.

If A ⊆ B ⊆ B(H), then B′ ⊆ A′ = A. Since B is abelian, B ⊆ B′ ⊆ A.
Therefore, B = A, which implies A is maximal, i.e. A is a MASA. �

Corollary 4.3. If A ⊆ B(H) is a MASA, then A = A′ = A′′.

Proof. A = A′ ⇒ (A′)′ = A′ = A. �

Example 1 Consider the Hilbert space H = `2(N) with its standard or-
thonormal basis {ej : j ∈ N}. If T ∈ B(`2(N)), then we may identify T with
a matrix T = (ti,j)i,j∈N, where ti,j = 〈Tej , ei〉. An operator T ∈ B(l2(N)) is
called diagonal if ti,j = 0, for all i 6= j. Let D denote the set of diagonal
operators on `2(N). The algebra of diagonal operators D is self-adjoint.
Let D ∈ D, then 〈Dej , ei〉 = 0 for all i 6= j. If follows that 〈ej , D∗ei〉 = 0
for all i 6= j and so 〈D∗ei, ej〉 = 0 for all i 6= j and so D∗ ∈ D. To see
that D is abelian we note that if T = (ti,j) and R = (ri,j) in B(l2(N)),
then TR = (

∑∞
k=1 tikrkj)i,j=N. Firstly, each row and column of the matrix

of such a bounded operator is in `2(N). We have, Tej =
∑∞

i=1〈Tej , ei〉ei.
The Parseval identity yields

(1)
∞∑
i=1

|〈Tej , ei〉|2 <∞.

Similarly, we have T ∗ej =
∑∞

i=1〈T ∗ej , ei〉ei and so

(2)

∞∑
i=1

|〈T ∗ej , ei〉|2 <∞.

By (??),
∑∞

i=1 |〈Tej , ei〉|2 =
∑∞

i=1 |tij |2, and by (??),
∑∞

i=1 |〈T ∗ej , ei〉|2 =∑∞
i=1 |tji|2. This shows for any T,R ∈ B(l2(N)) that

∑∞
k=1 tikrkj converges.

We compute

〈TRej , ei〉 = 〈T (

∞∑
k=1

〈Rej , ek〉ek), ei〉 = 〈T (

∞∑
k=1

rkjek, ei〉

= 〈
∞∑
k=1

rkjTek, ei〉 =
∞∑
k=1

〈Tek, ei〉rkj =
∞∑
k=1

tikrkj .

Finally to show that D is a maximal we need only to show D = D′. Since
D is abelian, D ⊆ D′. If T ∈ D′, then TD = DT for all D ∈ D. In particulat
T must commute with Ei,i for all i ∈ N. We have,

TEi,i =

0 · · · 0 t1,i 0 · · ·
0 · · · 0 t2,i 0 · · ·
... · · ·

...
...

... · · ·
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and

Ei,iT =


0 · · · 0 · · ·
... · · ·

... · · ·
ti,1 · · · ti,i · · ·
0 · · · 0 · · ·
... · · ·

... · · ·

 .

On comparing these two matrices we see that ti,j = 0 for i 6= j. Therefore
T ∈ D ⇒ D′ ⊆ D, hence D is a MASA.
Note: For any D = diag(di,i) ∈ D, we have |dii| = |〈Dei, ei〉| ≤ ‖D‖. Hence,
supi{|dii|} ≤ ‖D‖. On the other hand D(

∑
i αiei) =

∑
i αidiiei, which im-

plies ‖D(
∑

i αiei)‖2 =
∑

i |αi|2|dii|2 ≤ supi{|dii|}
∑

i |αi|2 = supi{|dii|}‖
∑

i αiei‖2.
Therefore, ‖D‖ ≤ supi{|dii|} and ‖D‖ = sup{|dii| : i ∈ N}.

This allows us to identify `∞(N) = Cb(N), which is an abelian C* alge-
bra with D. Consider the representation π : `∞(N) → B(`2(N)) given by
π((αj)) = D, where D = diag(djj) with djj = αj . We will often identify D
with `∞(N).
Example 2 Consider the Hilbert space H = L2([0, 1], λ), where λ is
Lebesgue measure. Given f ∈ L∞([0, 1]) define the multiplication opera-
tor on L2([0, 1]) by Mf (g) = f · g. Denote by M = {Mf |f ∈ L∞[0, 1]} ⊆
B(L2[0, 1]). Recall that ‖Mf‖ = esssup‖f | = ‖f‖∞. It can be checked eas-
ily that M is an abelian, self-adjoint subalgebra (recall (Mf )∗ = Mf ).

We claim that M is maximal, i.e. a MASA. Let T ∈ M′. Set g = T (1),
where 1 is the function constantly equal to 1. For f ∈ L∞ ⊆ L2, T (f) =
T (Mf (1)) = MfT (1) = Mf (g) = f · g. Therefore, T (f) = f · g for all
f ∈ L∞. It remains to be shown that g ∈ L∞. Let En = {x : |g(x)| ≥
n}, let f = χEn ∈ L∞. Then ‖T (f)‖2 = ‖g · f‖2 =

∫
[0,1] |gχEn |

2dλ ≥∫
n2|χEn |2dλ = n2

∫
|χEn |2dλ = n2‖f‖2 ⇒ ‖T‖2 ≥ n2 provided ‖f‖2 6= 0.

Therefore m({x : |g(x) ≥ n}) = 0 whenever n > ‖T‖. Hence, g ∈ L∞. Note
T (f) = Mg(f) for all f ∈ L∞. Since both T and Mf are bounded operators
and L∞ is dense in L2, we get T = Mg. Hence, M′ ⊆M ⊆M′.

Definition 4.4. Let A ⊆ B(H) be a unital C∗ subalgebra, a projection P =
P 2 = P ∗ ∈ A is called minimal, if 0 6= P and whenever E = E2 = E∗ ∈ A
with 0 ≤ E ≤ P , then either E = 0 or E = P .

Definition 4.5. A MASA A ⊆ B(H) is called discrete or atomic if it is
the commutant of the set of its minimal projections.

Definition 4.6. A MASA A ⊆ B(H) is called continuous if it has no
minimal projections.

Example 3 Let D ⊆ `∞(N) ⊆ B(`2(N)), each Eii ∈ D is a minimal
projection and {Eii : i ∈ N}′ = D. Thus, D is a discrete MASA.
Example 4 Let M = L∞[0, 1] ⊆ B(L2[0, 1]). We know that P ∈ M,
P 2 = P = P ∗ iff P = MχE , for some Borel measurable subset E ⊆ [0, 1]. If
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P 6= 0, then m(E) 6= 0. If m(E) 6= 0, then there exists Borel measurable
sets E1 and E2 such that E = E1 ∪ E2 and m(Ei) 6= 0.

Since 0 < m(E1) < m(E), we have 0 ≤ MχE1
≤ MχE which gives a non-

trivial projection MχE1
. Therefore, M = L∞[0, 1] is a continuous MASA.

Proposition 4.7 (Da, II.1.2). Let A be a unital C∗ algebra, π : A → B(H)
a unital ∗-homomorphism. Assume that H is seperable. There exists an
at most countable collection of orthogonal subspaces {Hn} of H with H =∑

n⊕Hn such that each Hn is reducing for π, and there exists hn ∈ Hn such

that [π(a)hn] = Hn.

Proof. Given any x ∈ H, x6= 0. Look at Hx = [π(a)x]−, then Hx is invariant
for π and hence reducing.

On Hx⊥, if we pick any y ∈ Hx⊥, [π(a)y]− = Hy will be othogonal to Hx.
By Zorn’s lemma we may pick maximal set {Xα}α∈A such that Hxα =

[π(a)xα]− are all orthogonal for xα 6= xβ.
Since xα ∈ Hxα , xβ ∈ Hxβ implies that xα ⊥ xβ. and so A is atmost
countable.

Lastly,
∑

α∈A
⊕
Hxα = H, by maximality. �

Lemma 4.8. Let A ⊆ B(H) MASA, where H is seperable. Then there
exists x ∈ H such that [Ax]− = Hx.

Proof. Write H =
∑

n⊕Hxn where each Hxn = [Axn]−, ‖xn‖ = 1.
Let Pn= projection on Hxn = PHxn then Pn ∈ A′ = A.

Let x =
∑∞

n=1
1

2nxn, [Ax]− ⊇ [APnx]− = [Axn]− = Hxn which implies
that [Ax]− ⊇

∑
⊕Hn = H. �

Theorem 4.9 (MASA Representation theorem). Let H be a seperable Hilbert
space, A ⊆ B(H) MASA. Then there exists a compact Hausdroff space X, a
Borel measure µ on X with µ(X) = 1 and a unitary U : L2(X,µ)→ H such
that A = {UMfU

∗ : f ∈ L∞(X,µ)}.

We sketch the proof of this result.

Proof. Let A ⊆ B(H) MASA, H seperable. By the lemma, there exists
h ∈ H, with ‖h‖ = 1 such that [Ah]− = H. Since A is an abelian C∗

algebra A ∼= C(X). Let π : C(X) → A, be the isomorphism such that
A = {π(f) : f ∈ C(X)}. Define s : C(X)→ C via s(f) = 〈π(f)h, h〉. Since
s is a state there exists a measure µ such that s(f) =

∫
X fdµ.

For f ∈ C(X) ⊆ L2(X,µ), set Uf = π(f)h ∈ H.

‖Uf‖2 = ‖π(f)h‖2 = 〈π(|f |2)h, h〉 =

∫
|f |2dµ = ‖f‖2.

Since U is an isometry on C(X), U extends to a map on the closure of C(X)
in L2(X,µ). Therefore, U : L2(X,µ) −→ H is an isometry.

To see that U is onto, note that {π(f)h : f ∈ C(X)} = {Ah : A ∈
A} which imples {UMfU

∗ : f ∈ L∞(X,µ)} ⊇ {UMfU
∗ : f ∈ C(X)} =
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{π(f) : f ∈ C(X)} = A. However, {UMfU
∗ : f ∈ L∞(X,µ)} is an abelian

selfadjoint algebra which contains the MASA A. Therefore, A = {UMfU
∗ :

f ∈ L∞(X,µ)}. �

Theorem 4.10 (MASA decomposition theorem). Let H be a seperable
Hilbert space, and assume that A ⊆ B(H) is a MASA. Then there exists
Ha ⊆ H such that

1) PHa ⊆ A.
2) Aa = {PHaA|Ha : A ∈ A} ⊆ B(Ha) is a discrete MASA.
3) Ac = {PHa⊥A|Ha⊥ : A ∈ A} ⊆ B(H⊥a ) is a continuous MASA.

Once again we sketch the proof. We can assume without any loss of
generality that H ⊆ L2(X,µ) and A = {Mf : f ∈ L∞(X,µ)}.
The rest follows from a decomposition theorem theorem for measures into
atomic and continuous parts.

Given x ∈ X, {x}-Borel set. Let Xa = {x : µ(x) 6= 0}. Write X = Xa∪Xc

and argue that the fact thatH is seperable forcesXa to be at most countable.
Let µa = µ|Xa , µc = µ|Xc and Ha = span{δ{x} : x ∈ Xa}.

Theorem 4.11 (Kadison-Singer). Let A ⊆ B(H) be a MASA. H = Ha⊕Hc.
If Hc 6= 0, then there exist a pure state on A which has a non unique state
extensions to B(H).

Hence, the only case where could have uniqueness of extensions of pure
states is when the MASA A is discrete.

4.1. The Strong Operator Topology (SOT) and The Weak Opera-
tor topology(WOT). Given a net {Tλ}λ∈Λ ⊆ B(H) we say that Tλ −→ T
in SOT iff ‖Tλh− Th‖ → 0, ∀h ∈ H.

A net Tλ −→ T in WOT iff |〈Tλh, k〉 − 〈Th, k〉| → 0, for all h, k ∈ H.

Theorem 4.12 (von-Neumann Double Commutant Theorem). If I ∈ A ⊆
B(H) be a C∗ algebra, then A′′ = A−SOT = A−WOT .

Proposition 4.13. Let A ⊆ B(H) be a discrete MASA, then every minimal
projection is rank 1.

Proof. Let {Eλ}λ∈Λ ⊆ A be the set of minimal projections so that A =
{Eλ}′λ∈Λ. If Eµ and Eλ are two minimal projections such that Eλ 6= Eµ, then

EλEµ = EλEµEλ ≤ Eµ. Also, (EλEµ)2 = EλEµ = (EλEµ)∗. Therefore,
EλEµ is a projection in A. Either EλEµ = 0 or EλEµ = Eµ. However,

Eµ = EλEµ = EµEλEµ ≤ Eλ
which contradicts the minimality of Eλ. Therefore, EλEµ = 0 for all minimal
projections. Now fix a minimal projection Eµ and assume tha the rank of
Eµ 6= 1. This implies that Eµ = F + G, where F and G are non-zero
orthogonal projections. Now, 0 ≤ EλFEλ ≤ EλEµEλ = 0 for λ 6= µ.
Therefore, EλF = 0 for all λ 6= µ. Similarly, EλG = 0, FEλ = 0, GEλ = 0
for all λ 6= µ. Let B be the C∗ algebra generated by I, {Eλ} ∪ {F} ∪ {G}.
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The algebra B is abelian and B′ ⊆ [{Eλ} ∪ {F} ∪ {G}]
′ ⊆ [{Eλ} ∪ {Eµ}]

′
=

A′. Thus, A = A′′ ⊆ B′′ = B−SOT . Let T1, T2 ∈ B−SOT , there exists
{Bλ}, {Cµ} ⊆ B such that Bλ −→ T1 and Cµ −→ T2 in SOT. Now for any
B ∈ B,

T1Bh = lim
λ
BλBh = lim

λ
B(Bλh) = BT1h

Similarly T2B = BT2 for all B ∈ B. Finally,

T1T2h = lim
λ
BλT2h = lim

λ
T2(Bλh) = T2T1h.

Therefore T1, T2 ∈ B−SOT implies T1T2 = T2T1. Hence B′′ is abelian. Since
A is a MASA, A = B′′. Now F,G ∈ B′′ = A contradicts the minimality of
Eµ. Therefore, Eµ has rank 1. �

Theorem 4.14. Let H be a separable, infinite dimensional Hilbert space
and A ⊆ B(H) be a discrete MASA. There exists a unitary U : `2(N)→ H
such that A = UDU∗ = {UDU∗ : D ∈ D}, where D = `∞(N) ⊆ B(`2(N)) is
the MASA of diagonal matrices.

Proof. Let A = {Eλ}
′
λ∈Λ, where Eλ has rank 1. Choose eλ ∈ clH such that

‖eλ‖ = 1, Eλeλ = eλ and Eλeµ = 0 for λ 6= µ. Thus eλ ⊥ eµ for λ 6= µ We
claim that {eλ}λ∈Λ is an orthonormal basis for H. Assume v ∈ H, ‖v‖ = 1,
and v ⊥ eλ, for all λ ∈ Λ. Let P be the rank one projection onto v. For
all λ, PEλ = EλP = 0. Hence, P ∈ {Eλ}′ = A, which implies that P
is a minimal projection in A, which is a contradiction. Therefore, {eλ} is
an orthonormal basis for H. The cardinality of Λ is given by card(Λ) =
dim(H) which implies that Λ is countable. Write Λ = {λn}n∈N and define
U : `2(N) → H by Uen = eλn . U is clearly a unitary. Since D ⊆ B(l2(N))
is a MASA, UDU∗ ⊆ B(H) is also a MASA. Now, UEn,nU

∗ = Eλn and so

Eλn ∈ UDU∗. Since {Eλ}λ∈Λ ⊆ UDU∗ we get (UDU∗)′ ⊆ {Eλ}
′
λ∈Λ ⊆ A

and so UD′U∗ ⊆ A. The diagonal operators D are a MASA and so D = D′ .
It follows that UDU∗ ⊆ A and so UDU∗ = A. �

The above result leads to an equivalent statement of the Kadison-Singer
Problem.
Kadison-Singer Problem. Does every pure state on `∞(N) = D
extend uniquely to a state on B(`2(N)?

5. The Stone-Cech Compactification

Let X be a locally compact Hausdorff space (LCH). A compactification of X
is a pair (Y, f) where Y is a compact Hausdorff space (CH) and f : X → Y
is a continuous function such that f : X → f(X) is a homeomorphism and
f(X) is dense in Y .

Theorem 5.1 (Stone-Cech). Let X be a locally compact Hausdorff space.
Then there exist a compactification (Y, f) of X such that if Z is any compact
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Hausdorff space and g : X → Z is any continuous function, then there exists
h : Y → Z continuous such that h ◦ f = g.

X

g

��

� � f // Y

h~~

Z

We make note of a couple of facts about the Stone-Cech compactification.

(1) Since f(X) is dense in Y , h is unique.
(2) If (Z, g) was another compactification of X, then since g(X) is dense

in Z, h(Y ) = Z. In this sense, the Stone-Cech is the largest or
maximal compactification of X.

Corollary 5.2. If (W, j) is another compactification of X with the properties
of (Y, f) then there exists a homeomorphism h : Y →W such that h◦f = j,
h−1 ◦ j = f .

There exists a map f : X → Y and j : X →W and so there exists h and
g such that h◦f = j and g◦j = f . Hence, g◦h(f(x)) = g((j(x)) = f(x) and
so g ◦ h is the identity on a dense subset of Y so by continuity g ◦ h = idY
and similarly h ◦ g = idW . So h is a homeomorphism with g = h−1 and so
h ◦ f = j.

Definition 5.3. The space (Y, f) is called the Stone-Cech compactification
of X and we denote this βX.

Let X be an LCH and recall Cb(X) the space of bounded continuous
functions on X. Given f ∈ C(βX), f : βX → C so f ◦ i : X → C is
continuous and f(X) ⊂ f(βX). The latter set is a compact subset of C and
so is closed and bounded. Hence f ◦ i ∈ Cb(X).

Theorem 5.4. The map i∗ : C(βX) → Cb(X) given by f 7→ f ◦ i is an
(onto) ∗-isomorphism.

Proof. (f1 + f2) ◦ i = f1 ◦ i + f2 ◦ i and so i∗(f1 + f2) = i∗(f1) + i∗(f2).
i∗(f1f2) = (f1f2) ◦ i = (f1 ◦ i)(f2 ◦ i) = i∗(f1)i∗(f2), i∗(f) = f ◦ i = f ◦ i =

i∗(f). Hence, i∗ is a homomorphism.
To see that it is one-to-one assume that i∗(f) = f ◦ i = 0 and so f = 0

on i(X). But i(X) is dense in βX and since f is continuous f ≡ 0.
Let g ∈ Cb(X) and let M := sup{|g(x)| : x ∈ X}. Let Z = {λ ∈

C : |λ| ≤ M}. g : X → Z and so by Stone-Cech there exists a function
ĝ : βX → C so that ĝ ◦ i = g. But this just means i∗(ĝ) = g. �

Remark the map g 7→ ĝ maps Cb(X)→ C(βX) is the inverse of i∗.
Recall the maximal ideal space of Cb(X), which we denote M(Cb(X)).

We know this is the set of functions δ : Cb(X)→ C such that δ is a non-zero,
multiplicative linear functional.
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We have seen that ‖δ‖ = 1 and that the set of multiplicative linear func-
tionals is a weak∗-closed subset of the the ball of the dual space Cb(X)∗1.
Hence it is a weak∗-compact Hausdorff space when endowed with the weak∗

topology.
Suppose that we are given a point ω ∈ βX then define δω : Cb(X) → C

by δw(g) = ĝ(ω). This gives a map Γ : βX →M(Cb(X)).

Proposition 5.5. Γ : βX →M(Cb(X)) is a homeomorphism.

Proof. If ωλ → ω in βX this implies that ĝ(ωλ) → ĝ(ω) for all ĝ ∈ C(βX).
It follows that δωλ(g) → δω(g) for all g ∈ Cb(X). Conversely if δωλ → δω
in the weak∗ topology then for all ĝ ∈ C(βX) we have ĝ(ωλ) → ĝ(ω). this
implies that ωλ → ω. To see that it is onto let δ : Cb(X) → C and define

δ̃ : C(βX)→ C by δ̃(ĝ) = δ(g) and so δ̃ ∈M(C(βX)). It follows that there

exists ω ∈ βX such that δ̃ = δω. �

This shows we could define βX to be M(Cb(X)) and then show that
this has the universal property given in the Stone-Cech theorem. This is
essentially Stone’s proof.

An important example for us is the space `∞(N). We can view this as the
set of continuous bounded functions on N so `∞(N) = Cb(N) = C(βN).

6. Ultrafilters

Ultrafilters will give us another approach to understanding βN. Let S be
a set. A non-empty collection F of non-empty subsets of S is called a filter
provided

(1) If n ≥ 1 and F1, . . . , Fn ∈ F , then
⋂n
j=1 Fj ∈ F .

(2) If F ∈ F and F ⊆ G, then G ∈ F .

Note that the second property forces S ∈ F . Note that if F ∈ F , then
F ∩ F c = ∅ and so F c 6∈ F . A filter is called an ultrafilter if it is not
contained in any other filter, i.e. it is a maximal filter.

Therefore U is an ultrafilter if and only if U is a filter and if F is a such
that filter F ⊇ U then F = U .

Let s0 ∈ S and let Us0 := {A ⊆ S : s0 ∈ A}. It is straightforward to check
that Us0 is a filter. Now suppose that F ⊆ U and that U 6= F . There exists
A ∈ F such that A 6∈ U . This implies s0 6∈ A. However, {s0} ∈ Us0 ⊆ F and
so ∅ = {s0} ∩ A ∈ F , which is a contradiction. Hence, Us0 is an ultrafilter.
The ultrafilters of the form Us0 for some s0 ∈ S are called the principal
ultrafilters.

Proposition 6.1. Let S be a non empty set. Then a collection U of subsets
of S is an ultrafilter if and only if it is a filter and for each A ⊆ S either A
∈ U or Ac ∈ U.

Proof. (⇒) Let A ⊆ S and A /∈ U. We must show that Ac ∈ U.
Let W = { Y ⊆ S : ∃ U ∈ U, Ac∩ U ⊆ Y }
For Y1, . . . , Yn ∈W, there exits U1, . . . , Un ∈ U such that Yi ⊇ Ac∩Ui.
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⇒ ∩ni=1Yi ⊇ Ac ∩ (∩ni=1Ui)
⇒ ∩ni=1Ui ∈W.
Therefore finite intersections of sets in W is in W. Clearly, every superset of
a set in W is in W. If ∅ ∈W, then there is some U in U such that ∅ ⊇Ac∩U.
This impies Ac∩ U is an empty set. Therefore U ⊆ A and so A∈ U which
is a contradiction. So, ∅ /∈ W. Hence W is a filter. But U∈ U, U⊇ Ac∩ U.
This implies U∈ W. Thus U ⊆ W. Therefore U = W. But Ac = Ac∩S and
S∈ U. Therefore Ac ∈W = U.
(⇐) Suppose U is not an ultra filter. So, there exists a filter W such that
U $ W. This implies that there exists A in W,A/∈ U. Then Ac ∈ U ⊆W. This
gives ∅ = Ac∩ A is in W which is not possible. Hence U is an ultrafilter. �

6.1. Convergence along an ultrafilter. Let S be a set, U an ultrafilter
on a set S, X a compact Hausdorff space. Assume we are given xs ∈ X for
each s in S. We want to define limU xs.
For each set A ∈ U, let CA = {xs : s ∈ A} ⊆ X

Theorem 6.2. Let S, {xs}s∈S ⊆ X and U be as above.Then :

1) There exists x0 ∈ X such that
⋂
A∈UCA = {x0}.

2) Given an open set V in X, x0 ∈ V there exists A in U such that
x0 ∈ CA ⊆ V.

Proof. 1. Given A1, A2 ∈ U, CA1 ∩ CA2 ⊇ CA1∩A2 6= ∅.
Therefore CA1 ∩ · · · ∩CAn ⊇ CA1∩···∩An 6= ∅ for each n ≥ 0 and so, {CA}A∈U
has finite intersection property.
Therefore ∩A∈UCA 6= ∅
Assume there exists x, y ∈

⋂
A∈UCA, x 6= y.

Pick open sets U, V such that x ∈ U, y ∈ V and U∩V = ∅. Let B = {s : xs ∈
U}. Either B ∈ U orBc ∈ U. If B ∈ U, then

⋂
A∈UCA ⊆ CB ⊆ U ⊆ V c.

This implies y /∈ ∩A∈UCA, which is a contradiction.
Hence Bc ∈ U. But Bc = {s : xs /∈ U} which implies CBc ⊆ U c.
Therefore x /∈ CBc and thus x /∈ ∩A∈UCA which is a contradiction.
Thus ∩A∈UCA cannot have more than one element. So, it has exactly one
element.
2. For each y ∈ V c, y /∈

⋂
A∈UCA. Then there exists Ay ∈ U such that

y /∈ CAy this implies y ∈ CcAy . Thus {CcAy : y ∈ V c} is an open cover of V c.

By compactness there exists y1, . . . , yn ∈ V c such that V c = CcAy1
∪· · ·∪CcAyn

⇒ V ⊇ CAy1 ∩ · · · ∩CAyn ⊇ CAy1∩···∩Ayn = CA for A = Ay1 ∩ · · · ∩Ayn . �

Definition 6.3. Given S, {xs : s ∈ S},U as above, we call {x0} =
⋂
A∈UCA

the limit along the ultrafilter and denote it by x0 = limU xs

Here is the simplest example of an ultrafilter limit. Let s0 ∈ S and let
Us0 = {A ⊆ S : s0 ∈ A} be the principal ultrafilter generated by s0.. Note

that {s0} ∈ Us0 and Cs0 = {f(s0)} = {f(s0)}. Hence limUs0
f(s) = f(s0).
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Proposition 6.4. Let S be a set, U an ultrafilter, {xs : s ∈ S} ⊆ C, {ys :
s ∈ S} ⊆ C both bounded, α ∈ C. Then
limU αxs = α limU xs, limU(xs + ys) = limU xs + limU ys,
limU xsys = (limU xs)(limU ys).

Proof. We will only do the product. Let x = lim Uxs, y = limU ys. Given
ε > 0, pick δ > 0 such that |z − x| < δ, |w − y| < δ implies |zw − xy| < ε.

Let CA = {xs : s ∈ A}, BA = {ys : s ∈ A}, DA = {xsys : s ∈ A}.
Since V = {z : |z − x| < δ},W = {w : |w − y| < δ} are open therefore there
exists A1, A2 ∈ U such that CA1 ⊆ V,BA2 ⊆W.
Look at A3 = A1 ∩A2 ∈ U.

DA3 ⊆ CA3BA3 ⊆ CA1BA2 ⊆ VW

This implies that DA3 ⊆ {zw : |z − x| < δ, |w− y| < δ} ⊆ {α : |α− xy| < ε}

⋂
A∈UDA ⊆ B(xy; ε) for each ε > 0

Therefore
⋂
A∈UDA = {xy}. �

Lemma 6.5. Let S be a set with discrete topology. Then every subset of S
is open in βS.

Proof. It is enough to show that for every s0 ∈ S, {s0} is open in βS.
Since the inclusion i : S → βS is a homeomorphism and {s0} is open in
S, {s0} is relatively open in βS. So there exists an open set U in βS such
that U ∩ S = {s0}. We claim that U = {s0}. Indeed if not then the set
U−{s0}, which is necessarily open, will not be empty. But this implies that
the elements of U − {s0} is not in the closure of S which is dense in βS.
Contradiction. Hence {s0} is open in βS. �

Theorem 6.6. Let S be a set with discrete topology. Then:

1) For every ultrafilter U on S, there exists w ∈ βS such that limU f(s) =

f̂(w) for all f ∈ Cb(S) .
2) If U1 6= U2 are ultrafilters then w1 6= w2 ( one-to-one).

3) Given any w ∈ βS there exists unique ultrafilter U such that f̂(w) =
limU f(s) for all f ∈ Cb(S).

Proof. 1. Define δU : Cb(S) −→ C by δU(f) = limU f(s). By the last proposi-
tion δU is a multiplicative linear functional. Therefore there exists w ∈ βS
such that

limU f(s) = δU(f) = f̂(w).

2. Let U1 6= U2 be two ultrafilters on S. By the maximality of ulatrafilters
there exists A ∈ U1 with A /∈ U2. So Ac ∈ U2. Define f : S → C by
f(s) = 1 if s ∈ A and f(s) = 0 if s /∈ A. Clearly f ∈ Cb(S) and we have that
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CA = {f(s) : s ∈ A} = {1} and CAc = {0}. Let w1 and w2 be two points
in βS satisfying the conditions in part1 for U1 and U2, respectively. Then

1 = lim
U1

= f̂(w1) and 0 = lim
U2

= f̂(w2).

So w1 6= w2.
3. Given w ∈ βS let Nw = {U ⊆ βS : U is open , w ∈ U} and let
Uw = {U ∩ S : U ∈ Nw}. We claim that Uw is an ultrafilter. First note
that U ∩ S 6= ∅ for all open sets U since S is dense. If Ui ∩ S ∈ Uw for
i = 1, 2, ..., n then

n⋂
i=1

(Ui ∩ S) = (U1 ∩ U2 ∩ ... ∩ Un) ∩ S ∈ Uw.

Let U∩S ∈ Uw and U∩S ⊆ B ⊆ S. Let V = U∪{B−(U∩S)}. Then V ∈ Nw

and so V ∩ S = (U ∩ S) ∪ {B − (U ∩ S)} = B is in Uw. This shows that Uw
is a filter. To see that Uw is an ultrafilter let A ⊆ S. We claim that either A
or Ac is in Uw. Define f : S → {0, 1} ⊆ R by f(s) = 0 if s ∈ A and f(s) = 1
if s ∈ Ac. Since f is bounded on S it extends uniquely to a continuous
function f̂ : βS → {0, 1} ⊆ R. Let U = f̂−1((−1/2, 1/2)) = f̂−1(−1) which

must be both open and closed. Let V = f̂−1(1). Then V = U c and both

open and closed. Since f̂−1(w) ∈ {0, 1} we get one of the following:

If f̂−1(w) = 0 ⇒ w ∈ U ⇒ U ∩ S = A ∈ Uw or

if f̂−1(w) = 1 ⇒ w ∈ V ⇒ V ∩ S = Ac ∈ Uw.

So Uw is an ultrafilter. Now we claim that limUw f(s) = f̂(w). Let A ∈ Uw.
So A = U ∩ S for some open set U in βS containing w.

CA = {f(s) : s ∈ A} ⊆ {f(w′) : w′ ∈ U} = {f(U)}

=⇒
⋂
A∈Uw

CA ⊆
⋂

U∈Nw

{f(U)} = {f̂(w)}

=⇒
⋂
A∈Uw

CA = {f̂(w)}.

Hence we have f̂(w) = limUw f(s). �

Summary: There is a one-to-one correspondence between points in βS and
the ultrafilters on S which can be described as

w ∈ βS ←→ Uw = {U ∩ S : U is open in βS and w ∈ U}.

Here is the simplest example of this correspondence. Let s0 ∈ S, then
since every subset of S is open, every subset of S that contains s0 is an open
neighborhood of s0.. Hence, Us0 = {U ∩ S : U ∈ Ns0} = {A ⊆ S : s0 ∈ A},
which is what we called the principal ultrafilter generated by s0. Also, note
that the earlier notation that we used for the principal ultrafilter is consistent
with the notation that we are using above.
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6.2. Some Types of Ultrafilters.

Definition 6.7. Let N be a countable set and U be an ultrafilter on N .
Then U is called

selective if for all partition {Pi}i of N either there is an i0 such that
Pi0 ∈ U or there exits B ∈ U such that card(B ∩ Pi) ≤ 1 for all i.

rare if for all partition {Pi}i of N into finite sets there exits B ∈ U such
that card(B ∩ Pi) ≤ 1 for all i.
δ-stable if for all partition {Pi}i of N either there is an i0 such that

Pi0 ∈ U or there exits B ∈ U such that card(B ∩ Pi) < +∞ for all i.

Fact 1. selective ⇐⇒ rare and δ-stable.
Recall that continium hypothesis says there is no set with cardinality

greater than card(N) and less than card(R).
Fact 2. These ultrafilters not known to exists without assuming continium
hypothesis. But under the assumtion of continium hypothesis these there
types not only exist but also form a dense subset in βN −N .

Recall that a subset of a topological space is called a Gδ set if it can be
written as intersection of open sets.

Definition 6.8. Let X be a compact Hausdorff space. A point x0 ∈ X is
called a P -point if every Gδ set containing x0 contains a neigborhood of x0.

Remark. If N∗ = βN −N is a compact Hausdorff space then an element
w of N∗ is a P -point if and only if Uw is δ-state.

6.3. Some Topological Properties of βS when S is a Discrete Space.
Let S be a discrete topological space, A ⊆ S and B = S\A, so that S =
A q B a disjoint union. Under this context we would like to see what the
relationship is between the closure of A and the closure of B in βS.

Proposition 6.9. If χA : S → {0, 1} is the characteristic function of A and
h = χ̂A : βS → {0, 1} its unique extension to the Stone-Cech compactifica-
tion of S, then

{ω ∈ βS ; h(w) = 1} = A in βS, and

{ω ∈ βS ; h(w) = 0} = B in βS.

Moreover, A ∩B = ∅, A ∪B = βS, and h = χA.

Proof. From the point set topology we have A ∪ B = A ∪B, but A ∪B =
S = βS by the fact that S is dense in βS.
Now S is discrete, so the map χA, hence h, is continuous, thus

h(A) = {1} =⇒ h(A) = 1, and similarly

h(B) = {0} =⇒ h(B) = 0.

Therefore, we must have that A ∩ B = ∅. From this it follows that h =
χA. �
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Note that βS = A∪B and A∩B = ∅ ensure that both A and B are open
and closed sets. Recall, a set is called clopen if it is both open and closed.

With ultraflters in mind, we want to use these facts to sort out a bit more
carefully what happens when we take open sets in βS and intersect them
with S.

Proposition 6.10. Let S be a discrete space, U ⊆ βS an open subset, and
set A = U ∩S. Then U = A, hence U is clopen. Furthermore, U ∩S = A =
U ∩ S.

Proof. Well, A ⊆ U , so A ⊆ U . As for the reverse inclusion, let ω ∈ U , and
take any open neighborhood of omega V ∈ Nω. By the definition of closure,
V ∩ U 6= ∅, and since S is dense, V ∩ U ∩ S 6= ∅. That is, V ∩A 6= ∅. Since
V was arbitrary, ω ∈ A, whence U = A.
Denoting as before the complement of A in S by B = S\A, the previous
proposition guarantees that A ∩B = ∅. Subsequently,

U ∩B = A ∩B = ∅ =⇒ U ∩B = ∅ =⇒ U ∩ S = A.

�

In the above context, notice that the closure of any open set in βS is
actually open too. That is quite remarkable topologically. Also, one would
think that U ∩ S % U ∩ S, but in fact we have equality here, that is, no
points are being added by closing the open set and then intersecting with
S.

The preceding two propositions grant the following corollary.

Corollary 6.11. Let S be a discrete space, U ⊆ βS an open subset, and
A = U ∩ S. Then χ̂A = χU .

Proof. By the propositions, χ̂A = χA = χU . �

Definition 6.12. A topological space is called extremally disconnected,
or Stonian, if the closure of every open set is open.

The Stone-Cech compactification of a discrete space is Stonian. The lit-
erature uses the word extremally to distinguish from the adverb extremely
which is often used interchangeably with very. So one may say that the
Cantor set is extremely disconnected but it is not extremally disconnected
in the above sense.

7. Paving Theory

In this section we derive Anderson’s[?], [?] paving results and many re-
lated results inspired by his work. Our approach is a little different from
Anderson’s and is partially inspired by Hadwin’s lecture notes [?] and the
recent paper [?]
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Definition 7.1. Let A be a unital C∗-algebra, and S ⊆ A be a subspace.

(1) S is called an operator system if it contains the unit eA, and is
closed under involution, that means x ∈ S =⇒ x∗ ∈ S.

(2) If B is C∗-algebra, a linear map φ : S → B is said to be positive if
0 ≤ p ∈ S ensures φ(p) ≥ 0 in B.

Notice at once that the properties of S ensure that in writing the cartesian
decomposition

x =
1

2
(x+ x∗)︸ ︷︷ ︸

u

+i
1

2
i(x∗ − x)︸ ︷︷ ︸

v

of an element x in S, both u, v belong to the operator system S. However,
when looking at the orthogonal decomposition u = p − q of a hermitian
u ∈ <(S), p and q both belong to the norm closed ∗-algebra generated by
x, namely C∗(a) = cl({p(x, x∗) ; p ∈ C[X,Y ]}), but are not necessarily
members of the operator system. Regardless, we can still write x as the
difference of two positive elements belonging to S. Indeed,

x =
1

2
(‖x‖e+ x)︸ ︷︷ ︸

p1

− 1

2
(‖x‖e− x)︸ ︷︷ ︸

p2

.

Here are a few facts about operator systems and positive maps.

Proposition 7.2. Let S be an operator system, and s : S → C a positive
linear functional.

(1) If h = h∗ ∈ S, then s(h) ∈ R.

(2) For every x ∈ S, s(x∗) = s(x).

Proof. Write h = p − q where p and q are positive elements in S, then
s(h) = s(p)− s(q) ∈ R because both s(p) and s(q) are real.
For x ∈ S, write x = u + iv where u, v ∈ <(S). Then since s(u) and s(v)
are real numbers,

s(x∗) = s(u− iv) = s(u)− is(v) = s(u) + is(v) = s(u+ iv) = s(x).

�

Proposition 7.3. Let S ⊆ A be an operator system, and s : S → C a linear
map with s(e) = 1. Then

s is positive ⇐⇒ ‖s‖ = 1.

Proof. (⇒): Let x ∈ S with ‖x‖ = 1. If s(x) = λ, pick |ω| = 1 such that
ωλ = |λ|. Then s(ωx) = |λ|. Also ‖ωx‖ = 1 which gives ‖ωx+ (ωx)∗‖ ≤ 2.
Using the fact that s is Hermitian and considering spectra, we get
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−2e ≤ ωx+ (ωx)∗ ≤ 2e ⇒ s(−2e) ≤ s(ωx+ (ωx)∗) ≤ s(2e)⇒
−2 ≤ s(ωx) + s(ωx) ≤ 2 ⇒ −2 ≤ |λ|+ |λ| ≤ 2⇒ |λ| ≤ 1.

Therefore |s(x)| ≤ 1 for every ‖x‖ = 1. At the same time s(e) = 1, hence
‖s‖ = 1.
(⇐): The argument in Proposition ?? works perfectly well here. �

Definition 7.4. A positive linear map s : S −→ C defined on an operator
system S with s(e) = 1 is called a state.

Corollary 7.5. If S ⊆ A is an operator system, every state on S extends
to a state on A

Proof. If s : S −→ C is a state, then ‖s‖ = 1, so we can employ the Hahn-
Banach theorem to get s̃ : A −→ C with ‖s̃‖ = 1 and s̃|S = s. Then
s̃(e) = s(e) = 1, so s̃ is also a state. �

The existence of the extension having been shown, let us investigate the
uniqueness. To that end we give the following definition.

Definition 7.6. Let S ⊆ A be an operator system, and s : S → C a state.
Set

Cs = {s̃ : A → C ; s̃|S = s, s̃ positive },
and let

U(s) = {x ∈ A ; s̃1(x) = s̃2(x) ∀s̃1, s̃2 ∈ Cs}.
U(s) is called the uniqueness domain of s.

It is not to hard to see that Cs is weak*-closed and convex.

Proposition 7.7. Let S ⊆ A be an operator system, s a state on S,

(1) S ⊆ U(s), and U(s) is an operator system.
(2) If x = u+ iv ∈ A, then x ∈ U(s)⇐⇒ u, v ∈ U(s)

Proof. (1) Clearly S ⊆ U(s), and U(s) is a subspace. Let s̃1, s̃2 ∈ Cs,
then

s̃1(x) = s̃2(x) ⇒ s̃1(x) = s̃2(x)⇒ s̃1(x∗) = s̃2(x∗),

therefore x∗ belongs to U(s), and the latter is an operator system.
(2) Since U(s) is an operator system, x = u + iv ∈ U(s) implies that

u, v ∈ U(s). The opposite direction relies on the fact that U(s) is a
subspace.

�
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Definition 7.8. Let S ⊆ A be an operator system, s : S → C a state, and
k = k∗ ∈ A. We set

`s(k) = sup
h∈S,h≤k

s(h),

us(k) = inf
h∈S,k≤h

s(h).

the respective lower envelope and upper envelope of k ∈ A.

Theorem 7.9. Let S ⊆ A be an operator system, s : S → C a state, and
k = k∗ ∈ A. Then

(1) `s(k) ≤ us(k).
(2) For any t ∈ [`s(k), us(k)], there is a state st ∈ Cs such that st(k) = t.

Proof. If k ∈ S everything is clear, so assume that k does not belong to S.
Well if h and h′ are real in S with h ≤ k ≤ h′ then s(h) ≤ s(h′). Fixing
s(h′) and taking supremums of all such s(h), and then taking infimums of
all such s(h′) yields the desired inequality.

Let S1 = lin span{S, k}. This is indeed an operator system. Now define
a linear map f : S1 −→ C as

f(x+ αk) = s(x) + αt, x ∈ S.
We claim that f is a state on S1. Well f(e) = 1. Now let’s show that f is
positive. To that end, if x+ αk ≥ 0, then

x∗ + αk = x∗ + αk∗ = (x+ αk)∗ = x+ αk.

Therefore, x = x∗, and α = α is real. There are three cases.

• α = 0. Then x ≥ 0, so f(x) = s(x) ≥ 0.
• α > 0.

x+ αk ≥ 0 ⇒ αk ≥ −x ⇒ k ≥ −α−1x ⇒ s(k) ≥ s(−α−1x)

⇒ t ≥ −α−1s(x) ⇒ f(x+ αk) = s(x) + αt ≥ 0.

• α < 0. Then

x+ αk ≥ 0 ⇒ x ≥ −αk ⇒ −α−1x ≥ k ⇒ s(−α−1x) ≥ s(k) = t

⇒ f(x+ αk) = s(x) + αt ≥ 0.

Therefore, f is a state on S1. Now we proved that we can always extend a
state to the whole of A, so extend f to f̃ : A → C, and set f̃ = st.

�

Corollary 7.10. Let S ⊆ A be an operator system, s : S → C a state, and
k = k∗ ∈ A. Then
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k ∈ U(s)⇐⇒ `s(k) = us(k).

Remark: Conversely, if s̃ : A → C is any state extending s : S → C, then
ls(h) ≤ s̃(h) ≤ us(h). This interval exactly characterizes the set of values of
extensions of s at h.

Corollary 7.11. Let S ⊆ A be an operator system, s : S → C any state.
Then x ∈ U(s) if and only if ls(Re(x)) = us(Re(x)) and ls(Im(x)) =
us(Im(x)).

For the following corollary, let a, b ∈ R, a ≤ b, denote H[a, b] = {h = h∗ ∈
A : a · e ≤ h ≤ b · e}.
Corollary 7.12. Let S ⊆ A be an operator system, s : S → C any state,
let a, b ∈ R, a ≤ b. Then, the followings are equivalent:

1) s extends uniquely to a state in A,
2) ∀h = h∗ ∈ A, ls(h) = us(h),
3) ∀h ∈ H[a, b], ls(h) = us(h).

Proof. (1)⇒ (2) : Assuming (1) is true, we get U(s) = A, which implies (2),
using the last corollary.
(2)⇒ (3) is trivial.
(3) ⇒ (1) : Assume (3) is true, then given any h = h∗ ∈ A, there exist
α, β ∈ R, α 6= 0, such that αh + βe ∈ H[a, b], which implies ls(αh + βe) =

us(αh + βe) ⇒ αh + βe ∈ U(s). So, h =
αh+ βe− βe

α
∈ U(s), i.e. every

self-adjoint element is in U(s)⇒ U(s) = A. Done. �

Example 5 Let A = l∞([0, 1]), the bounded functions on [0, 1], let S =
C([0, 1]) ⊆ A be an operator system(easy to show). Define s : S → C by

s(f) =
∫ 1

0 f(t)dt, the Riemann integral, which is a state. Let g = g∗ ∈ A be
a real-valued bounded function. Then

ls(g) = sup{
∫ 1

0
f(t)dt : f ≤ g, f ∈ C([0, 1])} =

∫ 1

0

g(t)dt, lower Riemann integral,

and

us(g) = inf{
∫ 1

0
f(t)dt : g ≤ f, f ∈ C([0, 1])} =

∫ 1

0
g(t)dt, upper Riemann integral.

Therefore U(s) is the set of Riemann Integrable functions.
Apply these ideas to the Kadison-Singer case: Say S = D = l∞(N) =
C(βN) ⊆ B(l2(N)) = A, the state sw : D → C as sw(D) = fD(w), the point
evaluation function, which is in fact, a pure state.

Lemma 7.13 (PR). Let H,K be any two Hilbert spaces, H = H∗ =[
A B
B∗ C

]
∈ B(H ⊕ K), with A positive and invertible. Then there exists

δ ≥ 0, such that H + δPK =

[
A B
B∗ C + δIK

]
is positive.
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Proof. Let X = A−1/2B, then for any h ∈ H, k ∈ K,

〈
[
A B
B∗ C + δIK

](
h
k

)
,

(
h
k

)
〉 = 〈

(
Ah+Bk

B∗h+ (C + δ)k

)
,

(
h
k

)
〉

= 〈Ah, h〉+ 〈Bk, h〉+ 〈B∗h, k〉+ 〈Ck, k〉+ δ‖k‖2

= 〈A1/2h,A1/2h〉+ 〈A1/2Xk, h〉+ 〈X∗A1/2h, k〉+ 〈Ck, k〉+ δ‖k‖2

≥ ‖A1/2h‖2 − 2‖Xk‖‖A1/2h‖ − ‖C‖‖k‖2 + δ‖k‖2

≥ (‖A1/2h‖ − ‖Xk‖)2 + ‖k‖2(δ − ‖C‖ − ‖X‖2) ≥ 0,

whenever δ ≥ ‖C‖+ ‖X‖2. �

Theorem 7.14 (Kadison-Singer). Let n ∈ N, and let sn : D → C, given
by sn(D) = dnn, be a pure state. Then sn extends uniquely to a state on
A = B(l2(N)).

Proof. Using the lemma above, it’s enough to show that for all H = H∗ =
(hij) ∈ B(l2(N)), we have lsn(H) = usn(H) = hnn.

Let H = span{en}, K = H⊥, then H ⊕ K = l2(N). For any ε ≥ 0, look at

(hnn − ε)Enn, then we have H − (hnn − ε)Enn =

[
ε ∗
∗ ∗

]
in H⊕K.

Therefore, ∃ δ ≥ 0 such that H − (hnn − ε)Enn + δPK ≥ 0. This implies
H ≥ (hnn − ε)Enn − δPK ∈ D, where PK = IK − Enn.
So, ls(H) ≥ sn((hnn − ε)Enn − δPK) = hnn − ε ⇒ hnn ≤ lsn(H) ≤ usn(H).
Similarly, we show that H ≤ (hnn + ε)Enn + δ′PK, which gives usn(H) ≤
hnn + ε, i.e. usn(H) ≤ hnn. Hence, lsn(H) = usn(H) = hnn. �

Lemma 7.15. Let s : A → C be a state, P = P ∗ = P 2 ∈ A. If s(P ) = 1,
then ∀X ∈ A, s(PXP ) = s(PX) = s(XP ) = s(X).

Proof. Using GNS, we have s(Y ) = 〈π(Y )η, η〉, where π : A → B(Hπ)
is a *-homomorphism, and ‖η‖ = 1. Then 1 = s(P ) = 〈π(P )η, η〉 and
π(P ) is a projection. Decompose η = π(P )η︸ ︷︷ ︸

η1

+ (I − π(P ))η︸ ︷︷ ︸
η2

= η1 + η2, then

1 = 〈π(P )η, η〉 = 〈η1, η1 + η2〉 = 〈η1, η1〉 = ‖η1‖2, which implies η2 = 0
and π(P )η = η. Therefore, s(XP ) = 〈π(XP )η, η〉 = 〈π(X)π(P )η︸ ︷︷ ︸

η

, η〉 =

〈π(X)η, η〉 = s(X). The rest is similar. �

Definition 7.16. Given A ⊆ N, we define PA = diag(dii), dii = χA(i).

Theorem 7.17. Let ω ∈ βN, sw : D → C be the *-homomorphism given by
evaluation at ω and let H∗ = H ∈ B(l2(N)). Then lsω(H) = usω(H) = t
if and only if for every ε > 0 there exists A ∈ U(ω) such that (t − ε)PA ≤
PAHPA ≤ (t+ ε)PA.

Proof. Let s : D → C be any state that extends sw. If U ∈ Nω and
A = U ∩ N then PA ∈ D corresponds to χĀ = χŪ ∈ C(βN). Note that
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s(PA) = sω(PA) = χĀ = 1. Thus, if the second condition holds, then
t − ε = s((t − ε)PA) ≤ s(PAHPA) = s(H) ≤ t + ε and hence, s(H) = t for
all s that extends sω. Thus lsω(H) = usω(H) = t.
Conversely, if the first condition holds, then given ε > 0 there exists D1,D2 ∈
D with D1 ≤ H ≤ D2 such that (t− ε

2)PA ≤ sw(D1) ≤ sw(D2) ≤ (t+ ε
2)PA.

Now Di ∈ PA corresponds to a function fi ∈ C(βN) , f1 ≤ f2 since D1 ≤ D2.
Therefore, sw(Di) = fi(w) and hence (t − ε

2) ≤ f1(ω) ≤ f2(ω) ≤ (t + ε
2).

Pick U ∈ Nω such that for all w′ ∈ U, (t− ε
2) ≤ f1(w′) ≤ f2(w′) ≤ (t+ ε

2).
Let A = U ∩ N , PA corresponds to χŪ and thus, PAD1PA corresponds to
χŪf1χŪ ≥ (t−ε)χŪ ⇒ PAD1PA ≥ (t−ε)PA. Similarly, PAD2PA ≤ (t+ε)PA
which implies (t− ε)PA ≤ PAD1PA ≤ PAHPA ≤ PAD2PA ≤ (t+ ε)PA. This
proves the theorem. �

Theorem 7.18. Let H = H∗ ∈ B(l2(N)). Then every pure state on D
extends uniquely to H, i.e. H ∈ U(w)∀w ∈ βN if and only if for each ε > 0, ∃
finite collection of disjoint sets, B1, B2, ..., Bk with B1 ∪ B2 ∪ ... ∪ Bk = N
and t1, t2, ..., tk ∈ R such that (ti − ε)PBi ≤ PBiHPBi ≤ (ti + ε)PBi.

Proof. Suppose the first condition holds true then for each w ∈ βN there ex-
ists Aw ∈ Uw and tw ∈ R such that (tw− ε)PAw ≤ PAwHPAw ≤ (tw+ ε)PAw ,
where Aw = Uw ∪N, Uw ∈ ηw. The collection {Uw : w ∈ βN} of open sets in
βN covers the compact space βN, therefore, we can choose Uw1 , Uw2 , ..., Uwn
such that βN ⊆ Uw1 ∪ Uw2 ∪ ... ∪ Uwn which implies N ⊆ Aw1 ∪ ... ∪ Awn .
From here we may pick finitely many disjoint sets B1, B2, ..., Bk such that
N = B1∪ ...∪Bk and each Bi ∈ Awi . For each i ,1 ≤ i ≤ k, pick wl such that
Bi ⊆ Awl and set ti = twl . Then (twl−ε)PAwl ≤ PAwlHPAwl ≤ (twl +ε)PAwl
⇒ (twl − ε)PBiPAwlPBi ≤ PBiPAwlHPAwlPBi ≤ (twl + ε)PBiPAwlPBi which
by using PBiPAwlPBi = PBi and ti = twl gives the required inequality.
Conversely, fix w, let ε > 0, then there exists finite collection of disjoint sets,
B1, B2, ..., Bk with B1 ∪ B2 ∪ ... ∪ Bk = N and t1, t2, ..., tk ∈ R such that
(ti − ε)PBi ≤ PBiHPBi ≤ (ti + ε)PBi .
We claim that ∃ i such that Bi ∈ Uw.
To see the claim, note that PB1 + PB2 + ... + PBk = I which implies
sw(PB1) + sw(PB2) + ... + sw(PBk) = 1. But sw is a homomorphism ⇒
sw(Pwl) ∈ {0, 1}. Therefore, ∃ i such that sw(Pwi) = 1 which further implies
that PBi corresponds to a function χB̄i = χŪi where Bi = Ui ∩ N, w ∈ Ui.
This establishes the claim.
Thus we have that sw(PBi) = 1⇒ (ti−ε) = sw((ti−ε)PBi) ≤ s(PBiHPBi) ≤
sw((ti + ε)PBi) ≤ ti + ε where s is any state on B(l2(N)) that extends sw.
⇒ ti − ε ≤ lsw(H) ≤ usw(H) ≤ ti + ε
⇒ usw(H)− lsw(H) ≤ 2ε ∀ ε
⇒ usw(H) = lsw(H) ∀ w.
This proves the theorem. �

Anderson saw we could make k independent of H !.
Let N× N =

⋃
i∈NNi where Ni = {(i, j) ∈ N× N : j ∈ N}.
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Lemma 7.19. Fix ψ :
⋃
i∈NNi → N 1-1, onto map. Let Hi ∈ H[a, b] and let

H = U∗ψ(H1⊕H2⊕ ...⊕ ...)Uψ, where Uψ : l2(N)→
∑

i⊕l2(Ni) is a unitary.
Then for each ε > 0, ∃ finite collection of disjoint sets, B1, B2, ..., Bk with
B1∪B2∪...∪Bk = N and t1, t2, ..., tk ∈ R such that (ti−ε)PBl ≤ PBlHPBl ≤
(ti + ε)PBl for every l ⇔ ∀i ∃ ti, t2, ..., tk and Bi

1 ∪Bi
2 ∪ ... ∪Bi

l = Ni such
that (tl − ε)PBil ≤ PBilHiPBil

≤ (ti + ε)PBil
.

Definition 7.20. We will call a collection of sets B1, . . . , Bk and real num-
bers t1, . . . , tk that satisfy the conclusion of ?? a generalized (ε, k)-paving of
H.

The space U =
⋂
ω∈βN U(ω) will be called the uniqueness domain. Note

that U is an operator system and that an affirmative answer to the Kadison-
Singer problem is equivalent to the condition that U = B(`2(N)).

Theorem 7.21. The following are equivalent.

(1) U = B(`2(N))
(2) for all ε > 0, there exists k such that every H ∈ H[a, b] has a gener-

alized (ε, k)-paving.
(3) for all ε > 0 and for all H ∈ H[a, b] there exists k such that H has

a generalized (ε, k)-paving.

Proof. 1) implies 3). If U = B(`2(N), then every state on the diagonal
extends uniquely to H and so by the last theorem 3) follows.

3) implies 1) By the last theorem every state extends uniquely to every
self-adjoint element H ∈ H[a, b]. Given H = H∗ there exists α, β such that
αH + βI ∈ H[a, b] and so αH + βI ∈ U . Hence,

H = α−1(αH + βI − βI) ∈ U .
Since U is an operator system that contains every self-adjoint element of
B(`2(N)), we see that U = B(`2(N)).

2) implies 3). This is clear.
3) implies 2). Suppose that 3) is true but 2) is false. There exists ε > 0

and a sequence Hn = H∗n ∈ H[a, b] such that Hn can be (ε, kn)-paved but
not (ε, k)-paved for k < kn and kn →∞ as n→∞.

Let H = U∗φ(H1 ⊕ . . .)Uφ, Uφ is the unitary in [REF]. H ∈ H[a, b] and

hence by 3) there exists a generalized (ε, k∞)-paving of H. By the lemma
each of the operators in the direct sum has a generalized (ε, k∞)-paving.
This contradiction proves our result. �

We now descibe an expectation operator from B(`2(N)) onto D. Given
an arbitrary bounded operator T = (ti,j) ∈ B(`2(N)), define E(T ) =
diag(ti,i) ∈ D. The operator E is linear, E(D) = D for all D ∈ D, if
T ≥ 0, then E(T ) ≥ 0, ‖E(T )‖ ≤ ‖T‖ and E ◦ E = E. The porjection E is
called the a conditional expectation of B(`2(N)) onto the diagonal D.

Proposition 7.22. Given sω : D → C a pure state, sω ◦ E is a state that
extends sω.
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Proof. sω(E(I)) = sω(I) = 1. If T ≥ 0, then E(T ) ≥ 0 and so sω ◦ E(T ) ≥
q0. �

This is called the canonical extension of sω to B(`2(N)). The Kadison-
Singer problem is equivalent to asking if sω ◦ E is the only extension of sω.
Note that T −E(T ) is a bounded linear operator with 0 diagonal and if we
use the canonical extension we see that

sω ◦ E(T − E(T )) = sω ◦ E(T )− sω ◦ E(E(T )) = 0.

Conversely, suppose that s is any extension of sω such that s(X) = 0 for
all X such that E(X) = 0. For any T , s(T − E(T )) = 0 and so s(T ) =
S(E(T )) = sω(T ) = sω ◦E(T ). We have proven the following simple result.

Proposition 7.23. The Kadison-Singer problem has an affirmative answer
if and only if every state that extends sω is 0 on the B(`2(N))0 = {X ∈
B(`2(N)) : E(X) = 0}.

The proof of the following result follows from the results that we have
proved up to this point.

Proposition 7.24. Fix a pure state sω on the diagonal. The following are
equivalent.

(1) sω has a unique extension
(2) s(H) = 0 for all H = H∗ ∈ B(`2(N))0

(3) lsω(H) = usω(H) = 0 for all H = H∗ ∈ B(`2(N))0

(4) For all ε > 0, there exists A ∈ Uω such that −εPA ≤ PAHPA ≤ εPA.

Note that if H = H∗, then −εPA ≤ PAHPA ≤ εPA is equivalent to
‖PAHPA‖ ≤ ε.

Definition 7.25. Given H = H∗ ∈ B(`2(N)) we say that H has an (ε, k)-
paving if there exists disjoint sets B1, . . . , Bk ⊆ N such that B1 ∪ . . . Bk = N
and ‖PBiHPBi‖ ≤ ε. Let H0[−1, 1] = H[−1, 1] ∩B(`2(N))0.

Theorem 7.26 (Anderson). The following are equivalent

(1) The Kadison-Singer problem is true, i.e. U = B(`2(N)).
(2) For all ε > 0, there exists k ∈ N such that every H ∈ H0[−1, 1] can

be (ε, k)-paved.
(3) For all ε > 0 every H ∈ H0[−1, 1] can be (ε, k)-paved.
(4) There exists r < 1 and k ∈ N such that every H ∈ H0[−1, 1] can be

(r, k)-paved
(5) There exists r < 1 such that every H ∈ H0[−1, 1] can be (r, k)-paved
(6) for each H ∈ H0[−1, 1] there exists r < 1 and k ∈ N such that H

can be (r, k)-paved.

Proof. The equivalence of (2) and (3) and the equivalence of (4)and (5)
follows from the direct sum lemma as in earlier proofs. Clearly, (5) implies
(6).
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(3)implies (1). Let ω ∈ βN and s be a state extension of sω. Given
H ∈ H0[−1, 1] and ε > 0, the there exists a finite collection of disjoint sets
such that A1 ∪ A2 ∪ . . . ∪ AK = N and ‖PAiHPAi‖ < ε. This implies that
−εPAi ≤ PAiHPAi ≤ εPAi and thus −εsω(PAi) ≤ sω(PAiHPAi) ≤ εsω(PAi)
We know that there exists an i0 such that PAi0 ∈ Uω and sω(PAi0 ) = 1. So

we have |sω(PAi0HPAi0 )| ≤ ε which implies that sω(PAi0HPAi0 ) = sω(H).

Therefore |s(H)| ≤ ε for all ε > 0. This implies that s(H) = 0 for all H ∈
H0[−1, 1] and for all s extending sω. Given any H, H − E(H) ∈ H0[−r, r]
which implies that 1

r (H − E(H)) ∈ H0[−1, 1]. Thus, s(1
r (H − E(H)) = 0

which implies s(H − E(H)) = 0 or s(H) = s(E(H)).
(1)implies (3). We have seen that (1) implies every H ∈ Uω. When H ∈

H0[−1, 1], by proposition 7.24, there exists A ∈ Uω such that ‖PAHPA‖ ≤ ε.
As before for each ω ∈ βN, we get an Aω ∈ Uω such that ‖PAωHPAω‖ ≤ ε.
Each Aω = Uω ∩N, Uω is an open neighborhood of ω. Choose finitely many
that cover and then make disjoint.

(2) implies (4) is trivial.
(4)implies (2). Given ε > 0, choose l such that rl < ε. Given H,

there exists finitely many disjoint sets such that A1 ∪ A2 ∪ . . . ∪ AK =
N and ‖PAjHPAj‖ ≤ r. Thus, 1

rPAjHPAj ∈ H0[−1, 1]. So there ex-

ists finitely many disjoint sets such that Bj
1 ∪ B

j
2 ∪ . . . ∪ B

j
k = N and

‖1
rPBji

(PAjHPAj )PBji
‖ ≤ r. This implies that ‖P

Bji∩Aj
HP

Bji∩Aj
‖ ≤ r2. We

now have k2 disjoint subsets, C1∪C2∪ . . .∪Ck2 = N such that ‖PCiHPCi‖ ≤
r2. Inductively obtain kl disjoint subsets such that E1 ∪E2 ∪ . . . ∪Ekl = N
and ‖PEiHPEi‖ ≤ rl. Therefore every H ∈ H0[−1, 1] can be (ε, kl) paved,
kl depends only on ε.

Thus, statements (1)–(5) are equivalent and imply (6). We now show that
(6) implies (5). Suppose that (6) is true but that (5) is not. Then statement
(5) fails to hold for rn = 1− 1/n. Hence, there exists Hn ∈ H0[−1, 1], which
can not be (rn, k)-paved for any k. Again we use the direct sum lemma,
let H = U∗φ(H2 ⊕H3 ⊕ . . .)Uφ ∈ H0[−1, 1]. By (6) there exists some r < 1,

and k ∈ N such that H can be (r, k)-paved, and hence, each Hn can be
(r, k)-paved. But for r < rn this is a contradiction. Hence, (6) implies (5).

�

Given H ∈ H0[−1, 1] and k, let pk(H) = inf{max
1≤l≤k

‖PAlHPAl‖ : A1 ∪

A2 ∪ . . . ∪ AK = N, Ai ∩ Aj = φ, i 6= j}. If Kadison Singer Problem is true,
given ε > 0, there exists a k such that pk(H) < ε for all H. This implies
that sup

H∈H0[−1,1]
pk(H) ≤ ε.

Some important things that we know are:

(1) sup
H∈H0[−1,1]

p2(H) = 1 that is 2-paving fails.

(2) Do not know if the p3 = sup
H∈H0[−1,1]

p3(H) < 1 or not. Weiss -

Zarikian shown p3 ≥ 0.92
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Definition 7.27. Let R0 = {H = H∗ : H2 = I, E(H) = 0}

Note: H2 = I, σ(H) ⊆ {−1, 1}. This implies that R0 ⊆ H0[−1, 1]. Ge-
ometrically these are reflections as there exists l+, l− ∈ l2(N) such that
l+ ⊥ l− and l+⊕ l− = l2(N). Thus, H(h+ +h−) = h+−h−, reflection about
l+.

Theorem 7.28. The following are equivalent

(1) Kadison Singer Problem is true
(2) For all ε > 0, there exists k such that every H ∈ R0 can be (ε, k)

paved.
(3) For all ε > 0, every H ∈ R0 can be (ε, k) paved.
(4) There exists r < 1 and k ∈ N such that every H ∈ R0 can be (r, k)-

paved
(5) There exists r < 1 such that every H ∈ R0 can be (r, k)-paved

Definition 7.29. Let P 1
2

= {P ∈ B(l2(N)) : P = P ∗ = P 2, E(P ) = 1
2I}

Theorem 7.30 (CEKPT). The following are equivalent

(1) The kadison-Singer problem is true.
(2) For all ε, there exists k such that for every P in P 1

2
, there exists

disjoint sets C1, C2, . . . , Ck with C1∪· · ·∪Ck = N such that for each
l, (1

2 − ε)PCl ≤ PClPPCl ≤ (1
2 − ε)PCl .

(3) There exists r < 1
2 and k such that for every P in P 1

2
, there exists

disjoint sets C1, C2, . . . , Ck with C1∪· · ·∪Ck = N such that for each
l, (1

2 − r)PCl ≤ PClPPCl ≤ (1
2 − r)PCl .

(4) There exists r < 1
2 such that each P ∈ P 1

2
, there exists k ,disjoints

sets C1, . . . , Ck with C1 ∪ · · · ∪ Ck = N such that (1
2 − r)PCl ≤

PClPPCl ≤ (1
2 − r)PCl .

(5) for each P ∈ P 1
2

there exists r < 1/2 and k ∈ N, such that there exists

k disjoint subsets, C1 ∪ · · ·Ck = N with (1
2 − r)PCl ≤ PClPPCl ≤

(1
2 + r)PCl , for 1 ≤ l ≤ k.

Proof. (1 ⇒ 2) Let P ∈ P 1
2
. Then 2P − I = U ∈ R0. There by the last

theorem given an ε > 0 there exists k and disjoints sets C1, . . . , Ck with
C1 ∪ · · · ∪ Ck = N such that −2εPCl ≤ PClUPCl ≤ 2εPCl .
=⇒ −2εPCl ≤ PCl(2P − I)PCl ≤ 2εPCl
=⇒ (1− 2ε)PCl ≤ PCl(2P )PCl ≤ (1 + 2ε)PCl
=⇒ 1−2ε

2 PCl ≤ PClPPCl ≤ 1+2ε
2 PCl

=⇒ (1
2 − ε)PCl ≤ PClPPCl ≤ (1

2 + ε)PCl .
(2⇒ 3) and (3⇒ 4) are clearly true.
(4⇒ 1) Given U ∈ R0, let P = U+I

2 ∈ P 1
2
. then there exists k and disjoint

sets C1, . . . , Ck with C1∪· · ·∪Ck = N such that (1
2−r)PCl ≤ PCl(

U+I
2 )PCl ≤

(1
2 + r)PCl



KADISON-SINGER 35

=⇒ −rPCl ≤ PCl(U2 )PCl ≤ rPCl
=⇒ ‖PClUPCl‖ ≤ 2r < 1.
Hence, this 4 implies 4 from last theorem which further implies the Kadison-
Singer problem.

Thus, we have shown that (1)–(4) are equivalent. Clearly, (4) implies (5)
and we complete the proof by showing that (5) implies (4).

To this end suppose that (5) is true, but that (4) is false. Then for each
rn = 1/2 − 1/n, n ≥ 3, there exists Pn ∈ P 1

2
which can not be rn-paved in

the above sense for any k ∈ N. Form the operator P = U∗φ(P3⊕P4⊕ . . .)Uφ.
Note that P ∈ P 1

2
and so this operator has a paving of the above type for

some r < 1/2 and some k ∈ N, and hence each Pn will have an (r, k)-paving
of the desired type. But as soon as r < rn this is a contradiction, and,
hence, (5) implies (4).

�

8. Introduction to frames in Hilbert spaces

Definition 8.1. Let H be a Hilbert space. A set {fi}i∈I in H is called
a Riesz basis for H if there exists {ui}i∈I , an orthonormal basis for H
and an invertible, bounded linear operator S ∈ B(H) such that for each i,
fi = S(ui)

Definition 8.2. A set {fi}i∈I in H is called a Riesz basis set if it is a
Riesz basis for H0 = span{fi : i ∈ I} and a Riesz basic sequence when
the index set is countable.

Definition 8.3. A set {fi : i ∈ I} in H is called a Bessel set if there exists
a constant B such that∑

i∈I |〈x, fi〉|2 ≤ B‖x‖2, for each x in H.
If the index set is countable, then we call a Bessel set a Bessel sequence.

Note that saying {fi}i∈I is a Bessel set is equivalent to saying that the
map F : H −→ l2(I) given by F (x) = (〈x, fi〉)i∈I is bounded with ‖F‖2 ≤ B.
In this case,

〈F ∗(ei), x〉 = 〈ei, (〈x, fi〉)i∈I〉 = 〈x, fi〉 = 〈fi, x〉
Therefore F ∗(ei) = fi for each i ∈ I.
So, Bessel is same as ei −→ fi extends to a bounded map from l2(I) to H.
F ∗ is called synthesis operator.

Definition 8.4. A set {fi}i∈I in H is called a frame if there exists A,B
with 0 < A ≤ B such that

A‖x‖2 ≤
∑

i∈I |〈x, fi〉|2 ≤ B‖x‖2 for each x ∈ H

Equivalently, {fi}i∈I is a frame if and only if {fi}i∈I is Bessel and F is
bounded below. When the index set for a frame is bounded below, we will
refer to the set as a frame sequence.
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Example 6 Let {ui}i∈I , {vj}j∈J be orthonormal basis for a Hilbert space
H. Then for each x ∈ H we have∑

i,j(|〈x, ui〉|2 + |〈x, vj〉|2) = 2‖x‖2

Therefore {ui}i∈I ∪ {vj}j∈J is a frame for H with A = 2, B = 2
Example 7 Let {fi}i∈I be a frame.{fi}i∈I ∪ {0} is still a frame for H.

Definition 8.5. A frame is called a tight frame if A = B and is called a
Parseval frame if A = B = 1.

Equivalently,

{fi}i∈I is a Parseval frame. ⇔ F is an isometery. ⇔ F ∗F = I.
⇔ F ∗F = PR(F ).

Note: {fi}i∈I is a frame iff Bessel and F ∗F ≥ AI.

Proposition 8.6. Let {fi}i∈I is a Riesz basis for a Hilbert space H. Then
{fi}i∈I is a frame for H.

Proof. Let S ∈ B(H) be an invetible operator and {ui}i∈I be an orthonormal
basis for H so that for each i, S(ui) = fi. Then∑

i∈I |〈x, fi〉|2 =
∑

i∈I |〈x, S(ui)〉|2 =
∑

i∈I |〈S∗(x), ui〉|2 = ‖S∗(x)‖2

As, S ∈ B(H) and is invertible therefore

‖S∗(x)‖2 ≤ ‖S∗‖2‖x‖2, ‖S∗(x)‖ ≥ ‖x‖
‖S∗−1‖ .

Hence {fi}i∈I is a frame with A = ‖S∗−1‖−2, b = ‖S∗‖2.
�

Proposition 8.7. Let {fj}j∈J ⊆ H, then {fj}j∈J is a Riesz basis for H if
and only if {fj}j∈J is a Bessel set whose closed linear span is H and there
exists c > 0 such that FF ∗ ≥ cI`2(J).

Proof. First, we assume that the set is a Riesz basis, so that there exists an
orthonormal basis forH, {uj}j∈J and a bounded invertible operator S : H →
H such that for all j, fj = Suj . Clearly, the closed span of {fj} is all of H
and by the above result or by noting that

∑
j |〈x, fj〉|2 =

∑
|〈S∗(x), fj〉|2 =

‖S∗(x)‖2 ≤ ‖S‖2‖x‖2, we see that {fj} is a Bessel set.
Let U : `2(J) → H be the unitary operator uniquely defined by U(ej) =

uj . Since F ∗(ej) = fj = S(uj) = U(ej), we have that F ∗ = SU, and so
FF ∗ = U∗S∗SU.Now, (S−1)∗S−1 ≤ ‖S−1‖2IH, and hence, IH = S∗(S∗)−1S−1S ≤
‖S−1‖2S∗S. Finally, ‖S−1‖−2I`2(J) = ‖S−1‖−2U∗IHU ≤ U∗S∗SU = F ∗F,
and we have the desired lower bound.

Conversely, assume that {fj} satisfies the three conditions. Since it is a
Bessel set, F and F ∗ are bounded and the condition, cIH ≤ FF ∗ implies
that F ∗ is bounded below and so its range, R(F ∗), is closed. But since each
fj = F ∗(ej) is in the range we have that R(F ∗) = H. Hence, F ∗ is one-to-

one and onto. Let U = F ∗(F ∗F )−1/2, then U∗U = I`2(J), so that U is an
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isometry, but U is also invertible, and hence, U : `2(J)→ H is a unitary. Let
uj = U(ej), j ∈ J, since U is unitary this set is an orthonormal basis for H.
Finally, S = F ∗U∗ : H → H is invertible and S(uj) = F ∗U∗Uej = fj . �

Corollary 8.8. Let {fj}j∈J ⊆ H. Then {fj}j∈J is a Riesz basic set if and
only if {fj}j∈J is a Bessel set and there exists c > 0 such that FF ∗ ≥ cI`2(J).

Proof. Let H0 be the closed linear span of {fj}j∈J and let F0 denote the
restriction of F to H0, then F ∗0 (ej) = fj . Note that for x ⊥ H0, F (x) = 0.

Now {fj}j∈J is a Riesz basic set if and only if {fj}j∈J is a Riesz basis for
H0, which by the above result is equivalent to {fj}j∈J being a Bessel set
and F0F

∗
0 ≥ cI`2(J), for some c > 0. Finally, note that FF ∗(ej) = F (fj) =

F0(fj) = F0F
∗
0 (ej), and so FF ∗ = F0F

∗
0 , and the result follows. �

A Bessel set {fj}j∈J ⊆ H is called bounded(below) if there exists a
constant, δ > 0, such that for all j, δ ≤ ‖fj‖. Note that if

∑
j |〈x, fj〉|2 ≤

B‖x‖2, for every x ∈ H, then δ2‖fi‖2 ≤ ‖fi‖4 ≤
∑

j |〈fi, fj〉|2 ≤ B‖fi‖2,
and hence δ ≤

√
B. We shall call a bounded Bessel sequence {fj}j∈bbN with

upper Bessel bound B and lower bound δ a (B, δ)-Bessel sequence.
When we say that a sequence {fj}j∈N can be partitioned into k Riesz

basic sequences we mean that there exists a partition of N into k subsets,
C1 ∪ C2 ∪ · · ·Ck = N, such that {fj}j∈Cl is a Riesz basic sequence for
1 ≤ l ≤ k.

The equivalence of (1), (3) and (4) were proven by Casazza and Tremain
in [?] and by Casazza, Fickus, Tremain and Weber[?].

Theorem 8.9 (Casazza and Tremain). The following are equivalent:

(1) Kadison-Singer is true,

(2) for each 0 < δ ≤
√
B, there exists k ∈ N, such that every (B, δ)-

bounded Bessel sequence can be partitioned into k Riesz basic se-
quences,

(3) each bounded Bessel sequence can be partitioned into finitely many
Riesz basic sequences,

(4) each bounded frame sequence can be partitioned into finitely many
riesz basic sequences.

Proof. It is clear that (2) implies (3) and that (3) implies (4). We begin by
proving that (1) implies (2).

Fix 0 < ε < δ2/4 and since Kadison-Singer is true by there is a k so that
every H ∈ H[0, B] has a generalized (ε, k)-paving. If {fj}j∈N is a (B, δ)-
bounded Bessel sequence, then FF ∗ = (〈fj , fi〉) satisfies 0 ≤ FF ∗ ≤ BI`2(N).
Hence, there exists a partition C1 ∪ C2 ∪ · · ·Ck = N, and real numbers,
t1, t2, ..., tk such that (tl − ε)PCl ≤ PClFF

∗PCl ≤ (tl + ε)PCl . Taking j ∈ Cl
and considering the corresponding (j, j)-entry, yields tl− ε ≤ ‖fj‖2 ≤ tl + ε.
Hence, δ2 ≤ ‖fj‖2 ≤ tl + ε. Thus, 0 < δ2/2 ≤ δ2 − 2ε ≤ tl − ε, and so
δ2

2 PCl ≤ PClFF
∗PCl .
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Hence, we have that each of the Bessel sequences, {fj}j∈Cl has analysis

operator Fl satisfying FlF
∗
l = (〈fj , fi〉)i,j∈Cl ≥ δ2

2 I`2(Cl), and thus, is a Riesz
basic sequence.

We now prove that (4) implies (1), by showing that (4) implies condition
(5) in Theorem 7.30. To this end, let P ∈ P1/2, so that P = P ∗ = PP ∗. If
we let {fj}j∈N denote the columns of P (which are also the rows of P ), then
P = (〈fj , fi〉). Let H = R(P ) ⊆ `2(N). Note that {fj} is a Parseval frame
sequence for H, since for h ∈ H, we have that h = P (h) = (〈h, fj〉). Also,
since 1/2 = pj,j = ‖fj‖2, we have that {fj} is a bounded Parseval frame.

Hence, by the hypothesis, there exists a finite partition of N = C1 ∪
C2 ∪ · · · ∪ Cn, such that each set {fj}j∈Cl is a Riesz basic sequence. This
implies that there exists cl > 0, such that (〈fj , fi〉)i,j∈Cl ≥ clI`2(Cl), which
is equivalent to PClPPCl ≥ clPCl . Note that we may assume that cl < 1/2.

Applying similar reasoning to Q = I − P ∈ P1/2, we get a partition,
N = D1∪D2∪· · ·Dm, and numbers 0 < dk < 1/2, such that PDk(I−P )PDk ≥
dkPDk , which is equivalent to (1− dk)PDk ≥ PDkPPDk .

Thus, we have that (1−dk)PCl∩Dk = PCl(1−dk)PDkPCl ≥ PClPDkPPDkPCl =
PCl∩DkPPCl∩Dk , and PCl∩DkPPCl∩Dk = PDkPClPPClPDk ≥ PDkclPClPDk =
clPCl∩Dk .

Letting r = min{c1, ..., cm, d1, ..., dn}, and El,k = Cl∩Dk, which is a finite
partition of N and setting ε = 1/2−r, we have that (1/2−ε)PEl,k = rPEl,k ≤
PEl,kPPEl,k ≤ (1− r)PEl,k = (1/2− ε)PEl,k and so condition (5) is met.

�

There are many more equivalences worked out in [?]. In particular, it
is shown that Kadison-Singer is true if and only if every bounded Bessel
sequence is a finite union of frame sequences.

9. Further Paving Results

In this section we discuss some other paving results that are related to
the Kadison-Singer conjecture. The first results show that it is enough to
consider paving of strictly upper triangular operators and use some new
ideas that came from function theory and they are taken from the paper [?].

Lemma 9.1. Let B be a unital C*-algebra and let s : B → C be a state. If
p ∈ B is positive and invertible, then s(p)s(p−1) ≥ 1.

Proof. Let q be positive and invertible, and let t ∈ R, then 0 ≤ s((tq +
q−1)2) = t2s(q2) + 2t+ s(q−2). Hence, this second degree polynomial either
has no real roots or a repeated real root and so 4− 4s(q2)s(q−2) ≤ 0. Thus,
1 ≤ s(q2)s(q−2), and the result follows by letting q =

√
p. �

Theorem 9.2 (P-Raghupathi). Fix 0 < a < 1 < b, let B be a unital
C*-algebra and let si : B → C, i = 1, 2 be states. Then the following are
equivalent:

(1) s1 = s2,
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(2) for every positive invertible p ∈ B, s1(p)s2(p−1) ≥ 1,
(3) for every p ∈ H[a, b], s1(p)s2(p−1) ≥ 1.

Proof. If s1 = s2, then (2) holds by the above lemma. Clearly, (2) implies
(3). It remains to show that (3) implies (1).

To this end let h = h∗ ∈ B, so that for t in some neighborhood of 0,
we will have that eth ∈ H[a, b]. This implies that the real analytic function,
f(t) = s1(eth)s2(e−th) ≥ 1. Since f(0) = 1, we see that t = 0 is a critical
point of the function. Hence, 0 = f ′(0) = s1(h)−s2(h). Thsu, s1(h) = s2(h),
for every h = h∗, and it follows that s1 = s2. �

Given an operator system S ⊆ B, and a state s : S → C, recall the
definition of ls(h) and of us(h).

Theorem 9.3 (P-Raghupathi). Let B be a unital C*-algebra, let S ⊆ B be
an operator system, let s : S → C be a state and fix 0 ¡ a ¡ 1 ¡ b. Then the
following are equivalent:

(1) s extends uniquely to a state on B,
(2) for every positive, invertible p ∈ B, ls(p)ls(p−1) ≥ 1,
(3) for every p ∈ H[a, b], ls(p)ls(p

−1) ≥ 1.

Proof. Assuming (1), let ŝ : B → C be the unique extension of s. Then
ŝ(p) = ls(p) and ŝ(p−1) = ls(p

−1), and (2) follows.
Clearly, (2) implies (3), so it remains to show that (3) implies (1). Let

si : B → C, i = 1, 2 be states that extend s. Then for any p ∈ H[a, b], we
have that s1(p)s2(p−1) ≥ ls(p)ls(p

−1) ≥ 1. Hence, by the above theorem,
s1 = s2, and so the extension must be unique.

�

Theorem 9.4. Fix numbers a, b ∈ R with 0 < a < 1 < b, and a point
ω ∈ βN. Look at the state sω : D → C (evaluation at ω). Then the
followings are equivalent.

(1) sω extends uniquely to a state on B(`2(N)).
(2) Given ε > 0, and 0 ≤ P ∈ B(`2(N)) invertible, there exist A ∈ Uω,

c, d > 0 with
• 1− ε < cd,
• cPA ≤ PAPPA,
• dPA ≤ PAP−1PA.

(3) Given ε > 0, and P ∈ H[a, b], there exist A ∈ Uω, c, d > 0 with
• 1− ε < cd,
• cPA ≤ PAPPA,
• dPA ≤ PAP−1PA.

Proof. 1) ⇒ 2): Let ε > 0 and take 0 ≤ P ∈ B(`2(N)) invertible. By our
previous Theorem we know that if sω extends uniquely,

lsω(P )lsω(P−1) ≥ 1.

By property of supremums we may find D1 ≤ P and D2 ≤ P−1 with
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1− ε/2 ≤ sω(D1)sω(D2).

Now pick numbers c < sω(D1) and d < sω(D2), with 1− ε < cd. Denoting
by f1 and f2 the continuous functions on βN corresponding to D1 and D2

respectively, choose an open neighborhood U ∈ Nω where f1 > c and f2 > d
on U . Consequently, cχU ≤ f1χ and dχU ≤ f2χ. Set A = U ∩ N ∈ Uω, so

cPA ≤ PAD1 = PAD1PA, and dPA ≤ PAD2 = PAD2PA,

but D1 ≤ P and D2 ≤ P−1, so in conjunction with above and by pre and
post multiplying by PA we obtain

cPA ≤ PAD1PA ≤ PAPPA,
dPA ≤ PAD2PA ≤ PAP−1PA.

2)⇒ 3): This is trivial.

3)⇒ 1): Let s1, s2 : B(`2(N))→ C be two states that extend sω.
Given any ε > 0 and P ∈ H[a, b], 3) says that we can find A ∈ Uω and
numbers c, d > 0 which obey those three bullets. We know that

s1(PA) = s2(PA) = sω(PA) = 1,

and therefore,

c = s1(cPA) ≤ s1(PAPPA) = s1(P ),

d = s2(dPA) ≤ s2(PAP
−1PA) = s2(P−1).

Thus, s1(P )s2(P−1) ≥ cd > 1−ε. Since ε > 0 was arbitrary, s1(P )s2(P−1) ≥
1. Now this can be done for any P ∈ H[a, b], so by a previous result
s1 = s2. �

Theorem 9.5. Fix numbers 0 < a < 1 < b. The followings are equivalent

(1) Kadison-Singer is true.
(2) Given ε > 0, and 0 ≤ P ∈ B(`2(N)) invertible, there is a K ∈ Z+

with a partition A1 ∪ . . . ∪ AK = N, and positive sequences {cj}Kj=1,

{dj}Kj=1 satisfying
• 1− ε < cjdj,
• cjPAj ≤ PAjPPAj ,
• djPAj ≤ PAjP−1PAj .

(3) Given ε > 0, and P ∈ H[a, b], there is a K ∈ Z+ with a partition
A1∪. . .∪AK = N, and positive sequences {cj}Kj=1, {dj}Kj=1 satisfying
• 1− ε < cjdj,
• cjPAj ≤ PAjPPAj ,
• djPAj ≤ PAjP−1PAj .
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(4) Given ε > 0, there is a K ∈ Z+ so that for each P ∈ H[a, b], there
is a partition A1 ∪ . . . ∪ AK = N, and positive sequences {cj}Kj=1,

{dj}Kj=1 satisfying
• 1− ε < cjdj,
• cjPAj ≤ PAjPPAj ,
• djPAj ≤ PAjP−1PAj .

Note how 4) differs from 3). In 3), our epsilon and P are fixed, and out
comes this integer K, whereas in 4) only epsilon is fixed and we get a K
that works uniformly for all P .

Proof. 1)⇒ 2): Given ε > 0, and 0 ≤ P ∈ B(`2(N)) invertible the previous
Theorem ensures that for each ω ∈ βN, there is an Bω ∈ Uω (where Bω =
Uω ∩ N for Uω ∈ Nw) and positive numbers cω, dω > 0 which satisfy

cωdω > 1− ε
cωPBω ≤ PBωPPBω

dωPBω ≤ PBωP
−1PBω .

The open cover {Uω}ω∈βN of βN must have a finite subcover {Uωl}Ll=1. Out

of the sets {Bωl}, whose union is N, make disjoint sets {Aj}Kj=1 where for
each j, Aj ⊆ Bωl for some l, and whose disjoint union is also N. In the case
where Aj ⊆ Bωl , we will have

cωlPAj ≤ cωlPωBl ≤ PωBlPPωBl ,

which implies

cωlPAjPAjPAj ≤ PAj [PωBlPPωBl ]PAj = PAjPPAj .

Therefore, cωlPAj ≤ PAjPPAj . In similar fashion dωlPAj ≤ PAjP
−1PAj ,

and 2) holds.

2)⇒ 3): This is clear.

4)⇒ 3): Also clear.

4)⇒ 1): Let ω ∈ βN and ε > 0 and P ∈ H[a, b] be given. If 4) holds then
each Aj = Uj ∩ N, with

K⋃
j=1

Uj = βN.

Now for some 1 ≤ k ≤ K, ω ∈ Uk, so
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ckPAk ≤ PAkPPAk

dkPAk ≤ PAkP
−1PAk

1− ε < ckdk.

So by the previous Theorem sω extends uniquely. But ω was arbitrary, so
Kadison-Singer holds.

3) ⇒ 4): Assume 3) true but 4) not true. Then there is an ε > 0 and
sequences Pn ⊆ H[a, b], (Kn) ⊆ Z+ such that each Pn satisfies the conditions
in 3) for the integer Kn but not Kn−1,(basically, Kn is the smallest integer
for which the conditions in 3) hold for Pn), and Kn ↗∞. Now let

P = U∗φ(P1 ⊕ P2 ⊕ . . .)Uφ,
where the

Uφ : `2(N) −→
∞⊕
i=1

`2(Ni)

is our famous unitary corresponding to the bijective map φ :
⋃∞
i=1 Ni → N.

Now for each n, σ(Pn) ⊆ [a, b] so when taking a direct sum and unitary
equivalence we get P ∈ H[a, b]. Therefore for this P we can do some paving
for some K, but that K would actually pave all the Pn, a contradiction. �

Definition 9.6. Given T ∈ B(`2(N)) and its corresponding matrix T =
(tij)i,j∈N.

(1) We call T upper triangular if tij = 0 for i > j, and denote by
T (N) the set of all upper triangular matrices.

(2) T is said to be strictly upper triangular if tij = 0 for i ≥ j, and
we write T0(N) for the set of strictly upper triangular matrices.

A few facts:

(1) T (N) ⊆ B(`2(N)) is a subalgebra. This is straightforward.
(2) This is a little surprising, {T + T ∗ ; T ∈ T0(N)} & H0. A famous

example is the matrix A = (ai,j)i,j∈N, where ai,i = 0 and for i 6=
j, ai,j = 1

i−j . This skew-symmetric matrix gives rise to a bounded

operator on `2(N), but its triangular truncation, T = (ti,j) defined
by ti,j = ai,j , i < j, and ti,j = 0, i ≥ j, is not bounded. Thus, H = iA
is Hermitian and if H = T1 + T ∗1 , with T1 ∈ T (N), then necessearily
T1 = iT + D, with D diagonal. Which shows that H can not be
written as a sum of an upper triangular operator and its adjoint.

(3) If P is positive and invertible, then there exists an invertible upper
triangular operator T such that P = T ∗T. This can be shown by
using the famous algorithm for LU -decomposition for finite matrices
and showing that it converges.
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(4) Let T ∈ T (N) be invertible. Then inverse of T is also in T (N).
Morover if write T = D+T0, where D is a diagonal operator and T0

is a stricly upper triangular operator, then necessarily D is invertible
and T−1 = D−1 +T1 for some strictly upper triangular operator T1.

For proofs of these facts see [?].

Theorem 9.7 (P-R). Let w ∈ βN and sw : D → C. TFAE

(1) sw extends uniquely to a state on B(`2(N)).
(2) For all T ∈ T0(N), lsw(T + T ∗) = 0.
(3) For all T ∈ T0(N) and ε > 0 there exists A ∈ Uw s.t.

−εPA ≤ PA(T + T ∗)PA ≤ εPA.

(4) For all T ∈ T0(N) and ε > 0 there exists A ∈ Uw s.t. ‖PATPA‖ ≤ ε.

Proof. (1) ⇒ (2) Let s be the unique extension then s(X) = s(E(X)). So

for all T ∈ T0(N), s(T + T ∗) = s(T ) + s(T ) = 0 and hence lsw(T + T ∗) = 0.

(2)⇒ (1) Let T ∈ T0(N). Since −T is also in T0(N), lsw((−T ) + (−T )∗) = 0
equivalently −usw(T + T ∗) = 0. So for all T ∈ T0(N), T + T ∗ is in Uw,
the uniqueness domain of sw. This also means that (iT ) + (iT )∗ is in U(w),
equivalently, i(T−T ∗) ∈ U(w). We know that Uw is a linear subspace. Since
both real and imaginary part of T are in U(w), T is in Uw for all T ∈ T0(N).
Note that this also means T (N) ⊆ Uw since an upper triangular operator
can be written as sum of two operators, namely the diagonal part and strict
upper part, which belong to uniqueness domain. Now let s1 and s2 be two
positive extensions of sw. Let P ∈ B(`2(N)) be positive and invertible. Then
there exists invertible T in T (N) such that P = T ∗T which also means that
P−1 = T−1(T ∗)−1. Now by using the facts above we obtain

s1(P )s2(P−1) = s1(T ∗T )s2(T−1(T ∗)−1)

≥ |s1(T )|2 |s2(T−1)|2

= |s1(T )s2(T−1)|2

= |sw(E(T ))sw(E(T )−1)| = 1.

Since P is arbitrary, s1 = s2 by Theorem ??. �

Theorem 9.8. The following are equivalent.

(1) Kadison-Singer is true.
(2) For each ε > 0 and for each T ∈ T0(N) there exists a k-partition
{Ai}ki=1 of N such that ‖PAiTPAi‖ ≤ ε‖T‖.

(3) For every ε > 0 there exists k ∈ N such that if T ∈ T0(N) then there
exists a k-partition {Ai}ki=1 of N such that ‖PAiTPAi‖ ≤ ε‖T‖.

(4) There exists 0 < r < 1 such that for any T ∈ T0(N) there exists a
k-partition {Ai}ki=1 of N such that ‖PAiTPAi‖ ≤ r‖T‖.

We will not prove this theorem.
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Anderson-Akemann Paving Conjectures. Let P = (pij) ∈ B(`2(N))
be an orthogonal projection (P 2 = P = P ∗). We define δ(P ) = sup{pii :
i = 1, 2, 3, ...}.

A-A Conjecture 1. For each P = P ∗ = P 2 there exists S ∈ D with
S2 = I such that ‖PSP‖ ≤ 2δ(P ).

A-A Conjecture 2. There exists 0 < γ ≤ 1/2 such that if δ(P ) < γ
then there exists S ∈ D with S2 = I such that ‖PSP‖ < 1.

Anderson and Akemann proved that A-A Conj. 1 ⇒ A-A Conj. 2 ⇒ K-S
is true. But later CEKPT showed that A-A Conjecture 1 is false.

10. Introduction to Group C∗algebras and Crossed Products

10.1. Unitary Representations and Group Algebras for Discrete
Groups. .
Let G be a group, H be a Hilbert space, U(H) be the group of unitaries in H.
The homomorphism π : G → U(H), π(e) = I, π(gh) = π(g)π(h), π(g−1) =
π(g)−1 = π(g)∗, is called a unitary representation of G on H.
Let Ug = π(g), and consider the span{Ug : g ∈ G}.
Let A,B ∈ span{Ug : g ∈ G}, i.e. A =

∑finite
g∈G λgUg, B =

∑finite
h∈G µhUh,

⇒ A ·B =
∑
g,h∈G

λgµhUgh ∈ span{Ug : g ∈ G},

and

A∗ =
∑
g∈G

λ̄gU
∗
g =

∑
λ̄gUg−1 ∈ span{Ug : g ∈ G},

i.e. the span{Ug : g ∈ G} is a *-algebra, i.e. an algebra and an operator
system.

Letting g̃ = gh, h = g−1g̃, g = g̃h−1, we can rewrite the product

A ·B =
∑
g,h∈G

λgµhUgh =
∑
g̃

(∑
g

λgµg−1g̃

)
Ug̃ =

∑
g̃

(∑
h

λg̃h−1µh

)
Ug̃.

This motivates the definition of a group algebra.
Recall the free vector spaces: Let X be any set, then the free vector space
over X, C(X) is just a vector space with basis given by the elements of X,
i.e. one defines

C(X) =
{ ∑
x∈X,finite

λxx : λx ∈ C
}
,

and ∑
λxx+

∑
µxx =

∑
(λx + µx)x, λ

(∑
λxx

)
=
∑(

λλx

)
x.
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Alternatively, one can define C(X) as a vector space of finitely supported
functions,

C(X) =
{
f : X → C| support(f) is finite subset

}
.

Let δx : X → C, δx(y) =

{
1, x = y
0, x 6= y

, then {δx} is a basis for the space

of finitely supported functions. The following correspondence takes place∑
λxx←→

∑
λxδx ←→ f with f(x) = λx.

Definition 10.1. Let G be a given (discrete) group, then the vector space
C(G) together with the product and *-operation given by( ∑
g,finite

λg·g
)( ∑

h,finite

µh·h
)

=
∑
g,h

λgµh·(gh),

( ∑
g,finite

λg·g
)∗

=
∑
g

λ̄g·g−1,

respectively, is called the group ∗-algebra.

Note: If e ∈ G is the unit element, then 1 · e ∈ C(G) is the unit element of
the algebra, hence δe is the identity of C(G).

Alternatively, identifying f1 ↔
∑
λg · g, f2 ↔

∑
µh · h induces a product

f1 ∗ f2 =

(∑
g

λgδg

)
·
(∑

h

µhδh

)
=
∑
g,h

λgµh · δgh.

As a function,

(f1 ∗ f2)(g̃) =
∑
g

λgµg−1g̃ =
∑
g

f1(g)f2(g−1g̃) =
∑
h

f1(g̃h−1)f2(h).

This product is called the convolution of functions.
Also, note that (f∗1 )(g) = f1(g−1).
Let π : G → U(H) be a unitary representation, which, clearly, can be
extended to a linear map π̃ : G→ B(H), π̃(

∑
g λg · g) =

∑
g λgπ(g).

Also, having

π̃

(
(
∑
g

λgg)(
∑
h

µhh)

)
= π̃

(∑
g,h

(λgµh)gh

)
=
∑
g,h

(λgµh)π(gh)

=
∑
g,h

λgµhπ(g)π(h) =

(∑
g

λgπ(g)

)(∑
h

µhπ(h)

)
= π̃

(∑
g

λgg

)
π̃

(∑
h

µhh

)
,

and

π̃

(
(
∑
g

λgg)∗
)

= π̃

(∑
g

λ̄gg
−1

)
=
∑
g

λ̄gπ(g−1)

=
∑
g

λ̄gπ(g)∗ =

(∑
g

λgπ(g)

)∗
= π̃

(
(
∑
g

λg)

)∗
,
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gives that the extension π̃ is a *-homomorphism.
Conversely, given π̃ : C(G) → B(H) a unital *-homomorphism, setting
π(g) = π̃(1 · g) defines a unitary representation of G.

Proposition 10.2. π ↔ π̃ is an one-to-one correspondence between unitary
representations of G and unital *-homomorphisms of C(G).

Definition 10.3. The full group C∗algebra denoted as C∗(G), ( or C∗f (G) )

is the completion of C(G) under the norm defined as follows: Let a =
∑
λg ·

g ∈ C(G), define ‖a‖ = sup{‖π̃
(∑

λg · g
)
‖ : ∀π unitary representations},

then for any a ∈ C(G), one shows

• ‖a∗a‖ = ‖a‖2,
• ‖a‖ 6= 0 for a 6= 0,
• ‖ · ‖ is really a norm.

Why finite? Let a =
∑
λg · g ∈ C(G), then

‖π̃(a)‖ = ‖
∑

g,finite

λgπ(g)‖ ≤
∑

g,finite

|λg| · ‖π(g)‖︸ ︷︷ ︸
=1,unitary

=
∑

g,finite

|λg| < +∞,

therefore we get ‖a‖ ≤
∑
|λg| < +∞.

Examples of C*(G)

1. Group of integers Z: Let π : Z → B(H) be a homomorphism with
π(0) = I, π(1) = U , unitary. Let a =

∑
λnn ∈ C(Z), then π̃(a) =

∑
λnU

n.
Look at ‖π̃(a)‖ =sup{|

∑
λne

inθ| : einθ ∈ σ(U)} which forces
‖a‖C∗(Z) = ‖

∑
λnz

n‖C(T).
Therefore, C∗(Z) ∼= C(T).

2. Z2 = {[0], [1]}: Here we let π2 :→ B(H), π2([0]) = I, π2([1]) = U -unitary
with U2 = I.

σ(U) ⊆ {±1} and the most general such unitary will be U ∼=
(

1 0
0 −1

)
. Any

element a ∈ Z2, a=λ0[0] + λ1[1], π̃(a) = λ0I + λ1U =

(
λ0 + λ1 0

0 λ0 − λ1

)
.

∴ ‖π̃(a)‖ = max {|λ0 + λ1|, |λ0 − λ1|}
⇒ ‖a‖C∗(Z2) = max {|λ0 + λ1|, |λ0 − λ1|}
Therefore, C∗(Z2) ∼= C⊕ C under the mapping
λ0[0] + λ1[1] 7−→ (λ0 + λ1, λ0 − λ1).

3. Z2 = {(m,n) : m,n ∈ Z}: Here π : Z → B(H), π((0, 0)) = I, π((1, 0)) =
U, π((0, 1)) = V, U and V commuting unitaries since Z2 is an abelian group.
π((m,n)) = UmV n, any element of Z2, a=

∑
λm,n(m,n) then π̃(a) =

∑
λm,nU

mV n.
U and V are commuting unitaries therefore, C∗{U, V } ∼= C(X). Suppose U
corresponds to a function f1 and V to f2.
We Know: 1). C(X) = C∗(f1, f2). We claim that x 7−→ (f1(x), f2(x)) is
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1-1.
Let x,y ∈ X, (f1(x), f2(x)) = (f1(y), f2(y)) which implies that every func-
tion in C∗{f1, f2} is equal at x and y. Therefore by Urysohn’s lemma, x=y
which establishes the claim.
2) We have U∗ = U−1 ⇒ f1(x) = f1(x)−1 ⇒ f1(x) ∈ T.
Similarly V ∗ = V −1 ⇒ f2(x) ∈ T.

∴ ‖π̃(a)‖ = ‖
∑

λm,nU
mV n‖ = ‖

∑
λm,nf1(.)mf2(.)n‖C(X)

= sup{|
∑

λm,nα
mβn| : (α = f1(x), β = f2(x)) ∈ T}.

‖a‖ = ‖
∑

λm,n(m,n)‖C∗(Z2) = sup{|
∑

λm,nα
mβn| : (α, β) ∈ T2} = ‖

∑
λm,nz

m
1 z

n
2 ‖C(T2).

∴ C∗(Z2) ∼= C(T2).

4. Non Abelian group, F2 -free group on 2 generators: Let the gen-
erators be g1, g2 then a typical element w ∈ F2 is often called a word in
g1, g2 and written as w = gn1

i1
gn2
i2
...g

np
ip

where il 6= il+1, nl ∈ Z.

Let v ∈ F2, v = gm1
j1
gm2
j2
...g

mq
jq

where jl 6= jl+1,mq ∈ Z and the identity of

the group e is any word where all ni = 0.
v.w = gm1

j1
gm2
j2
...g

mq
jq
.gn1
i1
gn2
i2
...g

np
ip

if jq 6= i1 called concatenation and equals

gm1
j1
gm2
j2
...g

mq−1

jq−1
.(g

mq+n1

i1
)gn2
i2
...g

np
ip

if jq = i1. w−1 = g
−np
ip

...g−n1
i1

.

Universal property: Given any group G and h1, h2 ∈ G ∃ ! group homo-
morphism π : F2 → G via g1 7−→ h1 and g2 7−→ h2. is called the universal
property.

Let π : F2 → G be a unitary representation ⇔ π(g1) = U1 and π(g2) = U2.
Let a ∈ C(F2), a =

∑
λw.w

π̃(a) =
∑
λw.π(w)⇒ π̃(a) =

∑
λwU

n1
i1
...U

np
ip

.

∴ ‖a‖C∗(F2) =sup{‖
∑
λwπ(w)‖ : all pairs of unitaries U1, U2} is sometimes

referred as “Non Commutative Torus”.

10.2. The Left Regular Representation.
Let G be a discrete group, look at l2(G).

l2(G) = {f : G → C :
∑
g∈G
|f(g)|2 < ∞} = {

∑
g∈G

λgeg :
∑
|λg|2 < ∞}

where {eg : g ∈ G} is an orthonormal basis.

Inner Product: < f1, f2 >l2(G)=
∑

g∈G f1(g)f2(g)

<
∑
λgeg,

∑
µgeg >=

∑
λgµ̄g.

Here eg corresponds to δg therefore,
∑
λgeg corresponds to a function f
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where f(g)=λg. The left regular representation of G, is the group rep-
resentation λ : G→ B(l2(g)) where λ(g) is the unitary uniquely defined by
λ(g)eh = egh.
Note: gh1 = gh2 ⇔ h1 = h2, λ(g)eg−1h = eh, each λ(g) is just a permutation
of the basis vector and λ(g)(

∑
λheh) =

∑
λhegh.

¿From the function view point, λ(g)δh = δgh
(λ(g)δh)(k) = δgh(k) = δh(g−1k).
(λ(g)f)k = f(g−1k).
The reduced C*algebra of G is denoted C∗λ(G) = C∗r (G) = C∗({λ(g) :

g ∈ G}) ⊆ B(l2(G)), C∗(G) = {
∑
αgλ(g)}‖.‖.

We define the group von Neumann by V N(G) := {λ(g) : g ∈ G}′′ ⊆
B(`2(G)). An application on von Neumann’s double commutant theorem
shows that V N(G) = C∗λ(G)′′ = WOT − closureC∗λ(G).

We have not yet shown that the seminorm defined on C(G) is actually
a norm. The reduced representation shows that ‖·‖ is actually a norm on

C(G). To see this let a =
∑

g∈G αgg ∈ C(G) and let λ̃(a) =
∑

g∈G αgλ(g) ∈
B(`2(G)). We have λ̃(g)ee =

∑
g∈G αgλ(g)ee =

∑
g∈G eg. Hence

∥∥∥λ̃(a)
∥∥∥ ≥∥∥∥λ̃(g)ee

∥∥∥ =
∥∥∥∑g∈G αgeg

∥∥∥ =
(∑

g∈G |αg|
2
)1/2

6= 0 for a 6= 0. This yields the

estimate,

∑
g∈G
|αg|2

1/2

≤
∥∥∥λ̃(a)

∥∥∥ ≤ ‖a‖C∗(G) ≤
∑
g∈G
|αg|

We will now look at some examples of C∗λ(G).
Example 8 Let G = Z and note that `2(Z) = span{en : n ∈ Z} and let
B = λ(1). Note that Ben = λ(1)en = en+1 and λ(n) = Bn. The operator
B is called the bilateral shift on `2(Z). Every A ∈ B(`2(Z)) has a matrix
A = (ai,j). The matrix is infinite in both directions and when we write our
matrices we distinguish the (0, 0) entry by drawing a box around,

A =



. . .
...

...
...

· · · a−1,−1 a−1,0 a−1,1 · · ·
· · · a0,−1 a0,0 a0,1 · · ·
· · · a1,−1 a1,0 a1,1 · · ·

...
...

...
. . .



For example since Ben = en+1 we see that the matrix of B is
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B =



. . .
. . .

. . .
. . .

. . . 1 0 0 0
. . .

. . . 0 1 0 0
. . .

. . . 0 0 1 0
. . .

. . . 0 0 0 1
. . .

. . .
. . .

. . .
. . .


Let a =

∑N
n=−N αnn and note that λ̃(a) =

∑N
n=−N αnB

n and so the

matrix of λ̃(a) has the form

λ̃(a) =



. . .
. . .

. . .
. . .

. . . α1 α0 α−1 α−2
. . .

. . . α2 α1 α0 α−1
. . .

. . . α3 α2 α1 α0
. . .

. . . α4 α3 α2 α1
. . .

. . .
. . .

. . .
. . .


Note that the entries of the matrix are constant on diagonals and so there
is a function α : Z → C such that ai,j = α(i − j). A bounded operator on
`2(Z) whose matrix is constant on the diagonal is called a Laurent operator.

In order to identify C∗λ(Z) we need the Fourier transform. Let L2(T) be

the usual Lebesgue space of the circle and let us denote zn = einθ Given
f ∈ L2(T) we write

f̂(n) = 〈f, zn〉 =
1

2π

∫ 2π

0
f(eiθ)e−inθ dθ

and we write the association as f ∼
∑∞

n=−∞ f̂(n)zn and let U : L2(T) →
`2(Z) by zn 7→ en and so f 7→

∑∞
n=−∞ f̂(n)en. Now,

U−1BUzn = U−1Ben = U−1en+1 = zn+1 = Mz(z
n)

and so U−1BU = Mz. Hence,

U−1(
N∑

n=−N
αnB

n)U =
N∑

n=−N
αnB

n = M∑N
n=−N αnzn

and so C∗λ(Z) is the norm closure of the set of polynomials of the form∑N
n=−N αnz

n which by the Stone-Weierstrass theorem is C(T). In particular

U−1C∗λ(Z)U = {Mf : f ∈ C(T)}.
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When f ∈ C(T) we have UMfU
−1 ∈ B(`2(Z)) and the matrix of this

operator is given by

Mf =



. . .
. . .

. . .
. . .

. . . f̂(1) f̂(0) f̂(−1) f̂(−2)
. . .

. . . f̂(2) f̂(1) f̂(0) f̂(−1)
. . .

. . . f̂(3) f̂(2) f̂(1) f̂(0)
. . .

. . . f̂(4) f̂(3) f̂(2) f̂(1)
. . .

. . .
. . .

. . .
. . .


We will show that the group von Neumann algebra is UMU−1 = {UMfU

−1 :
f ∈ L∞(T)}. SinceM is a MASA, UMU−1 is also a MASA and we see that
UMU−1 = UM′′U−1 ⊇ C∗λ(Z)′′ = V N(Z). If R ∈ C∗λ(Z)′, then RB = BR
and this shows that T = U−1RU commutes with multiplication by z. If we
set g = T (1) we see that T (zn) = gzn for all n ∈ Z. For any f ∈ L∞(T) we

get
〈
TMfz

i, zj
〉

=
〈
T (
∑∞

n=−∞ f̂(n)zn)zi, zj
〉

=
∑∞

n=−∞ f̂(n)
〈
gzn+i, zj

〉
=〈

(fg)zi, zj
〉

=
〈
MfTz

i, zj
〉
. Hence, T = Mg ∈ M′ and we get C∗λ(Z)′ ⊆

UM′U−1 which implies V N(Z) ⊇ UM′U−1 = UMU−1.
Example 9 Consider the case G = Z2 = {0, 1}. Here `2(Z2) can be

identified with C2. Under the representation λ(0) = I2 and λ(1) =

[
0 1
1 0

]
.

A general element of C∗λ(Z2) is of the form

[
α β
β α

]
for α, β ∈ C.

Example 10 To identify C∗λ(Z2) we can carry out a similar analysis to the
one used for Z and we see that C∗λ(Z) can be identified with C(T2) and that
the group von Neumann algebra can be identified with L∞(T2). Once again
we can define a matrix for each operator on A = `2(Z2). However since
L2(T2) is spanned by the orthonormal basis em,n = einθ1einθ2 we see that
the matrix is naturally indexed not by pairs of integers but tby 4-tuples.

In general if G is discrete abelian group, then we can define the dual group
Ĝ whcih is the set of all homomorphisms from G into T. This is a group
under pointwise product and it has we give it the topology of pointwise
convergence. Under these conditions Ĝ is a compact group. As an example
the group dual to Z is T where the pairing is given by λ(n) = λn. In general

for a discrete abelian groupG we have C∗λ(G) = C(Ĝ) and V N(G) = L∞(Ĝ).
Example 11 We now look at F2, the free group on two generators u, v.
An element w ∈ F2 can be thought of as a word in u, v and so the action of
Bw = λ(w) on eg is Bweg = ewg. LetWv be the set of words that begin with
a non-zero power of v and define `2n = span{eunw : w ∈ Wv}. The direct
sum of the spaces `2n is `2(F2) and Bu maps `2n isometrically onto `2n+1. This

gives us a sense of how “large” the Hilbert space `2(F2) is.
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Comparison between C∗(G) and C∗λ(G): By the definition of C∗(G), if
we are given any π : G −→ B(H) unitary representation and a ∈ C(G),
then ‖a‖C∗(G) ≥ ‖π̃(a)‖. Hence if {an} ⊆ C(G) Cauchy in C∗(G), then
{π̃(an)} ⊆ B(H) is Cauchy. So there is a well defined map π̄ : C∗(G) −→
C∗({π(g) : g ∈ G}) ⊆ B(H). For b1, b2 ∈ C∗(G), there exists {an}, {a′n} ⊆
C(G) such that ‖b1−an‖ → 0, ‖b2−a′n‖ → 0. Thus, ‖b1b2−ana′n‖ → 0 which
implies ‖π̄(b1b2)− π̄(ana

′
n)‖ → 0. But π̄(ana

′
n) = π̃(ana

′
n) = π̃(an)π̃(a′n)→

π̄(b1)π̄(b2). Hence, π̄(b1b2) = π̄(b1)π̄(b2). Similarly, π̄(b∗1) = π̄(b1)∗. so π̄ is
a ∗-homomorphism. In particular, there is always a ∗-homomorphism from
C∗(G) onto C∗λ(G).

One of the question that arises is that when is this map one-to-one? When
G is an amenable group, this map is one-to-one. Amenable groups include
all abelian groups, finite groups. Also, O → N → G → H → O and N, H
amenable implies G amenable.

The free group on two generators, F2, is not amenable and the map from
C∗(G) to C∗λ(G) is not one-to-one.

10.3. Group Actions.

Definition 10.4. Groups acting on sets: Given a group G and a set X.
We let Perm(X) = {h : X −→ X|h − invertible}. Then, Perm(X) is a
group under the operation of composition. We will define an action of G on
X in the following three ways:

(1) An action of G on X is a homomorphism α : G −→ Perm(X).
(2) If we let α(g) = hg ∈ Perm(X), then hg1 ◦ hg2 = hg1g2, he = idX

where {hg : g ∈ G} ⊆ Perm(X) is a group.
(3) Given g ∈ G, x ∈ X, set g ·x = α(g)(x). This is a map G×X −→ X

such that (g, x) −→ g · x having properties
(a) e · x = x for all x ∈ X
(b) g1 ·(g2 ·x) = hg1(g2 ·x) = hg1(hg2(x)) = hg1 ◦hg2(x) = hg1g2(x) =

(g1g2) · x

Assuming the third definition, if we define hg(x) = g · x and because
(hg−1 ◦ hg)(x) = g−1 · (g · x) = e · x = x, and similarly we can prove that
(hg ◦hg−1)(x) = x. Thus each hg is an invertible map and so hg ∈ Perm(X).
Note: When X is a toplogical space, by an action of G on X, we mean that
each hg is a homeomorphism.
Example 12 : Let X be a toplogical space. Fix h : X −→ X homeomor-
phism and define

α(n) =


h(n) = h ◦ h . . . ◦ h︸ ︷︷ ︸

n−times

n > 0

(h−1)|n| = h−1 ◦ h−1 . . . ◦ h−1︸ ︷︷ ︸
|n|−times

n < 0

idX n = 0

Then α defines an action of Z on X. Let us see few examples of this action:
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(1) When X = R, h(r) = r + 1, the hn(r) = r + n.
(2) when X = T, fix θ, 0 ≤ θ < 1, h(λ) = e2πiθλ, hn(λ) = e2πinθλ. If

θ = p
q , hq(λ) = λ and if θ is an irrational, hn(λ) 6= λ for all n 6= 0

but given ε > 0, there exists {nk} such that |e2πinkθ − 1| < ε which

is equivalent to |h(nk)(λ)− λ| < ε

Definition 10.5. Given an action of G on X, a point x ∈ X is called
recurrent if for every neighborhood U of x, there exists e 6= g ∈ G such that
g · x ∈ U

In the above example when X = T, all points are recurrent.

Definition 10.6. A point x ∈ X is non-recurrent if there exists a neighbor-
hood U of x such that g · x /∈ U for all e 6= g ∈ G.

In the above example when X = R, every point is non-recurrent.

Definition 10.7. A point x ∈ X is called wandering if there exists a neigh-
borhood U of x such that (g1 · U) ∩ (g2 · U) = φ for all g1 6= g2.

Note that wandering implies non-recurrent. When X = R in Example 12,
every point is wandering.
Example 13 (Cayley): Let G be a group and X = G. Define hg : G −→ G

as hg(g
′
) = gg

′
. Clearly hg is one-to-one and onto, hg1 ◦ hg2 = hg1g2 and

he = idG. So, α(g) = hg is a group action.
Example 14 Let G be a discrete group and X = βG. Fix g ∈ G. By above
example and by the properties of βG, there exists a unique continuous map
hg : βG −→ βG such that hg(g

′
) = gg

′
for all g

′ ∈ G. Given ω ∈ βG,

since G is dense in βG, there exists a net {g′λ} ⊆ G such that g
′
λ → ω.

Thus, hg(ω) = lim
λ
hg(g

′
λ) = lim

λ
gg
′
λ. Now he(g

′
) = g

′
which implies that

he(ω) = ω for all ω ∈ βG. By uniqueness, he = idβG. Also, hg1 ◦hg2 = hg1g2
on G and G is dense in βG, so hg1 ◦ hg2 = hg1g2 on βG. Hence G acts on
βG denoted by ω → g · ω.

11. Dynamical syatems and βG

Utrafilters in dynamics motivates why people in dynamical system are
interested in βG and the action of G on βG.
Let X be any compact Hausdroff space with a continuous action.Pick a point
xe ∈ X. To study dynamical propeties of the point Xe only need to look at
{g · xe : g ∈ G} = Xe, closed orbit.

βG

∃!h

!!

G
?�

OO

g→g·xe
// Xe



KADISON-SINGER 53

Since h(G) = {g · xe : g ∈ G}, therefore h(βG) = Xe.
If gλ −→ w ∈ βG, then h(ggλ) = ggλ · xe. Let h(w) = xw.gλ −→ w which
implies that gλ · xe −→ xw. Therefore h(ggλ) = g · (g · xe) −→ g · xw. So,
h(g · w) = g · h(w) = g · xw.
This shows that in a sense every dynamical system is a “quotient” of the
action of G on βG. In this sense βG is “universal” dynamical system.

The semigroup N
In a similar fashion we fix n and look at the map N −→ N given by
m −→ n+m.

βN ∃!hn // βN

N
?�

OO

m→n+m
// N
?�

OO

Given w ∈ βN we write n+ w ≡ hn(w).

The corona is defined to be G∗ = βG \ G. Note that G is open in βG.
This implies that G∗ is closed and so compact.

Lemma 11.1. Let w ∈ G∗ and g ∈ G.Then g · w ∈ G∗.

Proof. Let w ∈ G∗ and let gλ −→ w.Suppose g ·w = h ∈ G. Then ggλ −→ h.
Let U = {h},open. Then there exists λ0 such that ggλ ∈ U for every λ ≥ λ0.
Therefore, ggλ = h for each λ ≥ λ0 which implies gλ = g−1h for λ ≥ λ0.So,
gλ −→ g−1h which implies w = g−1h ∈ G.
Hence G∗ is G-invariant subset.

�

Back to Kadison-Singer
Recall by Reid, we know that if w is a rare ultrafilter then the extension
was unique.
Anderson conjectured If w is δ− stable ultrafilter then the extension is
unique.
Natural Question !
What are the dynamical properties of such ultrafilters ?
¿From now in this section we assume that G is a countable group with
discrete topology. Recall by a theorem of Choquet, w is δ− stable if and
only if w is a P-point.

Proposition 11.2. Let w ∈ G∗ be δ− stable. Then w is non-recurrent in
G∗.
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Proof. By a theorem of Veech, for w ∈ G∗, g1·w = g2·w if and only if g1 = g2

(such an action is called free). For each g in G, let Ug = βG \ {g · w},
open. As w 6= g · w, w ∈ Ug.this gives w ∈ ∩{Ug : g ∈ G, g 6= e} which is
a Gδ set. Because w is a P-point, there exists an open set U, w ∈ U,U ⊆
∩{Ug : g ∈ G, g 6= e}
=⇒ g · w /∈ U for each g 6= e.
=⇒ w is non-recurent.

�

Proposition 11.3. Let w ∈ N be a rare ultrafilter. Then w is wandering in
N∗.

Proof. Write N = {1} ∪ {2} ∪ {3, 4} ∪ {5, 6} ∪ {7, 8, 9} ∪ {10, 11, 12} ∪ · · ·
Let A = {1} ∪ {3, 4} ∪ {7, 8, 9} ∪ · · ·
As Uw is an ultrafiter, therefore either A ∈ Uw or Ac ∈ Uw. Assume A ∈ Uw.
Since w is rare, there exists B ∈ Uw such that B intersected with each of
the above finite sets has atmost one element. Look at C = A ∩B ∈ Uw.

Picture:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . .

C can have atmost 1 element from each of the underlined sets in this picture.

Note, card{(n+ C) ∩ C} ≤ n− 1 for each n.
Now, C ∈ Uw, therefore there exists an open neighbourhood U of w in βN
such that C = U ∩ N.
=⇒ card{(n+ U) ∩ U ∩ N} ≤ n− 1 for each n
=⇒ (n+ U) ∩ U is a finite set and contained in N.
∴ ((n+ U) ∩ N∗) ∩ (U ∩ N∗) = ∅
∴ V = U ∩ N∗ is an open set in N∗ and (n+ V ) ∩ V = ∅ for every n.
With a similar argument it can be shown that for every n 6= j,
(n+ V ) ∩ (j + V ) = ∅.
This proves that w is a wandering in N∗

�

Corollary 11.4. Assuming the continuum hypothesis, then N∗ contains a
dense set of wandering points.

Proof. The continuum hypothesis imples that rare ultarfilters exist and are
dense in N∗. �

Theorem 11.5 (Davidson). Let G be a countable discrete group with ω ∈
βG a rare ultrafilter. Then ω is a wandering point in G∗ = βG\G.

Proof. Choose an ascending chain of finite subsets of G

{e} = G0 ⊆ G1 ⊆ G2 . . .
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such that Gn = G−1
n and

⋃∞
n=0Gn = G. The former statement just means

that each Gn is closed under taking inverses. Now we let

Pn = Gn ·Gn−1 · · · ·G1 ·G0, for n = 0, 1, 2, . . .

Notice at once that since the identity e belongs to Gn for each n, we have
Pn ⊆ Pn+1. Now set

A0 = {e}, A1 = P1\P0, . . . , An = Pn\Pn−1.

Each An is finite because each Pn is. Moreover, the An’s are pairwise dis-
joint with

⋃∞
n=0An = G.

Claim: For g ∈ Gk and l > k, we have gAl ⊆ Al−1∪Al∪Al+1 = Pl+1\Pl−2.

Fix g ∈ Gk. Keeping in mind that k < l and that the Gn’s are nested,
we know that g ∈ Gs for s ≥ l − 1. Therefore, gPs ⊆ Ps+1 for s ≥ l − 2.
Take p ∈ Al ⊆ Pl, from above we have that gp ∈ Pl+1. Now suppose that
gp ∈ Pl−2 as well, then by above and the fact that the Gn’s are closed under
inverses, p = g−1(gp) ∈ Pl−1 a contradiction because p ∈ Al = Pl\Pl−1.
This proves the claim.

Since ω is a rare point, there exists a U ∈ Uω such that |U ∩ An| ≤ 1 for
every n. Let

E =
∞⋃
n=0

A2n, and Ec = O =
∞⋃
n=0

A2n+1.

Then Uω being an ultrafilter, either E ∈ Uω or O ∈ Uω. Assume the former,
and set V = U ∩ E ∈ Uω.

Claim: For g ∈ Gk, card(gV ∩ V ) ≤ k/2.

To see this write V = {a2m ; a2m ∈ A2m, for some m′s}. If we take
x ∈ gV ∩ V , then x = g · a2m = a2n for some m,n ∈ N. If 2m > k, we know
from our previous claim that a2n = g · a2m ∈ A2m−1 ∪ A2m ∪ A2m+1, which
forces 2n = 2m and in turn a2n = a2m, a contradiction. Therefore the only
elements in gV ∩V are for those m satisfying 2m ≤ k. That proves the claim.

Let V ⊆ βG be the open neighborhood of ω such that V∩G = V . This says
that gV ∩ V ⊆ G and a finite set. Therefore, Ṽ = V ∩ G∗ is our relatively
open neighborhood such that gṼ ∩ Ṽ = ∅ for all g 6= e. This condition
ensures, by multiplying by suitable inverses, that g1Ṽ ∩ g2Ṽ = ∅. �

The following corollary is somewhat eye boggling when thinking in terms
of topological dynamics.
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Corollary 11.6. Assuming the continuum hypothesis, if G is any countable
discrete group, the set of wandering points in G∗ is dense.

Proof. Under the continuum hypothesis, rare points are dense in G∗. �

Notes:

(1) Consider the set of pairs

G = {(G,φ) ; G is a countable discrete group and φ : N→ G is a bijection }

For each pair we have a homeomorphic extension φ̃ : βN → βG.
Notice that a rare ultrafilter ω ∈ βN maps to a rare ultrafilter
φ̃(ω) ∈ βG. Hence when ω ∈ βN is rare, for every pair in G, φ̃(ω) is
wandering in the Corona G∗. Is the converse statement true? More
precisely, given ω ∈ N, if for every such pair (G,φ) φ̃(ω) is wandering
in G∗, can we say that ω is rare?

(2) We can also inquire as to whether the above Corollary holds without
assuming the continuum hypothesis.

(3) Reid showed that for ω a rare ultrafilter, the corresponding state
sω has a unique extension. Now we know that rare ultrafilters are
always wandering. This motivates the following conjecture.

Conjecture: Let G be a countable discrete group and ω ∈ G∗

wandering. If φ : N → G is a bijection, and ω̃ = φ−1(ω) ∈ N∗, does
sω̃ have a unique extension?

12. Groups Acting on Algebras

Definition 12.1. Let A be an algebra and G a group. By an action of G
on A we mean a homomorphism

α : G −→ Aut(A).

Example: If a group G acts on a set X, G also acts on F(X) = CX as
follows

α : G −→ Aut(CX)

[αg · f ](x) = f(g−1 · x)

There are two things to check. First, it is not too difficult to verify that αg
is actually an automorphism. Second, α is a homomorphism. Indeed,

[αgh(f)](x) = f((gh)−1 · x) = f((h−1g−1) · x) = f((h−1)g−1 · x)

= [αh · f ](g−1 · x) = [(αh ◦ αg) · (f)](x),

so that αgh · f = (αg ◦ αh) · f for all f ∈ CX , whence αgh = αg ◦ αh.
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Example: Now X is a topological space, and a group G acts by homeo-
morphisms of X, that is we have a homomorphism of groups

σ : G −→ Perm(X)

G 3 g 7−→ σg ∈ Perm(X)

where each σg is a homeomorphism of the space X. We the define

α : G −→ Aut(C(X)), g 7−→ αg,

where αg(f) = f ◦ σg−1 . The latter is clearly continuous, being the com-
position of continuous functions, and by same argument as in the above
example, α is a homomorphism.

Example: Take H a Hilbert space, A ⊆ B(H) a subalgebra, and {Ug}g a
group of unitaries whereby UgAU−1

g ⊆ A for all Ug’s. Then the mapping
A → A given by

a 7−→ UgaU
−1
g

is easily seen to be a homomorphism from the algebra A to itself for every
fixed unitary Ug. Now since UgAU−1

g ⊆ A holds for all g, replacing g by g−1

yields U−1
g AUg ⊆ A as well. Together,

A = Ug(U
−1
g AUg)U−1

g ⊆ UgAU−1
g ⊆ A

so that A = UgAU−1
g and the above map is actually an automorphism.

Now look at

α : G −→ Aut(A) where αg(a) = UgaU
−1
g

Again, α is a homomorphism of groups. Indeed,

αgh(a) = UghaU
−1
gh = UghaU(gh)−1 = UghaU(h−1g−1) = Ug(UhaUh−1)Ug−1

= Ug(UhaU
−1
h )U−1

g = (αg ◦ αh)(a)

thus αgh = αg ◦ αh as claimed.

Comment: Given α : G→ Aut(A), write αg(a) = α(g)(a) to avoid so many
parathenses. We saw that for any A ⊆ B(H), {Ug}-group of unitaries, we
get UgAU−1

g ⊆ A,∀g. Then, the setting αg(A) = UgAUg−1 defines an action

of the group G on A. Note that UgA = UgAU
−1
g Ug = αg(A) · Ug. Let

B = span{AUg : A ∈ A, Ug unitary}. Then,

(A1Ug1)(A2Ug2) = A1Ug1A2U
−1
g1 Ug1Ug2 = A1αg1(A2)Ug1g2 ∈ B
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makes B an algebra. And, the general product(∑
g

Ag · Ug
)(∑

h

Ãh · Uh
)

=
∑
g,h

Agαg(Ãh) · Ugh

motivates the following definition:

Definition 12.2. Let A be an algebra, G a group, α : G → Aut(A) group
homomorphism. Then,

A×α G =
{ finite∑

g

Ag · g : Ag ∈ A, g ∈ G
}

is called the crossed product algebra, with product defined as(∑
g

Ag · g
)(∑

h

Ãh · h
)

=
∑
g,h

Agαg(Ãh) · gh.

Written differently, let gh = g′, then h = g−1g′ and(∑
g

Ag · g
)(∑

h

Ãh · h
)

=
∑
g,g′

Agαg(Ãg−1g′) · g′.

Function Viewpoint: The crossed product algebra A×αG can be thought
as the set of all finitely supported functions f : G → A with the product
given as

(f1 ∗ f2)(g′) =
∑
g

f1(g)αg(f2(g−1g′)),

which is called, in fact, ”the twisted convolution product”.

Suppose, for a moment, A ⊆ B(H) is a C∗-algebra, then we have

(A · Ug)∗ = U∗gA
∗ = Ug−1A∗ = αg−1(A∗)Ug−1 , A ∈ A.

This shows that when A is a C∗-algebra, then B = span{AUg : A ∈
A, Ug unitary} is a ∗-algebra, with B =

∑
g AgUg, B

∗ =
∑

g αg−1(A∗)Ug−1 .
So, we can define a ∗-operation on the algebra A ×α G, whenever A is a

C∗-algebra, as

(∑
Ag · g

)∗
=
∑
αg−1(A∗) · g−1.

Function Viewpoint: (f∗)(g) = αg(f(g−1)∗).

12.1. Covariant Representations. .
Let A be an algebra, α : G→ Aut(A) the action, denote this by (A, G, α).

Definition 12.3. A covariant representation of (A, G, α) on a Hilbert
space H, is a pair (ρ, π) such that:

1) ρ : A → B(H) is an algebra homomorphism.
Note: If A is unital, then ρ(1) = IH,
and if A is a C∗-algebra, then ρ is a ∗-homomorphism.

2) π : G→ U(H) is a group homomorphism.
3) π(g)ρ(a)π(g−1) = ρ(αg(a)).
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Given a covariant representation (ρ, π), define a map ρ ×α π : A ×α G →
B(H),

(ρ×α π)(
∑
g

Ag · g) =
∑
g

ρ(Ag)π(g).

Since

ρ(Ag)π(g)ρ(A′h)π(h) = ρ(Ag)π(g)ρ(A′h)π(g−1)π(gh)

= ρ(Ag)ρ(αg(A
′
h))π(gh)

= ρ(Agαg(A
′
h)π(gh),

then (ρ×α π)(Ag · g)(ρ×α π)(A′h · h) = (ρ×α π)
(
(Ag · g)(A′h · h)

)
.

This shows that any covariant representation (ρ, π) gives rise to a represen-
tation ρ×α π of A×α G.
Conversely, if given a homomorphism π̃ : A×α G→ B(H), where A is uni-
tal, and set ρ(A) = π̃(A · e), e ∈ G is the identity, and π(g) = π̃(1A · g), then
(ρ, π) is a covariant representation.

Example 15 Let G be a countable discrete group, H = l2(G), let C(βG) ∼=
l∞(G), identify l∞(G) ∼= D ⊆ B(l2(G)), where given f ∈ l∞(G), write
Df for the bounded diagonal operator, such that Df · eh = f(h) · eh. So,
we really have ρ : l∞(G) → B(l2(G)) given by ρ(f) = Df , and we have
π = λ : G→ B(l2(G)), where λ(g) = Ug, Ug · eh = egh.
Now, compute π(g)ρ(f)π(g−1) = UgDfUg−1 :

〈UgDfUg−1eh1 , eh2〉 = 〈UgDfeg−1h1 , eh2〉
= 〈Ugf(g−1h1)eg−1h1 , eh2〉
= f(g−1h1)〈eh1 , eh2〉

=

{
f(g−1h1), h1 = h2

0, h1 6= h2
.

Therefore, UgDfUg−1 = Df1 , where f1(h1) = f(g−1h1) = αg(f)(h1), which

implies UgDfUg−1 = Dαg(f). Hence, π(g)ρ(f)π(g−1) = ρ(αg(f))⇒ (ρ, π) is
a covariant representation for the action of G on βG.

Example 16 Let X be a topological space, G a group with action on X,
pick xe ∈ X. Look at the homomorphism ρ : C(X) → l∞(G) ⊆ B(l2(G))
given by ρ(f)(g) = f(g · xe). Let π = λ : G→ B(l2(G)).
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Then π(g)ρ(f)π(g−1) = Ugρ(f)U−1
g .

〈Ugρ(f)U−1
g eh1 , eh2〉 = 〈UgDfeg−1h1 , eh2〉

= 〈Ugf((g−1h1) · xe)eg−1h1 , eh2〉
= f((g−1h1) · xe)〈eh1 , eh2〉

=

{
f((g−1h1) · xe), h1 = h2

0, h1 6= h2
.

Therefore, Ugρ(f)U−1
g = ρ(αg(f)).

(You can double check by doing inner-products with vectors.)

13. DYNAMICAL SYSTEMS AND KADISON SINGER

Let G be a countable, discrete group. By defining any 1-1, onto map be-
tween G and N. We may identify l2(G) = l2(N), l∞(G) = l∞(N) and when
we look at B(l2(G)), the diagonal operators with respect to the orthonormal
basis, {eg : g ∈ G} are identified with l∞(G).
So we may regard l∞(G) ∼= D ⊆ B(l2(G)) as another model for our discrete
MASA.
Fix w ∈ βG, define sw : l∞(G) → C via sw(f) = f(w) by identifying
l∞(G) = C(βG).
Let s : B(l2(G))→ C be any state that extends sw.
By GNS representation of s, there exists H Hilbert space, ve ∈ H and
π : B(l2(G))→ B(H) such that s(X)=< π(X)ve, ve >.

Let vg = π(Ug)ve and let Ls=span {vg : g ∈ G}‖.‖.
Define ϕs : B(l2(G))→ B(Ls) by ϕs(X) = PLsπ(X)|Ls -this is a completely
positive map which is to be defined later.

Let f ∈ C(βG) = l∞(G), let Df be the corresponding diagonal operator,
Dfeh = f(h)eh.
Look at

< π(Df )vg, vg >=< π(Df )π(Ug)ve, π(Ug)ve >=< π(U−1
g DfUg)ve, ve >

Recall UgDfU
−1
g = Df where f (h) = f(g−1h).

⇒ U−1
g DfUg = Df̂ where f̂(h) = f(gh).

∴< π(U−1
g DfUg)ve, ve >=< π(Df̂ )ve, ve >= sw(Df̂ ) = f̂(w) = f(g.w)

Therefore the map π(Df ) 7→< π(Df )vg, vg >= f(g.w) is a homomorphism.
⇒ vg is an eigenvector for π(Df ) with eigenvalue f(g.w).
⇒ π(Df ) is the diagonal operator with respect to the basis vector {vg : g ∈
G}.
Each vg is an eigenvector of the normal operator π(Df ), vg ⊥ vh, g 6= h.
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Define a map W : l2(G)→ Ls by W(eh) = vh which extends to a unitary.

W−1π(Ug)Weh = W−1π(Ug)vh

= W−1π(Ug)π(Uh)ve

= W−1π(gh)ve

= W−1vgh

= egh = Ugeh.

∴W−1π(Ug)W = Ug.

W−1π(Df )Weh = W−1π(Df )vh

= W−1f(h.w)vh

= f(h.w)eh.

∴W−1π(Df )W = Df̂ where f̂(g) = f(g.w).

Let φs : B(l2(G))→ B(l2(G)) be defined by φs(X) = W−1ϕs(X)W .
Note that φs is a completely positive map with the action on unitaries and
diagonals as φs(Ug) = Ug, φs(Df ) = Df̂ where f̂(g) = f(g.w).

< φs(X)eh, eg > =< W−1ϕs(X)Weh, eg >

=< ϕs(X)Weh,Weg >

=< ϕs(X)vh, vg >

=< PLsπ(X)|Lsvh, vg >
=< π(X)vh, vg >

=< π(X)π(Uh)ve, π(Ug)ve >

=< π(U−1
g XUh)ve, ve >

= s(U−1
g XUh)

In summary, given s- state extension of sw, we get a map φs : B(l2(G)) →
B(l2(G)) such that X 7→ φs(X) = (s(U−1

g XUh))g,h is a completely positive

map and φs(Ug) = Ug, φs(Df ) = Df̂ where f̂(g) = f(g.w).

Define πw : D → D, πw(Df ) = Df̂ .

When we identify D = C(βG), then πw(f) = f̂ where f̂(g) = f(g.w).

πw(f1f2)(g) = ˆf1f2(g) = f̂1(g)f̂2(g) = πw(f1)(g)πw(f2)(g)
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∴ πw is a homomorphism on D.

< φs(DfUg)eh1 , eh2 > = s(U−1
h2
DfUgUh1)

= s(U−1
h2
DfUgh1)

=< φs(Df )egh1 , eh2 >

=< φs(Df )Ugeh1 , eh2 >

∴ φs(DfUg) = φs(Df )Ug = πw(Df )Ug.
Similarly, φs(UgDf ) = Ugφs(Df ) = Ugπw(Df ).
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