
MATRIX ANALYSIS HOMEWORK

VERN I. PAULSEN

1. Due 9/25

We let Sn denote the group of all permutations of {1, ..., n}.
1. Compute the determinants of the elementary matrices: U(k, l), D(k, λ),

and S(k, l;λ)
2. Let Jn ∈Mn be the matrix of all 1’s.
(i) Use Laplace’s formula and induction to prove that det(Jn) = 0

for all n.
(ii) Use (i) to prove that there is an equal number of even and odd

permutations in Sn.
3. Given a permutation σ ∈ Sn, let Pσ, Qσ ∈ Mn be the matrices

defined by Qσ =
∑n

i=1Ei,σ(i) and Pσ =
∑n

j=1Eσ(j),j.

(i) Prove that PσQσ = QσPσ = In
(ii) Prove that det(Pσ) = det(Qσ) = sgn(σ).(So this can be used to

define sgn(σ).)
(iii) Given A ∈Mn describe PσA,QσA, APσ, and AQσ.
(iv) Prove that

∑
σ∈Sn

Pσ = (n− 1)! · Jn.
(v) If π : {1, ..., n} → {1, ..., n} is another permutation, prove that

PσPπ = Pσ◦π and QσQπ = Qπ◦σ where (f ◦ g)(i) = f(g(i)) is the
composition of two functions.

(vi) Find the mistake in the Wiki page on permutation matrices!
4. A matrix P ∈Mn is called a permutation matrix provided that

each row and column of P has exactly one 1 and the remaining entries
are 0’s. Prove that P is a permutation matrix if and only if there is a
permutation σ such that P = Pσ(hence the name).

5. A matrix T = (ti,j) is upper(resp., lower) triangular provided
that ti,j = 0 for i > j(resp., i < j).

Use induction to prove that if T ∈ Mn is upper or lower triangular
then det(T ) =

∏n
i=1 ti,i.

6. Let Bn = (min{i, j}) ∈Mn.
Prove that det(Bn) = 1.
7. Let Cn = (max{i, j}) ∈Mn. Find and prove a formula for det(Cn).
8. Prove that perm(Bn) ≤ (n!)2 ≤ perm(Cn).
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2 V. I. PAULSEN

2. Due 10/2

1. Let A ∈ Mn1+n2 have block form A =

[
A1,1 A1,2

0 A2,2

]
, where Ai,j ∈

Mni,nj
and A2,1 = 0. It is ”easy” to see, but messy to write down

a proof that det(A) = det(A1,1)det(A2,2). From this it follows that
A is invertible ⇐⇒ det(A) 6= 0 ⇐⇒ det(A1,1) 6= 0 and
det(A2,2) 6= 0 ⇐⇒ A1,1 and A2,2 are invertible. The purpose of this
exercise is to prove this fact without using determinants.

(i) Prove that A is invertible if and only if A1,1 and A2,2 are invertible
by expressing A−1 in block form.

(ii) Prove, more generally, that σ(A) = σ(A1,1) ∪ σ(A2,2).
2. Let A ∈Mn.
(i) Let q be a polynomial such that q(λ) 6= 0 for all λ ∈ σ(A). Prove

that q(A) is invertible.
(ii) Prove that for q as in (i) and any other polynomial p, we have

that p(A)q(A)−1 = q−1(A)p(A).
(iii) Let p1, p2, q1, q2 be polynomials such that qi(λ) 6= 0, for all λ ∈

σ(A), i = 1, 2 and such that p1q2 = p2q1. Prove that p1(A)q1(A)−1 =
p2(A)q2(A)−1.

(iv) For q as in (i) and p any polynomial, the rational function r(x) =
p(x)/q(x) is defined on σ(A) and we set r(A) = p(A)q(A)−1. Prove that
σ(r(A)) = {r(λ) : λ ∈ σ(A)}.

3. Let λ ∈ C and let A =

[
λ 1
0 λ

]
∈ M2 and let B =

λ 1 0
0 λ 1
0 0 λ

 ∈
M3.

(i) Prove that σ(A) = σ(B) = {λ}.
(ii) Prove formulas for the entries of An and Bn.
(ii) Let p, q be polynomials, with q(λ) 6= 0 and let r(x) = p(x)/q(x).

Give and prove explicit formulas for the entries of r(A) and r(B).
4. Let 1 ≤ d < n, and let A = (ai,j) ∈ Mn with A = A∗, ai,i =

aj,j,∀i, j and pA(t) = tn−d(t− 1)d. (Such matrices do exist.)
(i) Find the values of the symmetric functions, Sk, 1 ≤ k ≤ n for this

matrix.
(ii) Find the common value of the diagonal entries.
(iii) Find the sum of the squares of all the strictly upper triangular

entries of A, i.e.,
∑

1≤i<j≤n |ai,j|2.
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3. Due 10/9

1. Let x, y ∈ Fn ∼ Mn,1, B ∈ M−1
n . Prove that det(B − xy∗) =

det(B)(1− 〈B−1x, y〉). HInt: Consider

(
1 y∗

x B

)
.

2. Suppose that A ∈ Mn, n ≥ 2 is singular and that σ(A)\{0} is
non-empty. Let r = min{|λ| : λ ∈ σ(A), λ 6= 0}.

(i) Prove that for 0 < |z| < r A+ zIn ∈M−1
n .

(ii) Prove that for any A = (ai,j) ∈ Mn and any ε > 0, there is
B = (bi,j) ∈ M−1

n with
∑n

i,j=1 |ai,j − bi,j|2 < ε2. This is often referred
to as the ”density of the invertibles”.

3. Give an example of a matrix A ∈Mn such that λ is an e-value of
A of geometric multiplicity 1, and such that for any |S| ≥ 1, we have
that λ is an e-value of A[S, S].(This shows that b =⇒ a is false in the
persistence of e-values theorem.)

4. Let A ∈ Mm,n. Prove that A is rank 1 iff there exist non-zero
x ∈Mm,1, y ∈Mn,1 such that A = xy∗.

5. Let A = xy∗ as in 4, with n = m ≥ 2.
(i) Show that if x, y are linearly independent, then σ(xy∗) = {0}.
(ii) Show that if y = αx, α 6= 0 then σ(xy∗) = {0, α‖x‖22}.
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4. Due 10/16

1. Let V : Fn → Fm be an isometry. Prove that pV V ∗(t) = tm−n(t−
1)n.

2. Prove that the n vectors vj = (cos(2πj/n), sin(2πj/n)), 0 ≤ j ≤
n − 1 are a uniform Parseval frame for R2 and that in the case n = 3
they are an equiangular uniform Parseval frame.

3. Let {v1, ..., vm} ⊆ Fn be an equiangular uniform Parseval frame
for Fn(m ≥ n). Compute the value of the constant |〈vi, vj〉|, i 6= j.

4. Let A ∈Mn and let {v1, ..., vk} be eigenvectors of A corresponding
to distinct, i.e., λi 6= λj, i 6= j eigenvalues {λ1, ..., λk}. Prove that
{v1, ..., vk} are linearly independent.
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5. Due 10/30

Given subspaces V,W ⊆ Fn we set V +W = {v+w : v ∈ V,w ∈ W}.
1. Show that if V,W ⊆ Fn are subspaces such that V +W = Fn and

V ∩W = (0), then there is a well-defined linear map L : Fn → Fn such
that L(v+w) = v. We call L the projection onto V along W . Show
that L2 = L, and conclude that if A is the matrix of this linear map,
then A2 = A.

A linear map L : Fn → Fn is called a projection iff there is a pair
of subspaces V,W such that L is the projection onto V along W .

2. A matrix A ∈ Mn is called idempotent if A2 = A. Let A be
idempotent.

(i) Prove that N (A) ∩R(A) = (0) and that N (A) +R(A) = Fn.
(ii) Prove that LA is the projection onto R(A) along N (A).
(iii) Prove that dim(R(A)) = Tr(A).

3. Let A =

(
1 2
0 0

)
, which is idempotent. Describe the set of vector

such that LAx = (1, 0).
4. We call L as in 1, an orthogonal projection iff V ⊥ W. Prove

that L is an orthogonal projection iff the matrix of L, A satisfies A =
A2 = A∗.

5. Prove that every projection is similar to an orthogonal projection.
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6. Due 11/6

The purpose of these exercises is to use our theorems to derive some
results in spectral graph theory.

By a graph on n vertices, we mean a pair G = (V,E) where for
now V = {1, ..., n} denotes the vertex set and E ⊆ V × V satisfies,
(i, j) ∈ E =⇒ (j, i) ∈ E and (i, i) /∈ E,∀i. We say that i and j are
adjacent and write i ∼ j ⇐⇒ (i, j) ∈ E. A clique in G is a subset
S ⊂ V such that for all i, j ∈ S, i 6= j =⇒ (i, j) ∈ E.

For graph theorists, note that the cardinality of E, |E| is equal to
twice the number of edges.

The adjacency matrix of a graph is the matrix AG ∈ Mn, is the
self-adjoint matrix given by AG =

∑
(i,j)∈E Ei,j.

We set λi = λi(AG).
1. Prove that

∑n
i=1 λ

2
i = |E|.

2. Prove that
∑i

k=1 λk ≤ 0 for 1 ≤ i ≤ n.

3. Prove that λn ≥ |E|
n

.
4. Prove that if G has a clique S with |S| = k, then λi ≤ −1, for

1 ≤ i ≤ k − 1 and λn ≥ k − 1.
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7. Due 11/16

1. Let V : Cd → Cn be an isometry, which we identify with its
matrix V ∈ Mn,d. Prove that V V ∗ ∈ Mn is the orthogonal projection
onto R(V ).

2. Let {v1, ..., vn} ⊆ Cd. Prove that {v1, ..., vn} is a Parseval frame
for Cd iff the Grammian G = (〈vj, vi〉) satisfies G = G2 and Tr(G) = d.

3. Let A,B ∈ Mn and let k ∈ N. Prove that if A ≥ 0, B ≥ 0 and
Ak = Bk then A = B.(This shows the uniqueness of the k-th root of a
positive semidefinite matrix.)
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8. Due 11/23

1. Let A ∈ Mn. A = USV be a singular valued decomposition. For

a real number set t† =

{
t−1 t 6= 0

0 t = 0
. If S = diag(s1, ..., sn) then set

S† = diag(s†1, ..., s
†
n). Define A† = V ∗S†U∗. Prove:

(1) if A = U1SV1 with possibly different unitaries then V ∗1 S
†U∗1 =

V ∗S†U∗.
(2) when A is invertible, A† = A−1.
(3) AA†A = A and A†AA† = A†

2. Let A ∈ Mn. A least squares solution to the equation Ax = b
is a vector x such that: 1) ‖Ax − b‖2 ≤ ‖Ay − b‖2, ∀y i.e., the error
is minimized, 2) among all x satisfying 1), ‖x‖2 is minimized. Let P
denote the orthogonal projection onto the range of A and let Q denote
the orthogonal projection ontoN (A)⊥. Prove that x is the least squares
solution to Ax = b iff Ax = P (b) and Q(x) = x. Deduce that the least
squares solution is unique.

3. Prove that A†b is the least squares solution to Ax = b.
4. Prove that if A,B ∈Mn are positive definite, then A◦B is positive

definite.
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9. Due 12/8

1. Let A ∈Mn, 0 � A. let γ = sup{a1,σ(1) · · · an,σ(n) where the sup is

taken over all permutations σ of 1, ..., n. Prove that γ1/n ≤ ρ(A).
2. Let A ∈ Mn, 0 ≺ A and let x = (x1, ..., xn) be the Perron vector

for A. If mini
∑n

j=1 ai,j = ρ(A) then prove that x1 = ... = xn. Prove

that if maxi
∑n

j=1 ai,j = ρ(A) then x1 = ... = xn.

3. Let A ∈ Mn, 0 � A and let H = Re(A). Prove that ρ(A) ≤
λn(H).
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