
MATRIX ANALYSIS, FALL 2015

VERN I. PAULSEN

Abstract. The lectures follow the text of Horn and Johnson
fairly closely. These notes accompany the lectures and show the
results that we have covered in class–without proofs.

1. Basics

Assume you know: Fields, vector spaces, bases, linear independence,
linear map, matrix of a linear map, determinants, how to compute the
inverse of a matrix, from analysis–sequences and series, continuity and
derivatives.

The only fields we will consider is either R or C, when I want to
indicate either I’ll write F.
Fm will denote the vector space(over F) of m-tuples. So v ∈ Fm ⇐⇒

v = (x1, ..., xm) where xi ∈ F,∀1 ≤ i ≤ m.
The canonical basis for Fm will mean the basis {e1, ..., em} where

ei is the vector that is 1 in the i-th entry and 0 in all other entries. So
v = (x1, ..., xm) =

∑m
i=1 xiei.

Given vectors v = (x1, ..., xm), w = (y1, ..., ym) ∈ Fm their dot prod-
uct is v · w =

∑m
i=1 xiyi.

We let Mm,n denote the vector space over F consisting of all m × n
matrices, where m = the number or rows, n = number of columns.

We will occasionally write Mm,n(R) or Mm,n(C) when we want to
indicate which underlying field we are allowing the entries of the matrix
to belong to. Given A ∈Mm,n we write

A = (ai,j) =

a1,1 · · · a1,n
...

...
am,1 · · · am,n


where ai,j ∈ F indicates the number in the (i, j)-entry.

There is a canonical basis for the vector space Mm,n, called the ma-
trix units, where Ei,j is the m× n matrix that is 1 in the (i, j)-entry
and 0 isn all other entries. Thus, (ai,j) =

∑m
i=1

∑n
j=1 ai,jEi,j.

Each matrix A ∈Mm,m defines a linear map LA : Fn → Fm given by
LA((x1, ..., xm)) = (

∑n
j=1 a1,jxj, . . . ,

∑n
j=1 am,jxj).
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Given A = (ai,j) ∈ Mm,n the conjugate of A is the matrix denoted
A = (bi,j) ∈ Mm,n where bi,j = ai,j. The transpose of A is the matrix
denoted At = (bi,j) ∈Mn,m where bi,j = aj,i. The adjoint is the matrix

A∗ = (bi,j) ∈Mn,m where bi,j = aj,i. Thus, A∗ = At = (A)t.

2. Matrix Product

Given A = (ai,j) ∈ Mm,p and B = (bi,j) ∈ Mp,n their product is
the matrix A · B = (ci,j) ∈ Mm,n with ci,j =

∑p
k=1 ai,kbk,j. The matrix

product has the following properties:
Associative: Given A ∈ Mm,p, B ∈ Mp,n, C ∈ Mn,q we have that

(A ·B) · C = A · (B · C).
Bilinear: Given A1, A2 ∈ Mm,p, B1, B2 ∈ Mp,n and λ ∈ F we have

that (A1 +A2) ·(B1 +B2) = A1B1 +A1B2 +A2B1 +A2B2 and λ(AB) =
(λA)B = A(λB).

(AB)t = BtAt, (AB) = (A)(B) and (AB)∗ = B∗A∗.
Note: Most books write a vector in Fn as a row, but it is better to

identify Fn ∼ Mn,1 and Fm = Mm,1 since then v = (x1, ..., xn)t ∈ Mn,1

and LA : Mn,1 →Mm,1 satisfies LA(v) = A · v–the matrix product. For
this reason the linear map LA is really left multiplication by the matrix
A, after we make these identifications.

There are several good ways to think of matrix multiplication. First,

if we write A ∈Mm,n in terms of the columns as A = [C1
... . . .

...Cn] where
each Cj ∈Mm,1 then LA((x1, ..., xn)) = x1C1 + · · ·xnCn.

This is useful for thinking about ranges. Given vector spaces V,W
and a linear map, L : V → W then the range of L, is the subspace of
W ,

R(L) = {L(v) : v ∈ V } = L(V ).

Thus, we see that R(LA) = span{C1, ..., Cn}.
Now, if A ∈Mm,p and B = [B1

... . . .
...Bn] ∈Mp,n is written in terms of

columns, then A ·B = [AB1
... . . .

...ABn]. Thus, we see that each column
of A ·B is a vector in the range of LA.

Alternatively, if we write A =


R1

. . .
...
. . .
Rm

 in terms of its row vectors, and

B = [B1
... . . . Bm] in terms of its columns, then A ·B = (Ri ·Bj).
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Finally, if we writeA = [V1
... . . . Vp] ∈Mm,p so that Vk = (a1,k, ..., am,k)

t

andB =


W1

. . .
...

. . .Wp

 ∈Mp,n in terms of its rows, so thatWk = (bk,1, ..., bk,n)

then we have that

A ·B = (

p∑
k=1

ai,kbk,j) =

p∑
k=1

(ai,kbk,p) =

p∑
k=1

Vk ·Wk,

since the product of the m× 1 matrix Vk with the 1× n matrix Wk is
the m× n matrix with (i, j)-entry, (ai,kbk,j).

3. Determinants

We assume that you are familiar with determinants and only review
a few key facts.

Let A ∈Mn, then det(A) ∈ F. There are several formulas for obtain-
ing this number.

3.1. Laplace Expansion: Given A = (ai,j) ∈ Mn we let Ai,j ∈ Mn−1
be the matrix obtained from A by deleting the i-th row and j-th col-
umn. Then, inductively,

det(A) =
n∑
j=1

(−1)i+jai,jdet(Ai,j) =
n∑
i=1

(−1)i+jai,jdet(Ai,j).

These two formulas are called the Laplace expansion along the i-row
and j-th column, respectively.

3.2. Permutations: A map σ : {1, ..., n} → {1, ..., n} is one-to-one if
and only if it is onto. Such a map is called a permutation. The set
of permutations, with the operation of function composition, forms a
group called the symmetric group on n elements and denoted Sn. The
group Sn has n! elements. A permutation is called a transposition if
it interchanges two elements and leaves the remaining elements fixed.
Every permutation can be written as a composition of transpositions.
If σ is written two different ways as a composition of k1 and k2 trans-
positions, then (−1)k1 = (−1)k2 and this number is called the sign of
the permutation and we set sgn(σ) = (−1)k1 .

The other formula for the determinant is that

det(A) =
∑
σ∈Sn

(
sgn(σ)

n∏
i=1

ai,σ(i)
)
.
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The permanent of a matrix is the sum

perm(A) =
∑
σ∈Sn

( n∏
i=1

ai,σ(i)
)
.

It has applications to order statistics and to symmetric products of
Hilbert spaces. (Some will understand this.)In particular, if H is a
Hilbert space, H⊗n denotes the tensor product of H with itself n times
and P denotes the projection onto the subspace of symmetric tensors,
then for any x1, ...xn, y1, ..., yn ∈ H,

〈P (x1 ⊗ · · · ⊗ xn), P (y1 ⊗ · · · ⊗ yn)〉 = perm((〈xi, yj〉)).
Some key facts:

(1) det(A) = det(At),
(2) det(AB) = det(A)det(B),
(3) A invertible iff det(A) 6= 0 and det(A−1) = det(A)−1,

3.3. Multilinear maps and the abstract characterization of de-
terminant: Given vector spaces V1, ..., Vn and W a map L : V1×V2×
· · ·Vn → W from the Cartesian product of the V ’s to W is called
multilinear provided that:

i) if 1 ≤ j ≤ n and vj, ṽj ∈ Vj then

L(v1, ..., vj−1, vj+ṽj, vj+1, ..., vn) = L(v1, ..., vj−1, vj, vj+1, ..., vn)+L(v1, ..., vj−1ṽj, vj+1, ..., vn),

ii) L(v1, ..., vj−1, λvj, vj+1, ..., vn) = λL(v1, ..., vj−1, vj, vj+1, .., vn).

Given A ∈ Mn write A = (v1
......

...vn) in terms of its columns, so that
we may think of A ∈ Fn × · · · × Fn,

Theorem 3.1. det : Mn → F is a multilinear map of the columns, it
is alternating, i.e., if we transpose two columns then that changes the
det by a negative sign, and det(In) = 1. Moreover, det is the unique
multilinear map with these two properties.

3.4. Cramer’s Rule and the Adjugate: Let A ∈Mn and let Ai,j ∈
Mn−1 be as before. Set bi,j = (−1)i+jdet(Aj,i). Then the matrix B =
(bi,j) is called the adjugate of A.

Theorem 3.2 (Cramer’s Rule). Let A ∈Mn and let B be the adjugate
of A. Then AB = BA = det(A)In. If det(A) 6= 0, then A−1 = 1

det(A)
B.

4. Row Reduced Echelon Form(RREF)

Definition 4.1. Let B ∈Mm,n we say that B is in RREF if:

(1) The 1st non-zero of each row of B is a 1. These are called the
leading one’s.
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(2) The 1st non-zero entry of the (i + 1)-st row is strictly to the
right of the 1st non-zero entry of the i-th row.

(3) All the other entries in the column of a leading 1 are 0.
(4) All rows with all 0’s are at the bottom.

A matrix that only satisfies 1,2,4 is said to be in row echelon form(REF).

4.1. The Elementary Operations: There are three types of elemen-
tary operations.

Type I: Row interchange, interchange row k with row l.
Type II: Multiply row k by a non-zero constant.
Type III: Add a multiple of row i to row k.
The following theorem can be found in most courses in linear algebra,

see for example Hoffman-Kunze.

Theorem 4.2 (RREF). Given A ∈Mm,n, one can perform a sequence
of elementary operations on A to obtain a matrix B that is in RREF.
Moreover, if B and B′ are both in RREF and obtained from A by
performing a sequence of elementary operations, then B = B′, i.e., B
is unique.

We sketch the proof of uniqueness. Use the fact that every elemen-
tary operation is reversible. So that one can get from B back to A and
then to B′. Thus, one could get from B to B′ via elementary opera-
tions. But since a leading 1 is the only non-zero entry in its column,
it can be seen that if the leading 1 in the 1st row for B occurs in the
j1 entry, then the leading 1 for B′ must also occur in the j1 entry.
Similarly for the next leading 1, etc. Thus, the leading 1’s for B and
B′ must all occur in the same positions. Next check that if we need to
preserve the 1st leading 1 in B then we can not change any of the other
entries in that row. So the 1st row of B and B′ must be identical.

Remark 4.3. The process of getting from A to a B in RREF is called
Gauss-Jordan elimination. The process of getting from A to a C
in REF is called Gaussian elimination.

4.2. Elementary Matrices: There are also three types of elementary
matrices, corresponding to each elementary operation.

Type I: For k 6= l set U(k, l) = Ek,l + El,k +
∑

i:i 6=k,i6=lEi,i ∈ Mm.

Then U(k, l)−1 = Uk,l and U(k, l)A is the matrix obtained from A by
interchanging rows k and l.

Type II: For λ 6= 0 setD(k;λ) = λEk,k+
∑

i 6=k Ei,i. ThenD(k;λ)−1 =

D(k;λ−1) and D(k;λ)A is the matrix obtained from A by multiplying
the k-th row by λ.
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Type III: For k 6= l and λ ∈ F set S(k, l;λ) = Im + λEl,k. Then
S(k, l;λ)−1 = S(k, l;−λ) and S(k, l;λ)A is the matrix obtained from
A by adding λ times row k to row l.

Proposition 4.4. If B is the RREF of A then B = WA where W is
a product of elementary matrices.

Since each elementary matrix is invertible, this is another way to see
that each elementary operation is reversible.

5. Rank

Definition 5.1. Let A ∈ Mm,n. Then the column rank of A is
the dimension of the subspace of Fm spanned by the columns of A,
i.e., the largest number of linearly independent columns. It is denoted
rankc(A).

The row rank of A is the dimension of the subspace of Fn spanned
by the rows of A and is denoted rankr(A).

First we characterize the column rank.

Definition 5.2. Let V,W be vector spaces and let L : V → W be
linear. Then the range of L is

R(L) := {L(v) : v ∈ V }.

Note that as sets R(L) = L(V ) and that R(L) is a vector subspace
of W .

Proposition 5.3. Let A ∈Mm,n so that LA : Fn → Fm. Then rankc(A) =
dim(R(LA)).

Proof. Let C1, ..., Cn ∈ Fm denote the columns ofA. Then LA((λ1, ..., λn)) =∑n
j=1 λjCj. Thus,R(LA) = span{C1, ..., Cn} and the result follows. �

Theorem 5.4. Let A ∈Mm,n and let B be the RREF of A. Then:

(1) rankr(A) = rankr(B),
(2) rankc(A) = rankc(B),
(3) rankc(B) = the number of rows with leading 1’s = rankr(B).

Corollary 5.5. Let A ∈Mm,n. Then rankc(A) = rankr(A).

Definition 5.6. We call this common value, rankr(A) = rankc(A) the
rank of A and denote it by rank(A).
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6. Submatrices

Let A ∈ Mm,n, let α = {α1, ..., αk} with 1 ≤ α1 < · · · < αk ≤ m
and let β = {β1, ..., βl} with 1 ≤ β1 < · · · < βl ≤ n. We set A[α, β] =
(aαi,βj) ∈Mk.l. Such a matrix is called a submatrix of A.

A submatrix of the form A[α, α] is called a principal submatrix
of A.

When k = l, so that A[α, β] is a square matrix, then we call the
number det(A[α, β]) a minor of A. We call det(A[α, α]) a principal
minor of A.

When α = {1, ..., k} then we call A[α, α] a leading principal sub-
matrix of A and we call det(A[α, α]) a leading principal minor of
A.

When n = m and α = {k, k + 1, ..., n} then we call A[α, α] a trail-
ing principal submatrix of A and we call det(A[α, α]) a trailing
principal minor of A.

A matrix with the property that all of its minors are positive is called
totally positive.

7. Sums of Spaces

Let V and W be vector spaces over F, on their Cartesian product
V ×W define an addition by (v1, w1) = (v2, w2) = (v1 + v2, w1 + w2)
and scalar multiplication by λ ∈ F set λ(v, w) = λv, λw). Then these
operations make V ×W into a vector space called their direct sum and
denoted V ⊕W .

Proposition 7.1. If {vα : α ∈ A} is a basis for V and {wβ : β ∈ B}
is a basis for W , then {(vα, 0) : α ∈ A} ∪ {(0, wβ) : β ∈ B} is a

basis for V ⊕ W . Conseqeuntly, dim(V ⊕ W ) = card(A
·
∪ B) =

card(A) + card(B).

This generalizes to the direct sum of more than two spaces.
When V = Fm and W = Fn, v = (x1, ..., xm) ∈ V and w =

(y1, ..., yn) ∈ W then

(v, w) =
(
(x1, ..., xm), (y1, ...ym)

)
∼ (x1, ..., xm, y1, ..., yn) ∈ Fm+n

and we see that Fm ⊕ Fn ∼ Fm+n and the isomorphism is essentially
removing extra parentheses. Conversely, if k = k1 + k2 then we obtain
an identification Fk ∼ Fk1 ⊕ Fk2 by inserting parentheses.
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8. Partitioned Matrices

Suppose that A = (ai,j) ∈ Mm1+m2,n1+n2 so that LA : Fn1+n2 →
Fm1+m2 and as above we may partition these vectors to define identi-
fications with LA : Fn1 ⊕ Fn2 → Fm1 ⊕ Fm2 . When we, correspond-

ingly, partition A =

[
A1,1 A1,2

A2,1 A2,2

]
with Ai,j ∈ Mmi,nj

then each of

these matrices defines a linear map LAi,j
: Fnj → Fmi . If we write

z = (v, w) ∈ Fn1 ⊕ Fn2 as a column vector, then we have that

Az =

[
A1,1 A1,2

A2,1 A2,2

] [
v
w

]
=

[
A1,1v + A1,2w
A2,1v + A2,2w

]
.

When I say that A ∈Mm1+···+mr,n1+···+nr is partitioned, I mean that
I am writing A =

(
Ai,j
)

where Ai,j ∈ Mmi,nj
. If B ∈ Mn1+···+nr,p1+···pr

is also partitioned as B = (Bi,j) ∈ Mni.pj then it is easy to check that
the product Ai,kBk,j is defined. Also AB ∈ Mm1+···+mr,p1+···+pr is the
block matrix

AB =
( r∑
k=1

Ai,kBk,j

)
.

A partitioned matrix A = (Ai,j) is block diagonal provided that
Ai,j = 0∀i 6= j.

Proposition 8.1. Let A ∈Mn1+···+nk,n1+···+nk
be block diagonal. Then

det(A) =
∏k

i=1 det(Ai,i).

For a matrix of numbers A =

(
a b
c d

)
if a 6= 0, then det(A) =

a(d− ba−1c).

Proposition 8.2. Let A ∈Mn1+n2,n1+n2 be partitioned as A =

(
A1,1 A1,2

A2,1 A2,2

)
.

If det(A1,1) 6= 0, then

det(A) = det(A1,1)det(A2,2 − A2,1A
−1
1,1A1,2).

If det(A2,2) 6= 0, then

det(A) = det(A2,2)det(A1,1 − A1,2A
−1
2,2A2,1).

9. Euclidean Norm and Inner product

If x, y ∈ Fn ∼Mn,1 then their inner product is

〈x, y〉 =
n∑
i=1

xiyi = y∗x.
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In the case that F = R, the inner product is a bilinear map, 〈·, ·〉 :
Rn × Rn → R.

In the case that F = C, the inner product is a sesquilinear(which
means one and a half linear) since 〈x, λy〉 = λ〈x, y〉.

The Euclidean norm of a vector is ‖x‖2 = 〈x, x〉1/2. Vectors x, y
are called orthogonal(written x ⊥ y) provided 〈x, y〉 = 0. Note that
every vector is orthogonal to the 0 vector. A set of vectors S is called
an orthogonal set if x ⊥ y for every x, y ∈ S with x 6= y. A set of
vectors S is called orthonormal if it is orthogonal and for every x ∈ S,
we have ‖x‖2 = 1.

Proposition 9.1 (Cauchy-Schwartz). For x, y ∈ Fn, |〈x, y〉| ≤ ‖x‖2‖y‖2.

Proposition 9.2. For x, y ∈ Fn, λ ∈ F we have that ‖λx‖2 = |λ|‖x‖2
and ‖x+ y‖2 ≤ ‖x‖2 + ‖y‖2(the triangle inequality).

9.1. Gram-Schmidt Orthonormalisation: Given {x1, ..., xn} linearly
independent, this produces an orthonormal set {u1, ..., un} with the
property that for every 1 ≤ k ≤ n, span{u1, ..., uk} = span{x1, ..., xk}.
The vectors u1, ...un are defined inductively. We described this process
in class.

9.2. Lowden Orthonormalisation: This is a different way to pro-
duce an orthonormal set {v1, ..., vn} from a linearly independent set
{x1, ..., xn}. We will do this later in the course. It produces the unique
orthonormal set that minimizes:

n∑
k=1

‖xk − vk‖22.

10. Eigenvalues, eigenvectors and spectrum

Proposition 10.1. Let S ∈Mn. The following are equivalent.

(1) ∃ T ∈Mn such that ST = TS = In,
(2) det(S) 6= 0,
(3) LS : Fn → Fn is one-to-one,
(4) LS is onto.

Definition 10.2. We call S ∈ Mn satisfying any of the above equiva-
lent conditions non-singular or invertible and we let M−1

n denote the
set of invertible matrices in Mn. If S fails to satisfy these conditions,
then we call S singular or non-invertible.

For the rest of this section we assume that F = C.
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Definition 10.3. Given A ∈ Mn, if x ∈ Cn, x 6= 0 and there exists
λ ∈ C such that Ax = λx then we call λ an eigenvalue of A and we
call X an eigenvector for A. The spectrum of A is the set denoted
σ(A) of all eignevalues of A. The spectral radius of A is the number
ρ(A) = sup{|λ| : λ ∈ σ(A)}.

Proposition 10.4. Let A ∈Mn then σ(A) = {λ : λIn−A is non-invertible}.

Definition 10.5. Let A ∈ Mn and let p(t) = akt
k + · · · a1t + a0 be

a polynomial with complex coeffients. Then we set p(A) = akA
k +

· · · a1A+ a0In ∈Mn

It is easy to check that if p(t) = akt
k + · · · + a0 and q(t) = bmt

m +
· · · + b0 are two polynomials and r(t) = p(t)q(t) = akbmt

k+m + · · · +
a0b0 denotes their product, then r(A) = p(A)q(A) = q(A)p(A) is the
product of the matrices p(A) and q(A).

Theorem 10.6 (Spectral Mapping Theorem). Let A ∈ Mn and let p
be a polynomial. Then σ(p(A)) = {p(λ) : λ ∈ σ(A)}.

Definition 10.7. Let A ∈ Mn then the polynomial pA(t) = det(tIn −
A) is called the characteristic polynomial of A.

Note that pA(t) is a monic polynomial of degree n.

Proposition 10.8. λ ∈ σ(A) ⇐⇒ pA(λ) = 0.

Definition 10.9. Given a linear map L : V → W the null space or
kernel of L, denoted N (L) is the subspace {x ∈ V : L(x) = 0}. If
B ∈ Mm,n then by the null space of B, denoted N (B) we mean the
null space of the map LB.

Definition 10.10. Let A ∈ Mn and let λ ∈ σ(A). Then the set {x ∈
Cn : Ax = λx} = N (λIn − A) is called the eigenspace corresponding
to λ. We call the dimension ofN (λIn−A) the geometric multiplicity
of λ. We call the number of factors (t − λ) that occur in pA(t) the
algebraic multiplicity of λ.

Example 10.11. Let A =

(
λ 1
0 λ

)
then the geometric multiplicity of

λ is 1, and the algebraic multiplicity of λ is 2.

Proposition 10.12. Let A ∈Mn and let λ ∈ σ(A). Then the geomet-
ric multiplicity of λ is less than or equal to the algebraic multiplicity.

10.1. The Elementary Symmetric Functions.
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Definition 10.13. Given an n-tuple of complex numbers, (λ1, ..., λn),
for 1 ≤ k ≤ n we set

Sk(λ1, ..., λn) =
∑

1≤i1<···<ik≤n

k∏
j=1

λij .

This is called the k-th symmetric function.

In particular,

S1(z1, ..., zn) = z1 + · · ·+ zn,

while,
S2(z1, ..., zn) = z1z2 + · · ·+ z1zn

+z2z3 + · · ·+ z2zn
+z3z4 + · · ·+ z3zn

+ · · · · · ·+ zn−1zn
and Sn(z1, ..., zn) = z1 · z2 · · · zn.
Note that

(t− λ1) · · · (tn − λn) =

tn − S1(λ1, ..., λn)tn−1 + S2(λ1, ..., λn)tn−2+

· · ·+ (−1)kSk(λ1, ..., λn)tn−k + · · ·
+ (−1)n−1Sn−1(λ1, ..., λn)t1 + (−1)nSn(λ1, ..., λn).

Definition 10.14. Let A ∈Mn for 1 ≤ k ≤ n, we set

Ek(A) =
∑

J⊆{1,...,n}, |J |=k

det(A[J, J ]),

that is the sum of all k× k principal minors of A. In particular, we set
tr(A) =

∑n
j=1 aj,j = E1(A) and call this the trace of A.

Given f : (a, b) → C we can write f(t) = g(t) + ih(t), where g, h :
(a, b)→ R. We say that f is differentiable iff g and h are differentiable

and set f ′(t) = g′(t)+ih′(t). More generally, if ~f = (f1, ..., fn) : (a, b)→
Cn then we say that ~f is differentiable iff each fj is differentiable and

we set ~f ′(t) = (f ′1(t), ..., f
′
n(t))

Theorem 10.15. Let ~fj =
(
f1,j, ..., fn,j

)t
: (a, b)→ Cn be differentiable

and set A(t) = [~f1
... . . .

... ~fn] : (a, b) → Mn. Then g(t) = det(A(t)) is
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differentiable and

g′(t) = det
(
[~f1
′...~f2

... . . .
... ~fn]
)
+

det
(
[~f1

...~f2
′... . . .

... ~fn]
)
+

· · ·+ det
(
[~f1

...~f2
... . . .

... ~fn
′
]
)

Theorem 10.16. Let A ∈ Mn and let pA(t) = (t − λ1) · · · (t − λn).
Then for 1 ≤ k ≤ n, we have that

Ek(A) = Sk(λ1, ..., λn).

10.2. Moments and Newton’s Identities. Given (λ1, ..., λn) set

µk = Mk(λ1, ..., λn) = λk1 + · · ·+ λkn.

It is easily seen that µ1 = S1(λ1, ..., λn) and that µ2 = S2
1 − 2S2,

S2 = 1/2(µ2
1 − µ2)

More generally, Newton’s Identities say that:

k(−1)kSk + µ1(−1)k−1Sk−1 + · · ·+ µk = 0, ∀1 ≤ k ≤ n.

10.3. Right Multiplication. Given A ∈ Mm,n we saw that identi-
fying Fk ∼ Mk,1 then left multiplication by A defines a linear map
LA : Fn → Fm.

On the other hand we could identify spaces with rows, i.e., Fk ∼M1,k,
in which case we could right multiply row vectors by A to define a linear
map, RA : Fm → Fn. Note that for y ∈M1,m we have that (yA)t = Atyt

where yt ∈Mm,1. This shows that as linear maps, RA = LAt .
Thus, if A ∈ Mn then it really defines two maps, LA, RA = LAt :

Fn → Fn and so it is natural to wonder how do eigenvalues, etc. behave
for these two maps.

Theorem 10.17. Let A ∈Mn. Then

(1) pA(t) = pA
t
(t),

(2) σ(A) = σ(At),
(3) for λ in this common spectrum the algebraic multiplicities for

A and At are the same,
(4) for λ in this common spectrum, the geometric multiplicities for

A and At are the same.

11. Similarity

11.1. Change of Basis. Let L : V → V be linear, dim(V ) = n and let
B = {v1, ..., vn} be a basis for V . Then we can write L(vj) =

∑n
i=1 bi,jvi
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and the matrix B = (bi,j) is called the matrix of L with respect to
B and it is denoted B = matB(L).

If we let S : Fn → V be defined by S(ej) = vj and let LB : Fn → Fn
then we have that L = SLBS

−1.
Now suppose that to begin with V = Fn so that S is the matrix

whose columns are the vectors vj and we let L = LA, then we have
that

matB(LA) = B = S−1AS.

So we see that when we form B = S−1AS we are just considering the
same linear map but represented in a different basis.

Definition 11.1. Let A,B ∈ Mn the we say that B is similar to A
and write B ∼ A if there exists S ∈M−1

n such that B = S−1AS.

Proposition 11.2. Similarity is an equivalence relation, i.e., A ∼ A,
B ∼ A =⇒ A ∼ B and B ∼ A,C ∼ B =⇒ C ∼ A.

Proposition 11.3. If B ∼ A then:

(1) PA(t) = pB(t),
(2) σ(A) = σ(B),
(3) for each λ ∈ σ(A) = σ(B) its algebraic multiplicity is the same

for A and B,
(4) for each λ ∈ σ(A) = σ(B) its geometric multiplicity is the same

for A and B,
(5) Ek(A) = Ek(B) for all k.

Example 11.4. These properties do not characterize similarity. Let
Nk = (ci,j) ∈ Mk with ci,i+1 = 1 and ci,j = 0,∀j 6= i + 1, and set
N1 = 0. Let A,B ∈ M7 be defined by A = N2 ⊕ N2 ⊕ N3 and B =
N1 ⊕ N3 ⊕ N3. Then pA(t) = pB(t) = t7, σ(A) = σ(B) = {0}, the
algebraic multiplicity of 0 is 7 for both matrices and the geometric
multiplicity is 3 for both matrices. Also Ek(A) = Ek(B) = 0 for ll k.
But A � B, since dim(N (A2)) = 6 6= dim(N (B2)) = 5.

Definition 11.5. D = (di,j) ∈ Mn is diagonal provided that di,j =
0, ∀i 6= j. If di,i = αi, then we will often write, D = diag(α1, ..., αn).

Note that when D = diag(λ1, ..., λn) then pD(t) = (t−λ1) · · · (t−λn).

Definition 11.6. A matrix A ∈Mn is diagonalizable provided that
there exists S ∈M−1

n such that S−1AS is diagonal.

Proposition 11.7. A ∈ Mn is diagonalizable ⇐⇒ Cn has a basis
consisting of e-vectors for A.
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Definition 11.8. A set of matrices F ⊆Mn is called simultaneously
diagonalizable if there exists S ∈ M−1

n such that S−1AS is diagonal
∀A ∈ F . A set of matrices F ⊆ Mn is called commuting if ∀A,B ∈
F , AB = BA.

Lemma 11.9. Let B = B1 ⊕B2 ⊕ · · · ⊕Bk. Then B is diagonalizable
iff each Bi is diagonalizable.

Theorem 11.10. Let F ⊆Mn. Then F is simultaneously diagonaliz-
able iff F is commuting and each element of F is diagonalizable.

Remark 11.11. Let A,B ∈Mn. If A ∈M−1
n then A−1(AB)A = BA,

so AB ∼ BA. In this case we know that the spectral ”data” of AB
is the same as for BA, i.e., σ(AB) = σ(BA), pAB(t) = pBA(t) and
multiplicities of e-values are the same. So what can be said when

neither A nor B is invertible? If we let A =

(
1 1
0 0

)
and let B =(

1 0
−1 0

)
, then AB = 0, but BA =

(
1 1
−1 −1

)
, so these matrices are

not similar. However, pAB(t) = t2 = pBA(t), so σ(AB) = σ(BA) = {0}.
But notice that the geometry multiplicity of this e-value is different for
the two matrices.

Theorem 11.12. Let A ∈ Mm,n and let B ∈ Mn,m. Then tmpBA(t) =
tnpAB(t). Hence, σ(AB) ∪ {0} = σ(BA) ∪ {0}.

Corollary 11.13. Let A,B ∈Mn. Then pAB(t) = pBA(t) and σ(AB) =
σ(BA).

11.2. Persistence of Eigenvalues.

Lemma 11.14. Given µ1, ..., µn, if Sm(µ1, ..., µn) = 0, ∀m > n − k,
then at least k of the µ’s are 0.

Theorem 11.15. Let A ∈ Mn and let λ ∈ C. Consider the following
statements:

(1) λ is an e-value of A of geometric multiplicity greater than or
equal to k,

(2) for any m > n − k and any S ⊆ {1, ..., n}, |S| = m, λ is an
e-value of A[S, S],

(3) λ is an e-value of A of algebraic multiplicity greater than or
equal to k.

Then (1) =⇒ (2) =⇒ (3).

Example 11.16. Put example here to show that none of the converses
is true.
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12. Unitaries and Isometries

Definition 12.1. A linear map L : Fn → Fm is called an isometry if
‖Lx‖2 = ‖X‖2 for every x ∈ Fn.

Note: an isometry is 1-1 and so m ≥ n.

Theorem 12.2. Let V ∈Mm,n. Then the following are equivalent:

(1) LV is an isometry,
(2) the columns of V is an orthonormal set in Fm,
(3) V ∗V = In.

Recall that a set {u1, ..., un} is an orthonormal basis for Fn(o.n.b.)
provided that ui ⊥ uj, ∀i 6= j and ‖ui‖ = 1, ∀i. Parseval’s identities
say that if {u1, ..., un} is an o.n.b., then for every x ∈ Fn we have that

‖x‖22 =
n∑
i=1

|〈x, ui〉|2 and x =
n∑
i=1

〈x, ui〉ui.

Definition 12.3. A set of vectors, {r1, ..., rm} ⊆ Fn is called a Parse-
val frame provided that for every x ∈ Fn we have ‖x‖22 =

∑m
j=1 |〈x, rj〉|2.

Proposition 12.4. Let {r1, ..., rm} ⊆ Fn. The following are equivalent:

(1) {r1, ..., rm} is a Parseval frame for Fn,
(2) the m× n matrix [r1

... · · · ...rm]∗ is an isometry,
(3) for every x ∈ Fn, x =

∑m
j=1〈x, rj〉rj.

Definition 12.5. A Parseval frame is called uniform if ‖ri‖2 = ‖rj‖2, ∀i, j.
A Parseval frame is called equiangular if it is uniform and for all i 6= j,
|〈ri, rj〉| is a constant independent of i and j.

Remark 12.6. For Rn: if an equiangular Parseval frame of m vectors
exists, then m ≤ n(n + 1)/2. Also there are many n for which no
equiangular frame for Rn exists with m = n(n + 1)/2 vectors. There
is a partial classification known of all the pairs (n,m) for which there
exists an equiangular Parseval frame for Rn with m vectors. These are
known to exist iff a certain type of completely regular graph on n− 1
vertices exists.

For Cn: Even less is known about for which pairs (n,m) an equiangu-
lar Parseval frame of m vectors exists for Cn. It is known if an equian-
gular Parseval frame exists then m ≤ n2.

Zauner’s Conjecture is that for every n, there exists an equiangu-
lar Parseval frame of n2 vectors for Cn. This is only known to be true
for a few small values of n.
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Remark 12.7. A similar problem is the mutually unbiased basis
problem. Two o.n.b.’s {u1, ..., un} and {v1, ..., vn} for Cn are called
mutually unbiased provided that |〈ui, vj〉| is a constant independent
of i and j. It is easily shown that necessarily the constant is 1/

√
n.

The mutually unbiased basis problem is to find the maximum num-
ber M(n) of sets of o.n.b.’s for Cn that are mutually unbiased. The
conjecture is that M(n) = n+ 1. This is known to be true when n is a
prime power. It is a pretty bold conjecture because it is still unknown
even for n = 6. Note that every n < 6 is a prime power, so n = 6 is
the first integer that is not a prime power.

Definition 12.8. A matrix U ∈Mn is unitary if U∗U = In. A unitary
U ∈ Mn(R), is also called an orthogonal matrix. Since U∗ = U t, in
this case, we have that U ∈Mn(R) is orhtongonal iff U tU = In.

Theorem 12.9. Let U ∈Mn. The following are equivalent:

(1) U is unitary,
(2) U is invertible and U∗ = U−1,
(3) UU∗ = In,
(4) U∗ is unitary,
(5) the columns of U are an o.n.b. for Cn,
(6) the rows of U are an o.n.b. for Cn,
(7) U is an isometry.

Remark 12.10. The set of invertible n × n matrices, which I denote
M−1

n is a group called the general linear group and is generally
denoted GL(n, |bbF ). The set of unitary matrices is a subgroup of this
group, which is generally denoted U(n) in the complex case and O(n)
in the real case.

If we identify Mm,n with Fmn then we can endow matrices with the

Euclidean norm, which we write ‖A‖2 =
√∑m

i=1

∑n
j=1 |aI,j|2.

In this distance a sequence of matrices Ak = (ai,j(k)) converges to a
matrix A = (ai,j) iff limk ai,j(k) = ai,j, ∀i, j. We write Ak → A.

Lemma 12.11. The set of unitaries, U(n) is a closed and bounded set
and hence compact. In particular, every sequence of unitaries will have
a convergent subsequence.

Lemma 12.12. If U ∈ U(n) then |det(U)| = 1. If U ∈ O(n) then
det(U) ∈ {+1,−1}.

Example 12.13. In R2 if we rotate counterclockwise through angle
θ, then e1 → (cos(θ), sin(θ)) and e2 → (−sin(θ), cos(θ)). Thus, the
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matrix of this transformation is

R(θ) =

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
.

Note that R(θ1)R(θ2) = R(θ1 + θ2) and that det(R(θ)) = +1. In fact,
it can be shown that if U ∈ O(2) and det(U) = +1, then U = R(θ) for

some θ. Also, if U ∈ O(2) and det(U) = −1, then U = R(θ)

(
1 0
0 −1

)
for some θ.

13. Unitary Equivalence

Definition 13.1. A,B ∈Mn are unitarily equivalent if there exists
a unitary U so that B = U∗AU. We write A ∼ue B.

It is not hard to see that this is another equivalence relation on the
matrices and that A ∼ue B =⇒ A ∼ B.

Proposition 13.2. Let A ∼ue B. Then

(1) σ(A) = σ(B),
(2) pA(t) = pB(t),
(3)

∑n
i,j=1 |ai,j|2 =

∑n
i,j=1 |bi,j|2.

The easiest way to prove (3) is to use traces. Recall that for A ∈Mn,
Tr(A) =

∑n
i=1 ai,i.

Proposition 13.3. Let A ∈Mm,n and let B ∈Mn,m. Then Tr(AB) =
Tr(BA).

Now to see (3), we write

n∑
i,j=1

|ai,j|2 = Tr(A∗A) = Tr((UBU∗)∗(UBU∗)) = Tr(UB∗U∗UBU∗)

= Tr(UB∗BU∗) = Tr(B∗BU∗U) = Tr(B∗B) =
n∑

i,j=1

|bi,j|2.

Example 13.4. Let A =

1 1 1
0 2 1
0 0 3

 and let B = diag(1, 2, 3). Then

A ∼ B, since A is diagonalizable. But they are not unitarily equivalent
because they fail (3).

Example 13.5 (Radjavi). Fix distinct numbers a1, ..., an. Let A =
(ai,j) be upper triangular, with ai,i = ai and ai,i+1 > 0 for all i. Then
two such matrices are unitarily equivalent iff they are equal.
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13.1. The Specht Invariants. First we need the concept of free
non-commuting variables. Imagine that we have an alphabet with
only two letters, {s, t}. Then the “word” sst 6= sts. This is what we
mean by saying that the variables s and t are non-commuting, for if
they did commute then st = ts and so sts = sst. By “free” we mean
that no two words are the same unless they are exactly the same word.
Using exponents and introducing s0 and t0 to mean that there is no s
or t at that spot, then we can write every word as

W (s, t) = sn1tm1 · snktmk ,

for some k and some choice of n1, ..., nk,m1, ...,mk ∈ N
¯
∪ {0} := Z+.

The sum n1 + m1 + · · · + nk + mk is called the length of the word
W and is denoted, |W |.

The idea of words in two letters is that they can be used to express
a general product of matrices. Namely, if A,B ∈Mn and W (s, t) is as
above, then we set

W (A,B) = An1Bm1 · · ·AnkBmk .

Thus, for W (s, t) = s2t,W (A,B) = AAB = A2B, while if W (s, t) =
sts, then W (A,B) = ABA.

Note that is U is a unitary and B = U∗AU, then for any word W (s, t)
as above,

W (B,B∗) = Bn1(B∗)m1 · · ·Bnk(B∗)mk =

(U∗AU)n1(U∗A∗U)m1 · · · (U∗AU)nk(U∗A∗U)mk = U∗W (A,A∗)U.

Theorem 13.6 (Specht, 1940). Let A,B ∈Mn(C). Then A ∼ue B iff
Tr(W (A,A∗)) = Tr(W (B,B∗)) for every word W.

One implication is easy. IfB = U∗AU then Tr((B,B∗)) = Tr(U∗W (A,A∗)U) =
Tr(W (A,A∗)UU∗) = Tr(W (A,A∗)).

We outline the proof of the converse below.

Lemma 13.7. Let V,W be vector spaces over the same field, let {vα :
α ∈ A} ⊆ V with span{vα : α ∈ A} = V and let {wα : α ∈ A} ⊆ W
with span{wα : α ∈ A} = W , be two sets of spanning vectors indexed
by the same set. Then there exists a linear map L : V → W such
that L(vα) = wα iff whenever λi ∈ F is a finite set of scalars such that∑

i λivαi
= 0, it follows that

∑
i λiwαi

= 0.

If W1(s, t) = sn1tm1 · · · snktmk nd W2(s, t) = sp1tq1 · · · spj tqj then by
their product we mean the word obtained by concatenating thier
letters, i.e.,

W1W2(s, t) = sn1tm1 · · · snktmksp1tq1 · · · spj tqj .
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Note that this has the property that ifA,B ∈Mn thenW1(A,B) · · ·W2(A,B) =
W1W2(A,B).

Definition 13.8. Given a matrix A ∈ Mn then the *-algebra gen-
erated by A is the linear span of the identity matrix In and all the
words in A and A∗. We denote this by C∗(A).

Note that since we are in finite dimensions, the vector space C∗(A)
is automaticlly closed. Also if X, Y ∈ C∗(A), then XY,X∗ ∈ C∗(A).

Proposition 13.9. Let A,B ∈Mn. If Tr(W (A,A∗)) = Tr(W (B,B∗))
for every word W , then there exists a linear map π : C∗(A) → C∗(B)
that is one-to-one, onto and satisfies π(W (A,A∗)) = W (B,B∗). More-
over, π(XY ) = π(X)π(Y ), π(X∗) = π(X)∗.

Proof. First we argue that the linear map exists. We have that span{W (A,A∗) :
W is a word } = C∗(A) and span{W (B,B∗) : W is a word } = C∗(B).
To apply the Lemma we need to prove that X =

∑
i λiWi(A,A

∗) = 0
implies that Y =

∑
i λiWi(B,B

∗) = 0.

ButX = 0 iff Tr(X∗X) = 0 iff Tr
(∑

i,j λiλjWi(A,A
∗)Wj(A,A

∗)∗
)

=∑
i,j λiλjTr

(
Wi(A,A

∗)Wj(A,A
∗)
)

= 0.Note that each productWi(A,A
∗)Wj(A,A

∗)∗

is just a word in A and A∗ and that Wi(B,B
∗)Wj(B,B

∗)∗ is the same
word in B and B∗. Thus, the hypothesis guarantees that Tr(Y ∗Y ) =
0 and so there is a well-defined linear map π with π(W (A,A∗)) =
W (B,B∗).

Moreover, the same argument shows that if Y = 0 then X = 0 so
that π has an inverse and so must be one-to-one and onto.

Finally, since π(W1(A,A
∗)W2(A,A

∗)) = π(W1W2(A,A
∗)) = W1W2(B,B

∗) =
W1(B,B

∗)W2(B,B
∗) we have that π behaves multiplicatively on words

and from this it follows that it behaves multiplicatively on linear com-
binations of words. The proof that it preserves adjoints is similar. �

Thus, we see that the hypotheses of Specht’s theorem implies the
existence of this map π : C∗(A) → C∗(B) and that π will preserve
the trace of matrices. To complete his proof Specht used Wedderburn
theory to deduce that such a map must be implemented by a uni-
tary conjugation. Those of you familiar with the classification of finite
dimensional C*-algebras(which is essentially the Wedderburn theory)
should be able to complete this part on your own.

Specht’s theorem is lovely, but it requires the checking of the trac of
every word, which is not practical. Since the time of his proof, there
has been a great deal of effort on finding as few words as possible.

For example, for M2 it is known that the words s, ss, st suffice that
is:
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Proposition 13.10. Let A,B ∈ M2. Then A ∼ue B iff Tr(A) =
Tr(B), T r(A2) = Tr(B2), and Tr(AA∗) = Tr(BB∗).

A nice characterisation of unitary equivalence!
The first result to reduce the number of ords from infinitely many to

a finite set was:

Theorem 13.11 (Pearcy, 1962). Let A,B ∈ Mn. Then A ∼ue B iff
Tr(W (A,A∗)) = Tr(W (B,B∗)), ∀|W | ≤ 2n2.

The proof requires two lemas.

Lemma 13.12. Let LA(d) = span{W (A,A∗) : |W | ≤ d}. If LA(d) =
LA(d+ 1) then LA(d) = LA(m) for all m ≥ d.

Proof. Let |W | = m = d+ 1 + k, k ≥ 1. Then e can write W = W1W2

where |W1| = d+1 and |W2| = k. ThenW (A,A∗) = W1(A,A
∗)W2(A,A

∗).
ButW1(A,A

∗) can be written as a linear combination of words of length
at most d. Multiplying this linear combination by W2(A,A

∗) expresses
W (A,A∗) as a linear combination of words of length at most d + k.
Continuing in this manner we reduce the degree needed by one each
time. �

Lemma 13.13. Let A ∈Mn, then C∗(A) = LA(n2).

Proof. Since C∗(A) ⊆ Mn, we have that dim(C∗(A)) ≤ n2. Now 1 ≤
dim(LA(d)) ≤ dim(LA(d+ 1)) ≤ n2 and if they are not equal then the
dimension must grow by at least 1. By the pigeonhole principle, for
some d ≤ n2−1, we must have that dim(LA(d)) = dim(LA(d+1)). �

To prove Pearcy’s theorem we now use that C∗(A) = LA(n2) and
C∗(B) = LB(n2). We return to the proof of the existence of π in
Specht’s theorem. Now we need only argue that if X which is now
a sum of words of at most length n2 is equal to Y which is also a
sum of words of length at most n2. We used that X = 0 implies that
Tr(XX∗) = 0 and XX∗ is a sum of words of length at most 2n2. So if
traces of words of length up to length 2n2 agree, then we will get that
X = 0 implies that Tr(XX∗) = 0 implies that Tr(Y Y ∗) = 0 which
implies that Y = 0.

Once one ha the existence of the map π the rest of the proof of
Pearcy;s theorem is identical to the proof of the rest of Specht’s theo-
rem.

This theorem was the state of the art until recently, when the fol-
lowing was proved:
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Theorem 13.14 (Djokovic-Johnson). For each n there is a set of at

most n
√

2n2

n−1 + 1
4

+ n
2
− 2 words such that for A,B ∈Mn, we have that

A ∼ue B iff Tr(W (A,A∗)) = Tr(W (B,B∗)) for all words in this set.

Here is a set of 7 words that works for M3: s, s
2, ts, s3, s2t, s2t2, s2t2st.

13.2. Householder Transformations. Let w ∈ Fn, w 6= 0. Then the
Householder transformation is Uw = I − 2

‖w‖2ww
∗, thus, Uwx =

x − 2
‖w‖

2〈x,w〉w. Note that is w1 = rw for r ∈ F, then Uw = Uw1 . So

we will often assume that ‖w‖+ 1.
We now wish to define study this map more closely. Assume that

‖w‖ = 1. We can always decompose v ∈ Fn as v + v1 + v2 with v2 ⊥ w
and v1 = tw for some t ∈ F. In this case we see that

Uw(v) = v − 2〈tw + v2, w〉w = v − 2tw = v1 + v2 − 2v1 = v2 − v1.
This cn be seen to be the reflection of v about the space perpindicular
to w.

Proposition 13.15. U∗w = Uw and U2
w = I. So Uw is a unitary.

Lemma 13.16. Let x, u ∈ Cn with ‖x‖ = ‖u‖ = 1, and 〈x, u〉 ≥ 0. Set
w = u− x. Then Uw(x) = u and Uw(u) = x.

Theorem 13.17 (Schur). Let A ∈Mn and let λ1, ..., λn be the roots of
pA(t). Then there exists a unitray U that is a product of Householder
transformations such that U∗AU = T where T is an upper triangular
matrix with ti,i = λi, ∀i.

We now look at some consequences of Schur’s theorem.

Corollary 13.18. Let A ∈MN and let λ1, ..., λn be the roots of pA(t).
Then Tr(Ak) = λk1 + · · ·+ λkn = µk.

Remark 13.19. Recall that by Newton’s identities,Sk(λ1, ..., λn) =
Ek(A), 1 ≤ k ≤ n can be expressed as formulas in the µk, 1 ≤ k ≤ n.
Thus, the coefficients of pA(t) can also be expressed as formulas in
terms of Tr(Ak), 1 ≤ k ≤ n and so these numbers determine pA(t) and
consequently, λ1, ...λn.

Theorem 13.20. Let A ∈Mn and let ε > 0 be given. Then there exists
B ∈ Mn such that B is invertible and diagonalizble with ‖A − B‖2 =√∑n

i,j=1 |ai,j − bi,j|2 < ε.

Theorem 13.21 (Cayley-Hamilton). Let A ∈Mn then pA(A) = 0.

Corollary 13.22. Let A ∈M−1
n , then A−1 ∈ span{I, A, ..., An−1}.
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Given A1, ..., Ar ∈ Mn and B1, ..., Br ∈ Mm we can define a linear
map L : Mn,m → Mn,m by L(Y ) =

∑r
i=1AiY Bi. There is a great

deal of research devoted to issues such as determining the norm and
the spectrum of such maps, especially the cb-norms of such maps, for
those of you who have heard of this concept. Following is one result
that e will need.

Proposition 13.23. Let A ∈Mn and B ∈Mm and define L : Mn,m →
Mn,m by L(Y ) = AY−Y B. If σ(A)∩σ(B) is empty, then L is invertible.

Corollary 13.24. Let A ∈ Mn, B ∈ Mm, and X ∈ Mn,m. If σ(A) ∩

σ(B) is empty, then

(
A X
0 B

)
∼
(
A 0
0 B

)
.

Theorem 13.25. Let A ∈ Mn and let pA(t) = (t − λ1)
n1 · · · (t −

λk)
nk , then A is similar to a block diagonal matrix with diagonal blocks

T1, ..., Tk of sizes n1, ..., nk where each is of the form Ti = λiIni
+ Ni

where each Ni is strictly upper triangular.

This last reult is quite close to proving the existence of the Jordan
canonical form. We let Jn(λ) = λIn + Jn(0) ∈ Mn where Jn(0) =∑n−1

i=1 Ei,i+1. This matrix is called the elementary Jordan block of
size n and with eigenvalue λ. The Jordan theorem says that every
matrix is similar to a direct sum of such Jordan blocks.

To complete the proof of this theorem from the last result we would
only need to show that each Ti is similar to a direct sum of Jordan
blocks of the form Jm(λi) for some m’s. To do this it is enough to show
that each Ni is similar to a sum of Jm(0)’s. This is accomplished by
the following theorem, whose proof we omit. Note that because each
Ni is strictly upper triangular, Nni

i = 0.

Definition 13.26. A matrix N is called nilpotent if there is some K
such that NK = 0. The least such K is called the order of nilpotency
and N is said to be nilpotent of order K.

Theorem 13.27. Let N ∈ Mn be nilpotent of order K. Then N is
similar to a direct sum of Jordan blocks of the form Jm1(0), ..., Jmr(0)
with mi ≤ K for all i. Moreover, if we let li equal the number of Jordan
blocks of size i, 1 ≤ i ≤ K and let di = dim(N (N i)), 1 ≤ i ≤ K, then

di =
∑K

j=1min{i, j}lj. Since the matrix (min{i, j}) is invertible, this
equation determines the numbers li uniquely in terms of the numbers
di.

13.3. QR factorization and Gram-Schmidt. Recall that if B =

[b1
... · · · ...bn] ∈Mm,n andR = (ri,j) ∈Mn,p, thenBR = [

∑
i ri,1bi

... · · · ...
∑

j ri,pbi].
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Theorem 13.28. Let A ∈ Mm,n then there exists U ∈ U(m) and an
R ∈Mm,n that is upper triangular such that A = UR.

14. Normal and Hermitian Matrices

Proposition 14.1 (Cartesian Decomposition). Let A ∈ Mn. We de-
fine

Re(A) =
A+ A∗

2
and Im(A) =

A− A∗

2i
.

Then Re(A)∗ = Re(A), Im(A)∗ = Im(A), A = Re(A)+ iIm(A) and if
H = H∗, K = K∗ satisfy A = H + iK, then H = Re(A), K = Im(A).

We adopt the notation [X, Y ] = XY − Y X. So that XY = Y X iff
[X, Y ] = 0.

Definition 14.2. A matrix A is normal if [A,A∗] = 0. A matrix B is
unitarily diagonalizable if there exists a unitary U so that U∗BU is
diagonal.

If A = A∗ then A is normal.

Theorem 14.3. Let A ∈Mn and let pA(t) = (t− λ1) · · · (t− λn). The
following are equivalent:

(1) A is normal,
(2) [Re(A), Im(A)] = 0,
(3) A is unitarily diagonalizable,
(4)

∑n
i,j=1 |ai,j|2 =

∑n
j=1 λn|2,

(5) there exists an orthonormal basis of for Cn consisting of e-
vectors for A.

Corollary 14.4. Let A ∈Mn. The following are equivalent:

(1) A = A∗,
(2) there exists a unitary U such that U∗AU is a diagonal matrix

with real entries,
(3) there exists an orthonormal basis for Cn consisting of e-vectors

for A with real e-values.

Theorem 14.5. Let A ∈ Mn. Then A = A∗ iff 〈Ax, x〉 ∈ R for every
x ∈ Cn.

Let A = A∗ then we know the roots of pA(t) are all real. We shall
order them so that λ1 ≤ . . . ≤ λn.

Theorem 14.6 (Rayleigh-Ritz). Let A = A∗ ∈Mn. Then:

(1) λ1x
∗x ≤ 〈Ax, x〉 ≤ λnx

∗x, ∀x ∈ Cn,
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(2) λn =
max
x 6= 0

〈Ax,x〉
x∗x

=
max
‖x‖ = 1

〈Ax, x〉,

(3) λ1 =
min
x 6= 0

〈Ax,x〉
x∗x

=
min
‖x‖ = 1

〈Ax, x〉.

Corollary 14.7. Let A = A∗ ∈ Mn, let x ∈ Cn, x 6= 0, and let

α = 〈Ax,x〉
x∗x

. Then there is an e-value for A in (−∞, α] and in [α,+∞).

Lemma 14.8 (Subspace Intersection Lemma). Let V1, V2 be finite di-
mensional subspaces of a vector space W . Then

dim(V1 + V2) + dim(V1 ∩ V2) = dim(V1) + dim(V2).

Proof. Consider the onto map L : V1 ⊕ V2 → V1 + V2 defined by
L((v1, v2)) = v1 − v2 and apply the rank-nullity. �

Corollary 14.9. If dim(V1) + dim(V2)− dim(V1 + V2) ≥ 1, then V1 ∩
V2 6= (0).

Given A = A∗ ∈ Mn if the roots of pA(t)(including multiplicities)
are ordered so that λ1 ≤ . . . ≤ λn, then we set λi(A) = λi.

Theorem 14.10 (Courant-Fischer). Let A = A∗ ∈Mn, let 1 ≤ k ≤ n,
let S always denote a subspace of Cn and let S1 = {x ∈ S : ‖x‖ = 1}
denote the unit sphere. Then

(1) λk(A) =
min

dim(S) = k

( max
x ∈ S1

〈Ax, x〉
)
,

(2) λk(A) =
max

dim(S) = n− k + 1

( min
x ∈ S1

〈Ax, x〉
)
.

Theorem 14.11. Let A = A∗ ∈ Mn, let S ⊆ Cn be a subspace of
dimension k, let S1 denotes its unit sphere, and let c ∈ R.

(1) If c ≤ 〈Ax, x〉, ∀x ∈ S1, then c ≤ λn−k+1(A)(if the 1st inequality
is strict, then so is the 2nd),

(2) If 〈Ax, x〉c, ∀x ∈ S1, then λk(A) ≤ c(if the 1st inequality is
strict, then so is the 2nd).

Theorem 14.12 (Weyl). Let A = A∗, B = B∗ both in Mn. Then:

(1) λi(A + B) ≤ λi+j(A) + λn−j(B), ∀0 ≤ j ≤ n − 1, 1 ≤ i ≤ n.
Equality holds in this inequality iff ∃x 6= 0, such that Ax =
λi+j(A)x,Bx = λn−j(B)x and (A+B)x = λi(A+B)x.

(2) λi−j+1(A) + λj(B) ≤ λi(A + B), ∀1 ≤ i ≤ n, 1 ≤ j ≤ i.
Equality holds in this inequality iff ∃x 6= 0 such that Ax =
λi−j+1(A)x,Bx = λj(B)x and (A+B)x = λi(A+B)x.

To prove we needed:
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Lemma 14.13 (2nd Subspace Lemma). Let S1, ..., Sk be subspaces of
Cn. Let

δ = dim(S1) + · · · dim(Sk)− (k − 1)n.

Then dim(S1 ∩ · · · ∩ Sk) ≥ δ.

Proof. Consider the linear map L : S1 ⊕ · · ·Sk → (S1 + S2) ⊕ · · · ⊕
(Sk−1 +Sk) defined by L(v1, ..., vk) = (v1− v2, . . . , vk−1− vk) and apply
rank-nullity. �

Theorem 14.14 (Cauchy’s Eigenvalue Interlacing Theorem). Let A =

A∗ ∈ Mn, let y ∈ Cn, let a ∈ R and define Â = Â∗ ∈ Mn+1 by

Â =

(
A y
y∗ a

)
. Then

λi(Â) ≤ λi(A) ≤ λi+1(Â), ∀1 ≤ i ≤ n.

This yields another persistence theorem.

Corollary 14.15. Let A = A∗ ∈Mn. Suppose that λ is an eigenvalue
of A of geometric multiplicity k. Let C ∈Mn,k−1 let D ∈Mk−1 and let

B =

(
A C
C∗ D

)
. Then λ is an eigenvalue of B.

The following shows that all ”interlacings” are attained.

Theorem 14.16. Let

µ1 ≤ λ1 ≤ µ2 ≤ . . . ≤ µn ≤ λn ≤ µn+1.

Then there exists A = A∗ ∈Mn, yk ≥ 0, 1 ≤ k ≤ n, y = (y1, ..., yn)t and

a ∈ R such that for Â =

(
A y
y∗ a

)
one has that λj(A) = λj,∀1 ≤ j ≤ n

and λj(Â) = µj,∀1 ≤ j ≤ n+ 1.

Theorem 14.17. Let A = A∗ = (ai,j) ∈Mn and let 1 ≤ m ≤ n. Then∑m
i=1 λi(A) ≤

∑m
i=1 ai,i.

Proof. Let Am = A[{1, ...,m}, {1, ...,m}] be the ”upper left” m × m
corner of A. So that Am+1 is obtained from Am by adjoining a row
and column. Hence by eigenvalue interlacing, λi(Am+1) ≤ λi(Am), for
1 ≤ i ≤ m. Inductively, we obtain that for A = An, λi(A) ≤ λi(Am)
for 1 ≤ i ≤ m. Hence,

m∑
i=1

λi(A) ≤
m∑
i=1

λi(Am) = Tr(Am) =
m∑
i=1

ai,i.

�
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Corollary 14.18. Let A = A∗ ∈Mn and let 1 ≤ m ≤ n. Then
m∑
i=1

λi(A) =
min

u1, ..., um

m∑
i=1

〈Aui, ui〉,

where the minimum is taken over all orthonormal sets {u1, ..., um} ∈
Cn.

Proof. Each such orthonormal set can be extended to a basis {u1, ..., un}
and the matrix of A with respect to this basis is (〈Au + j, ui〉). Us-
ing the fact that λi(A) = λi(U

∗AU) for any unitary, and applying the
above result, shows that the LHS is less than the RHS. Choosing the
onb such that Aui = λi(A)ui shows the equality. �

14.1. Majorization. Let x = (x1, ..., xn) ∈ Rn, then we let x↓ =

(x↓1, ..., x
↓
n) denote the rearrangement of x into decreasing order, i.e.,

x↓1 ≥ · · · ≥ x↓n. We also let x↑ = (x↑1, ..., x
↑
n) denote the increasing

rearrangement of x.

Proposition 14.19. Let x = (x1, ..., xn), y = (y1, ..., yn) ∈ Rn with∑n
i=1 xi =

∑n
i=1 yi. The following are equivalent:

(1)
max

{1 ≤ i1 < · · · < ik ≤ n}
(∑k

j=1 xik
)
≥

max

{1 ≤ i1 < · · · < ik ≤ n}
(∑k

j=1 yij
)
, ∀1 ≤ k ≤ n,

(2)
∑k

j=1 x
↓
j ≥

∑k
j=1 y

↓
j , ∀1 ≤ k ≤ n,

(3)
∑k

j=1 x
↓
j ≤

∑k
j=1 y

↓
j , ∀1 ≤ k ≤ n,

(4)
min

{1 ≤ i1 < · · · < ik ≤ n}
(∑k

j=1 xij
)
≤

min

{1 ≤ i1 < · · · < ik ≤ n}
(∑k

j=1 yij
)
, ∀1 ≤ k ≤ n.

Definition 14.20. We say that x = (x1, ..., xn) majorizes y = (y1, ..., yn)
provided that

∑n
i=1 xi =

∑n
i=1 yi and any of the four above equivalent

conditions holds.

Theorem 14.21 (Schur). Let A = A∗ = (ai,j) ∈ Mn with pA(t) =∏n
i=1(t− λi). Then (λ1, ..., λn) majorizes (a1,1, ..., an,n).

Proof. We can apply a permutation unitary to A so that the diagonal
elements of P ∗AP = B = (bi,j) are arranged in increasing order, i.e.,

so that bi,i = a↑i,i. By the above theorem,

m∑
i=1

λ↑i =
m∑
i=1

λi(A) =
m∑
i=1

λi(B) ≤
m∑
i=1

bi,i =
m∑
i=1

a↑i,i.

�
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15. Positive Semidefinite Matrices

Definition 15.1. A ∈Mn is positive semidefinite denoted by A ≥ 0
or 0 ≤ A, provided that ∀x ∈ Cn we have that 〈Ax, x〉 ≥ 0. It is called
positive definite denoted A > 0 or 0 < A provided that 〈Ax, x〉 > 0
for all 0 6= x ∈ Cn.

Proposition 15.2. A ≥ 0 iff A = A∗ and λi(A) ≥ 0 for all i.

Proposition 15.3. The following are equivalent:

• A > 0,
• A = A∗ and λi(A) > 0 for all i,
• ∃ δ > 0 such that 〈Ax, x〉 ≥ δ for all x ∈ Cn, ‖x‖2 = 1,
• A ≥ 0 and det(A) > 0.

Lemma 15.4. Let A = A∗ ∈M−1
n . Then A−1 = (A−1)∗ and pA−1(t) =∏n

i=1(t− λi(A)−1).

Proposition 15.5. • A ≥ 0 =⇒ A = At ≥ 0,
• A > 0 =⇒ A = At > 0 and A−1 > 0,
• A ≥ 0 and S ⊆ {1, ..., n} implies A[S, S] ≥ 0,
• A > 0 and S ⊆ {1, ..., n} implies A[S, S] > 0.

Proposition 15.6. Let A ≥ 0(respectively, A > 0), then Ak ≥ 0(resp.,
Ak > 0) for any k ∈ N.

Set Am = A[{1, ...,m}, {1, ...,m}].

Theorem 15.7. Let A = A∗ ∈ Mn. Then A > 0 iff det(Am) > 0 for
all 1 ≤ m ≤ n.

Remark 15.8. This result is often used in multivariable calculus. Sup-
pose that D ⊆ Rn is an open set and that f : D → R is in C2(D). The
Hessian of f at a point x is defined by

Hf (x) = (
∂2f(x)

∂i∂j
).

If f ′(x0) = 0 and Hf (x0) > 0, then x0 is a relative minimum. By the
above theorem, Hf (x0) > 0 iff each of the subdeterminants is positive.
Instead of stating that the matrix must be positive definite, which
is a concept not usually introduced in calculus, the positivity of the
subdeterminants is often given as the criteria for a relative minimum.

If f ′(x0) = 0 and −Hf (x0) > 0, then x0 is a relative maximum. In
terms of subdeterminants, this is equivalent to the signs of the sub-
determinants of Hf (x0) having alternating signs, which again is the
criteria given in calculus for a relative maximum.
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So the real theorem to remember is the positive definite condition on
the Hessian matrix, because this can often be seen more readily then
computing so many determinants.

Proposition 15.9. Let A ∈Mn, C ∈Mn,m. If A ≥ 0, then C∗AC ≥ 0.
In particular, C∗C ≥ 0.

Proposition 15.10. A ∈Mn, k ∈ N, then there exists B ∈Mn, B ≥ 0
with Bk = A.

Proof. Let U∗AU = D = diag(λ1, ..., λn) and setB = U∗diag(λ
1/k
1 , ..., λ

1/k
n )U.

�

Definition 15.11. We will denote the B obtained in this was as A1/k.

Later we will prove uniqueness of this k-th root.

15.1. Factorization and Decomposition of Positive semidefinite
matrices.

Proposition 15.12. Let A ≥ 0, then there exists C such that A =
C∗C.

Proof. Let C = A1/2. �

Proposition 15.13. Let A ≥ 0 and let x ∈ Cn. Then Ax = 0 iff
〈Ax, x〉 = 0.

Proposition 15.14. Let A ∈Mn. If A ≥ 0, then there exists an upper
triangular matrix R such that A = R∗R.

Proof. Write A = C∗C as above, then QR-factor, C = QR and note
that since Q is unitary, A = R∗R. �

Proposition 15.15. Let P ∈ Mn, P ≥ 0, then R(P ) ⊥ N (P ) and
R(P ) +N (P ) = Cn.

Lemma 15.16 (Cholesky’s Lemma). Let P = P ∗ be written in block

form as P =

(
A B
B∗ C

)
with A > 0. Then the following are equivalent:

(1) P ≥ 0,

(2) P −
[

A1/2

B∗A−1/2

] [
A1/2 A−1/2B

]
≥ 0,

(3) C −B∗A−1B ≥ 0.

Lemma 15.17. Let P = (pi,j) ≥ 0. If there exists i such that pi,i = 0,
then pi,j = pj,i = 0, ∀j.
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Remark 15.18 (Cholesky’s Algorithm). We described how to apply
Cholesky’s lemma to obtain a fast algorithm that 1) determines if P ≥ 0
while at the same time 2) factoring P = T ∗T with T upper triangular.
This gives a 2nd way to factor, with the first based on QR which in
turn is based on the Gram-Schmidt algorithm. In general Cholesky is
faster.

15.2. Decomposition. Each factorization P = C∗C also yields a way
to write P as a sum of rank one positives. To see this recall that when
X = [x1, ..., xn] in terms of columns and Y = [r1, ..., rn]t is written in
terms of rows thenXY =

∑n
i=1 xiy

∗
i which decomposes the product into

a sum of rank ones. Thus, each factorization of P = XX∗ =
∑n

i=1 xix
∗
i

expresses P as a sum of rank one positives.
There is a third way to factorize/decompose P ≥ 0 which is called

the spectral factorization/decomposition. Choose an onb of eigen-
vectors {u1, ..., un} with Pui = λiui and note that P =

∑n
i=1 λiuiu

∗
i =∑n

i=1(
√
λiui)(

√
λiui)

∗.

15.3. Subspaces and Orthogonal Complements.

Definition 15.19. Let V ⊆ Cn be a subspace. Then the orthogonal
complement of V is the set

V ⊥ = {w ∈ Cn : w ⊥ v, ∀v ∈ V }.
Proposition 15.20. V ⊥ is a subspace and V ∩ V ⊥ = (0).

Theorem 15.21. Let V ⊆ Cn be a subspace, with dim(V ) = d, let

{v1, ..., vd} be an onb for V and set P =
∑d

i=1 viv
∗
i . Then:

(1) P = P 2 = P ∗,
(2) R(P ) = V ,
(3) Pv = v,∀v ∈ V ,
(4) P (V ⊥) = (0),
(5) (I − P ) = (I − P )2 = (I − P )∗,
(6) R(I − P ) = V ⊥,
(7) (I − P )w = w,∀W ∈ V ⊥,
(8) V + V ⊥ = Cn and for each x ∈ Cn there is a unique way to

write x = v + w with v ∈ V, and w ∈ V ⊥,
(9) if {w1, ..., wd} is another onb for V , then P =

∑d
i=1wiw

∗
i .

Definition 15.22. We call the P obtained in the above theorem the
orthogonal projection of Cn onto V .

Definition 15.23. Let {w1, ..., wn} ⊆ Ck. The Gram matrix or
Grammian of these vectors is the matrix G = (gi,j) ∈Mn with gi,j =
〈wj, wi〉.
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Theorem 15.24. Let {w1, ..., wn} ⊆ Ck and let W = [w1
... . . .

...wn] ∈
Mk,n. Then:

(1) G = W ∗W and hence G ≥ 0,
(2) G > 0 iff {w1, ..., wn} is a linearly independent set,
(3) rank(G) = rank(W ) = dim(span{w1, ..., wn}).

15.4. The Polar Form and the Singular Value Decomposition.

Definition 15.25. Given A ∈Mm,n we set |A| = (A∗A)1/2 ∈Mn which

we call the absolute value of A. The numbers, si(A) := λ↓i (|A|), 1 ≤
i ≤ n are called the singular values of A.

Lemma 15.26. Let A ∈Mm,n and let x ∈ Cn. Then ‖Ax‖2 = ‖|A|x‖2
and so Ax = 0 iff |A|x = 0.

Theorem 15.27 (Polar Decomposition Theorem I). Let A ∈ Mm,n.
Then there exists a unique isometry W : R(|A|) → R(A) such that
A = W |A|.
Theorem 15.28 (Polar Decomposition Theorem II). Let A ∈Mn then
there exists a unitary U such that A = U |A|.
Corollary 15.29. Let A ∈Mn then there exists a unitary V such that
A = |A∗|V.
Corollary 15.30 (Singular Value Decomposition I). Let A ∈ Mn let
S = diag(s1(A), ..., sn(A)). Then there exists unitaries U, V such that
A = USV.

Corollary 15.31 (Singular Value Decomposition II). Let A ∈Mn then
there exists onb’s {u1, ..., un} and {v1, ..., vn} for Cn such that

A =
n∑
i=1

si(A)uiv
∗
i .

15.5. Schur Products.

Definition 15.32. Let A = (ai,j), B = (bi,j) ∈ Mm,n. Then their
Schur(or Hadamard or freshman) product is the matrix

A ◦B = (ai,jbi,j) ∈Mm,n.

Properties: A◦B = B ◦A, (A◦B)◦C = A◦ (B ◦C), A◦ (B+C) =
A ◦B + A ◦ C, λ(A ◦B) = (λA) ◦B = A ◦ (λB).

These properties imply that the map ◦ : Mm,n × Mm,n → Mm,n

is bilinear. Finally, note that if J is the matrix of all 1’s and the
appropriate size, then J ◦ A = A ◦ J = A.

Theorem 15.33. Let A,B ∈Mn. If A ≥ 0 and B ≥ 0, then A◦B ≥ 0.
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15.6. The Positive Semidefinite Ordering. Given A = A∗, B =
B∗ ∈Mn we write A ≥ B (or B ≤ A) iff A−B is positive semidefinite.
We write A > B(or B < A) iff A−B is positive definite.

Proposition 15.34. Let A = A∗, B = B∗, C = C∗ ∈Mn. Then

(1) A ≤ B and B ≤ A implies A = B
(2) A ≤ B,B ≤ C implies A ≤ C,
(3) A ≤ B implies A+ C ≤ B + C,
(4) A ≤ B and X ∈Mn,m implies X∗AX ≤ X∗BX.

Lemma 15.35. A ≥ I implies A−1 ≤ I.

Theorem 15.36. Let A = A∗, B = B∗ ∈Mn. Then

(1) A ≥ B > 0 implies A−1 ≤ B−1,
(2) A ≥ B ≥ 0 implies det(A) ≥ det(B) and Tr(A) ≥ Tr(B)
(3) A ≥ B implies λk(A) ≥ λk(B) for 1 ≤ k ≤ n.

Theorem 15.37. Let P ∈ Mn and let S ⊆ {1, ..., n}. If P > 0 then
P−1[S, S] ≥ P [S, S]−1.

16. Matrix Norms

Definition 16.1. V a vector space, then a map ‖ · ‖ : V → R is called
a norm provided:

(1) ‖v‖ ≥ 0 ∀v,
(2) ‖v‖ = 0 iff v = 0,
(3) ‖λv‖ = |λ|‖v‖,
(4) ‖v + w‖ ≤ ‖v‖+ ‖w‖.

Example 16.2. ‖v‖2 =
(∑n

i=1 |λi|2
)1/2

, ‖v‖1 =
∑n

i=1 |λi| and ‖v‖∞ =
max{|λ1|, ..., |λn|} are three norms on Fn that we will use.

Remark 16.3. One fact that we will use without proof is that given
any pair of norms on Fn then there are constants C1, C2 > 0 such that
‖v‖1 ≤ C2‖v‖2 and ‖v‖2 ≤ C1‖v‖1 for all v ∈ Fn.

Definition 16.4. A norm ‖·‖ on Mn is called a matrix norm provided
that ‖AB‖ ≤ ‖A‖‖B‖.

Careful: In functional analysis courses they also require that ‖In‖ =
1, which we do not require.

Example 16.5. For A ∈Mn if we set ‖A‖2 =
(∑n

i,j+1 |ai,j|2
)1/2

, then

this defines a matrix norm with ‖In‖ =
√
n. So is ‖A‖1 =

∑m
i,j=1 |ai,j|

and ‖In‖1 = n.
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Example 16.6. If we set ‖A‖∞ = max{|ai,j| : 1 ≤ i, j ≤ n} then this
is not a matrix norm. An easy way to see is to let Jn denote the matrix
of all 1’s. Then J2

n = nJn. Hence, n = ‖J2
n‖∞ > ‖Jn‖∞‖Jn‖∞.

Example 16.7. Given any norm ‖·‖ on Fn if we set ‖A‖ = sup{‖Ax‖ :
‖x‖ = 1} then this defines a matrix norm on Mn that we call the
induced operator norm. For such norms we always have that ‖In‖ =
1.

Proposition 16.8. Let ‖ · ‖ be any matrix norm on Mn. Then:

(1) ‖In‖ ≥ 1,

(2) if A ∈M−1
n then ‖A−1‖ ≥ ‖I‖

‖A‖ ,

(3) ∀λ ∈ σ(A), we have that |λ| ≤ ρ(A) ≤ ‖A‖.
Theorem 16.9. Let A ∈Mn. Then

ρ(A) = inf{‖A‖ : ‖ · ‖ is a matrix norm on Mn}.
Since all norms on Mn are equivalent, a sequence of matrices con-

verges to 0 in a particular norm iff their entries converge to 0, i.e.,
convergence to 0 has the same meaning independent of the particular
norm.

Corollary 16.10. Let A ∈Mn. If ρ(A) < 1 then Ak → 0.

Theorem 16.11 (Gelfand). Let ‖ · ‖ be any matrix norm on Mn and
let A ∈Mn. Then ρ(A) = limn ‖An‖1/n.

Given a power series p(z) =
∑+∞

k=0 pkz
k and a matrix A ∈ Mn we

let pN(z) =
∑N

k=0 pkz
k. We say that p(A) converges if there exists a

matrix B such that B − pN(A)→ 0 as N → +∞.

Theorem 16.12. Let p(z) =
∑+∞

k=0 pkz
k with radius of convergence R

and let A ∈Mn. If ρ(A) < R then the power series p(A) =
∑+∞

k=0 pkA
k

converges.

Corollary 16.13. Let A ∈Mn. If there exists a matrix norm such that
‖In − A‖ < 1, then A ∈ M−1

n and the series
∑+∞

k=0(I − A)k converges
to A−1.

17. Gersgorin Type Theorems

Given A ∈ Mn we write A = D + B where D = diag(a1,1, ..., an,n)

so that B is a matrix with 0 diagonal. Set R
|prime
i =

∑
j 6=i |ai,j| and let

Ωi = {z ∈ C : |z − ai,i| ≤ R
|prime
i }.

Theorem 17.1 (Gersgorin). Let A = (ai,j) ∈ Mn and let G(A) =
∪ni=1Ωi. Then σ(A) ⊆ G(A).
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Corollary 17.2. Let C ′j =
∑

i 6=j |ai,j| and let Ω′ = {z ∈ C : |z−aj,j| ≤
C ′j}. Then σ(A) ⊆

(
∪ni=1 Ωi

)
∩
(
∪nj=1 Ω′j

)
.

The next result needed a little background in contour integration
first.

Theorem 17.3. Let A ∈Mn and assume that there is a set of {i1, ..., ik} ⊆
{1, ..., n} has the property that

(
∪kl=1Ωil

)
∩
(
∪j 6=il, ∀lΩj

)
is empty. Then

pA(t) has exactly k roots in the set ∪kl=1Ωil.

Note that if we let S = diag(p1, ..., pn) with pi > 0, ∀i then S−1AS =
(p−1i ai,jpj). Hence,

σ(A) = σ(S−1AS) ⊆ G(S−1AS) = ∪ni=1{z : |z−ai,i| ≤ p−1i
∑
j 6=i

pj|ai,j|}.

In particular, σ(A) must be int the intersection of all such sets as we
vary p1, ..., pn.

Corollary 17.4. Let A ∈Mn then

ρ(A) ≤
min

{p1, ..., pn > 0}
max

{1 ≤ i ≤ n} p−1i
∑
j 6=i

pj|ai,j|.

Definition 17.5. A matrix A = (ai,j) is diagonally dominant(d.d)
provided that |ai,i| ≥

∑
j 6=i |ai,j|, ∀i and strictly diagonally domi-

nant(s.d.d) provided that |ai,i| >
∑

j 6=i |ai,j|,∀i.
Let RHP = {z ∈ C : Re(Z) > 0} which we call the right half

plane.

Theorem 17.6. Let A ∈Mn be s.d.d. then:

(1) A ∈M−1
n ,

(2) if ai,i > 0, ∀i then σ(A) ⊆ RHP ,
(3) if A = A∗ and ai,i > 0,∀i, then A is positive definite.
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