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Abstract

In this paper, we present a class of multivariate copulas whose two-dimensional

marginals belong to the family of bivariate Fréchet copulas. The coordinates of a

random vector distributed as one of these copulas are conditionally independent.

We prove that these multivariate copulas are uniquely determined by their two-

dimensional marginal copulas. Some other properties for these multivariate copulas

are discussed as well. Two applications of these copulas in actuarial science are given.
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1 Introduction

Copulas are multivariate distributions with uniform [0,1] marginal distributions. In

n-dimensional case, the Fréchet upper bound C+
n (u1, · · · , un) = min{ui, i ≤ n}, ui ∈

[0, 1], i ≤ n, the Fréchet lower bound C−
n (u1, · · · , un) = max{u1 + u2 + · · · + un − (n −

1), 0}, ui ∈ [0, 1], i ≤ n and the product copula C⊥
n (u1, · · · , un) =

∏n
i=1 ui, ui ∈ [0, 1], i ≤

n play significant roles. It is known that every n-dimensional copula C is bounded by

the Fréchet upper bound C+
n and the Fréchet lower bound C−

n , i.e.,

C−
n (u1, · · · , un) ≤ C(u1, · · · , un) ≤ C+

n (u1, · · · , un) for ui ∈ [0, 1], i ≤ n.

See Joe (1997), Mari and Kotz (2001), Nelsen (2006) and Salvadori et al. (2007) for

details. Note that the Fréchet upper bound C+
n is a copula for all n ≥ 2, and that the

Fréchet lower bound C−
n is a copula only if n = 2.

Consider the two-dimensional case. Denote

M(u, v) = C+
2 (u, v), Π(u, v) = C⊥

2 (u, v), W (u, v) = C−
2 (u, v).

A bivariate Fréchet copula is defined as

αM + βΠ + γW,

where α, β and γ are non-negative constants with α + β + γ = 1. When modeling risks’

dependency, the bivariate Fréchet copula shows its advantages from the following aspects:

• Each term in the bivariate Fréchet copula has its practical implications. In actuar-

ial sciences, two risks X and Y are said to be comonotonic if there exist two non-

decreasing functions f and g and a random variable Z such that X = f(Z), Y =

g(Z) (Denneberg (1994, pp54-55)). Two risks X and Y are said to be counter-

monotonic if X and −Y are comonotonic (Dhaene et al. (2002b), Embrechets et

al. (2001)). It is known that X and Y are comonotonic (countermonotonic) if and

only if their copula equals M (W ) (Nelsen (2006)), and X and Y are independent

if and only if their copula equals Π. The bivariate Fréchet copulas model two risks’
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dependency via weighting the comonotonicity, countermonotonicity and indepen-

dency respectively. The weights α, β and γ give the percentage of each part. We

refer to Nelsen (2006), Kaas et al. (2001), Salvadori et al. (2007), and the references

therein.

• The bivariate Fréchet copulas can be used to approximate bivariate copulas. Each

bivariate copula can be approximated by a member of bivariate Fréchet copulas,

and the approximation errors can be estimated (Yang, Cheng and Zhang (2006)).

• For two risks with a bivariate Fréchet copula, the stop-loss premium or variance of

their sum can be written as a linear sum of three parts with coefficients α, β and

γ, and the coefficients are invariant with marginal distributions (Yang, Cheng and

Zhang (2006), Mikusinski, Sherwood and Taylor (1991)).

Bivariate Fréchet copulas can not be extended directly to multivariate case, due to the

fact that the Fréchet lower bound C−
n is not a copula when n ≥ 3. In this paper we shall

present a family of multivariate copulas with all two-dimensional marginals belonging to

the family of bivariate Fréchet copulas.

We first give the framework of our discussion. Throughout this paper we assume that

Ui, i ≤ n are uniform [0,1] random variables satisfying the following two assumptions:

• Assumption A: There exists a uniform [0, 1] random variable U such that the

random variables Ui, i ≤ n are conditionally independent on the common factor U .

• Assumption B: For each i ≤ n, the joint distribution of Ui and U is a bivariate

Fréchet copula

Ci(u, v) = ai,1M(u, v) + ai,2Π(u, v) + ai,3W (u, v), (1.1)

where ai,j ≥ 0, j = 1, 2, 3 and ai,1 + ai,2 + ai,3 = 1.

Assumption A has its practical implications when modeling risks in insurance and

finance. Consider n credit obligors with the loss amount expressed as Hi(Ui), i ≤ n,

where Hi is the inverse of the distribution function of the i-th loss amount. The random
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variables Ui, i ≤ n are correlated through the common factor U . Given the common factor

U , the variables Ui, i ≤ n are independent. The latent variable U may not be observable.

The applications of Assumption A can be found in the discussion on collateralized

debt obligation (Hull and White (2004)), portfolio loss in credit risk (Credit Suisse First

Boston (1997)) and credibility premium (Klugman, Panjer and Willmot (2004)).

Assumption B gives the dependency between the individual variables Ui, i ≤ n and

the common factor U . The constant ai,1 is the percentage of the positive deterministic

dependency between U and Ui, ai,3 is the percentage of the negative deterministic depen-

dency between U and Ui, and ai,2 is the percentage of their independence. The assump-

tion (1.1) is based on the joint distribution of (Ui, U), rather than the two-dimensional

marginal distributions of (U1, · · · , Un).

The joint distribution of U1, U2, · · · , Un defines an n-dimensional copula, denoted as

CA,B; that is,

CA,B(u1, u2, · · · , un) = P (U1 ≤ u1, U2 ≤ u2, · · · , Un ≤ un).

In this paper, the multivariate copula CA,B will be investigated under Assumption A

and Assumption B.

The rest of the paper is organized as follows. In Section 2, we give a mathematical

expression of the copula CA,B and prove that all its two-dimensional marginal copulas

belong to the family of bivariate Fréchet copulas. In Section 3 we demonstrate some

properties of the copula CA,B. In Section 4 we prove that CA,B is uniquely determined

by all its two-dimensional marginal copulas. In Section 5 we apply our theorems to joint-

life status in life insurance and individual risk models. In Section 6 we present some

concluding remarks. Some proofs will be given in the appendix.

2 Mathematical expression of the copula CA,B

For the indices (j1, j2, · · · , jn), where ji ∈ {1, 2, 3}, write

C(j1,j2,··· ,jn)(u1, u2, · · · , un) = W
(

min
i≤n,ji=1

{ui}, min
i≤n,ji=3

{ui}
) ∏

i≤n,ji=2

ui,
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with convention that for an empty set ∅ the corresponding minimum and product are

defined to be 1. We also write

Sn = {C(j1,j2,··· ,jn)|ji = 1, 2, 3, i ≤ n}.

The dependency modeled by C(j1,j2,··· ,jn) will be given in the following proposition.

For convenience, for any given indices j1, j2, · · · , jn ∈ {1, 2, 3}, we denote Jk = {i : ji =

k, i ≤ n} for k = 1, 2, 3 if there is no confusion.

Proposition 2.1. Fix j1, j2, · · · , jn. Let (V1, V2, · · · , Vn) be a random vector with distri-

bution function C(j1,j2,··· ,jn). Then the following properties hold:

(1) For l, m ∈ J1, Vl = Vm, a.e.;

(2) For l, m ∈ J3, Vl = Vm, a.e.;

(3) For each l ∈ J2, Vl and {Vi, i 6= l, i ≤ n} are independent;

(4) For l ∈ J1 and m ∈ J3, Vl = 1− Vm, a.e..

Proof. We only give the proof of part (1). The other proofs are similar and will be

omitted. For simplicity we assume that l < m. For l,m ∈ J1 we have

P (Vl ≤ u, Vm ≤ v)

= C(j1,··· ,jl−1,jl,jl+1,··· ,jm−1,jm,jm+1,··· ,jn)(1, · · · , 1, u, 1, · · · , 1, v, 1, · · · , 1)

= M(u, v), u, v ∈ [0, 1].

Thus Vl and Vm are comonotonic and Vl = Vm, a.e.. The proposition is proved.

For each (j1, j2, · · · , jn), C(j1,j2,··· ,jn) is an n-dimensional copula that can be written

as a composition of a product copula, a two-dimensional Fréchet lower bound and Fréchet

upper bounds. Some special copulas in Sn are listed in the following:

1. C(1,1,··· ,1)(u1, u2, · · · , un) = C+
n (u1, u2, · · · , un), the n-dimensional Fréchet upper

bound;

2. C(2,2,··· ,2)(u1, u2, · · · , un) = C⊥
n (u1, u2, · · · , un), the n-dimensional product copula;
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3. C(1,3,2,··· ,2)(u1, u2, · · · , un) = W (u1, u2)C⊥
n−2(u3, · · · , un), the product of the bivari-

ate Fréchet lower bound and the (n− 2)-dimensional product copula;

4. C(1,1,3,··· ,3)(u1, u2, · · · , un) = W
(
M(u1, u2), C+

n−2(u3, · · · , un)
)
, the composition of

the Fréchet upper bounds and the 2-dimensional Fréchet lower bound;

5. C(1,1,3,3,2,··· ,2)(u1, u2, · · · , un) = W
(
M(u1, u2),M(u3, u4)

)
C⊥

n−4(u5, · · · , un) when n ≥

5, the composition of the Fréchet upper bound, the 2-dimensional Fréchet lower

bound and the product copula.

The copula C(1,1,3,··· ,3) is extremal, and the copula C(1,1,3,3,2,··· ,2) is the product of an

extremal copula and a product copula. Recall that a multivariate distribution function

F with marginal distributions Fi, i ≤ n is said to be extremal if there exists a partition

(I, Ic) of the index-set {1, 2, · · · , n} such that

F (x1, x2, · · · , xn) = W
(
min
i∈I

Fi(xi),min
j∈Ic

Fj(xj)
)
.

See Tiit (1998) for discussions on extremal copulas.

For different (j1, j2, · · · , jn), their corresponding copulas might be the same. For

instance, C(1,1,2,··· ,2,3,3) = C(3,3,2,··· ,2,1,1), C(2,2,··· ,2) = C(1,2,··· ,2) = C(3,2,··· ,2) = C⊥
n . The

following proposition gives the number of distinct copulas in the family Sn and reveals

the uniqueness of the convex expression of these copulas. The proof will be given in

Appendix.

Proposition 2.2. (1) The number of the distinct copulas in Sn is 1
2(3n − 2n + 1).

(2) If a copula C can be expressed as a linear combination of the 1
2(3n − 2n + 1) distinct

copulas in Sn, the expression is unique.

The following theorem states that the copula CA,B can be expressed as a convex

combination of the copulas in Sn.

Theorem 2.1. Suppose that Assumption A and Assumption B hold.

(a) For ui ∈ [0, 1], i ≤ n, we have

CA,B(u1, u2, · · · , un) =
3∑

j1=1

· · ·
3∑

jn=1

(
n∏

i=1

ai,ji

)
C(j1,j2,··· ,jn)(u1, u2, · · · , un); (2.1)
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(b) The two-dimensional marginal copulas of CA,B belong to the family of bivariate

Fréchet copulas. For i 6= m and ui, um ∈ [0, 1],

P (Ui ≤ ui, Um ≤ um) = αi,mM(ui, um) + βi,mΠ(ui, um) + γi,mW (ui, um) (2.2)

with

αi,m = ai,1am,1 + ai,3am,3, γi,m = ai,1am,3 + ai,3am,1, βi,m = 1− αi,m − γi,m; (2.3)

(c) For any C = C(j1,j2,··· ,jn) ∈ Sn which is different from the product copula, its coeffi-

cient in (2.1) equals
n∏

i=1

ai,ji +
n∏

i=1

ai,4−ji .

Proof. (a) For almost every v ∈ [0, 1], from (1.1) we have that

∂

dv
Ci(ui, v) = ai,1I{ui>v} + ai,2ui + ai,3I{ui+v−1>0}. (2.4)

Under Assumption A, the joint distribution of U1, U2, · · · , Un can be expressed as

P (U1 ≤ u1, U2 ≤ u2, · · · , Un ≤ un)

= E
{
P (U1 ≤ u1, U2 ≤ u2, · · · , Un ≤ un|U)

}
= E

{ n∏
i=1

P (Ui ≤ ui|U)
}

= E
{ n∏

i=1

[
∂

dv
Ci(ui, v)|v=U ]

}
.

Replacing the partial derivatives by (2.4), we have

P (U1 ≤ u1, U2 ≤ u2, · · · , Un ≤ un)

= E
[ n∏

i=1

[ai,1I{ui>U} + ai,2ui + ai,3I{ui+U−1>0}]
]

=
3∑

j1=1

· · ·
3∑

jn=1

E

 ∏
ji=1,i≤n

(ai,jiI{ui>U})
∏

ji=3,i≤n

(ai,jiI{U>1−ui})
∏

ji=2,i≤n

(ai,jiui)


=

3∑
j1=1

· · ·
3∑

jn=1

( n∏
i=1

ai,ji

)
W
(

min
ji=1,i≤n

{ui}, min
ji=3,i≤n

{ui}
) ∏

ji=2,i≤n

ui,

and (2.1) is proved.
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(b) Applying the above result to the two-dimensional case, we have

P (Ui ≤ ui, Um ≤ um)

=
(
ai,1am,1 + ai,3am,3

)
M(ui, um) +

(
ai,1am,3 + ai,3am,1

)
W (ui, um)

+
(
ai,1am,2 + ai,2am,1 + ai,2am,2 + ai,2am,3 + ai,3am,2

)
Π(ui, um).

Since the sum of the three coefficients equals one, (2.2) and (2.3) are obtained.

(c) Since the copula C = C(j1,j2,··· ,jn) is different from the product copula, based on

the fact C(j1,j2,··· ,jn) = C(4−j1,4−j2,··· ,4−jn), we know that the coefficient of the copula C

in (2.1) equals
n∏

i=1

ai,ji +
n∏

i=1

ai,4−ji .

As shown in Proposition 2.2, the coefficient is uniquely determined by CA,B.

The above theorem states that the copula CA,B can be written as a linear combination

of the copulas C(j1,··· ,jn). Note that the number of the summands increases exponentially

with n and in practice it is applicable for moderate values of n.

The copula CA,B may correspond to at least two groups of {ai,j : i ≤ n, j = 1, 2, 3}

satisfying (1.1). This can be explained as follows. Suppose that (2.3) holds for {ai,j :

i ≤ n, j = 1, 2, 3}. We define a new sequence V, Vi, i ≤ n by letting Vi = Ui, i ≤ n and

V = 1− U . Note that

P (Vi ≤ ui, i ≤ n) = P (Ui ≤ ui, i ≤ n) = CA,B(u1, u2, · · · , un)

and Vi, i ≤ n are conditionally independent on V . The two-dimensional marginal distri-

bution is

P (Vi ≤ ui, V ≤ u)

= P (Ui ≤ ui, U ≥ 1− u)

= P (Ui ≤ ui)− P (Ui ≤ ui, U < 1− u)

= P (Ui ≤ ui)− αi,1M(ui, 1− u)− αi,2Π(ui, 1− u)− αi,3W (ui, 1− u)

= αi,3M(ui, u) + αi,2Π(ui, u) + αi,1W (ui, u).

Thus, in some cases the copula CA,B can not uniquely determine the coefficients in (1.1).
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Remark 2.1. We see from Theorem 2.1 that the two-dimensional marginal copulas of

(U1, U2, · · · , Un) belong to the family of bivariate Fréchet copulas. Hürlimann (2002)

presented a family of copulas with two-dimensional marginal copulas of linear Spearman

copulas, that is, for i 6= m the vector (Ui, Um) has one parameter linear Spearman copulas,

given by

P (Ui ≤ ui, Um ≤ um)

= (1− |θim|)Π(ui, um) + |θim|M(ui, um)I{θim>0} + |θim|W (ui, um)I{θim<0},

where the parameter θim ∈ [−1, 1].

Remark 2.2. When n = 2, S2 = {M,W,Π} and the family of all convex combinations

of M,W and Π coincides with the family of bivariate Fréchet copulas. For any bivariate

Fréchet copula C, let (U1, U2) be a random vector with the joint distribution C and

U = U1, then Assumption A and Assumption B are satisfied. This implies that all

convex combinations of M,W and Π belong to the family of CA,B. When n ≥ 3, there

exists a convex combination of the copulas in Sn that does not belong to the family of CA,B.

For illustration, consider the case n = 3. By applying Theorem 2.1 we can show that a

copula C containing the components min{u1, u2, u3} and
∏3

i=1 ui in S3 should also contain

at least one of the three components min{u1, u2}u3, min{u2, u3}u1 and min{u1, u3}u2 if

it belongs to the family of CA,B. Therefore, the convex combination

C(u1, u2, u3) = α min{u1, u2, u3}+ (1− α)
3∏

i=1

ui, ui ∈ [0, 1], i ≤ 3, α ∈ (0, 1)

does not belong to the family of CA,B.

3 Some properties of the copula CA,B

For the joint distribution of Ui and U in (1.1), the independence coefficient ai,2 can be

obtained via ai,2 = 1−ai,1−ai,3. Hence, when ai,1, ai,3, i ≤ n are given, the copula CA,B

can be obtained. Write

B =

 a1,1 a2,1 · · · an,1

a1,3 a2,3 · · · an,3

 .
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Since the matrix B determines the copula CA,B uniquely, we shall investigate some prop-

erties of CA,B based on the matrix B. The rank of matrix B, denoted as rank(B), is

smaller than or equal to 2. The transpose of matrix B is denoted as BT .

We define

αi,i = a2
i,1 + a2

i,3, γi,i = 2ai,1ai,3. (3.1)

The coefficients αi,m, γi,m, i 6= m have been defined in (2.3). Thus, if we write

s+
i,j = αi,j + γi,j , s−i,j = αi,j − γi,j , i, j ≤ n,

then βi,j = 1− s+
i,j , i 6= j and

αi,j =
s+
i,j + s−i,j

2
, γi,j =

s+
i,j − s−i,j

2
, i, j ≤ n.

Denote

A+ =


α1,1 α1,2 · · · α1,n

α2,1 α2,2 · · · α2,n

· · · · · · · · · · · ·

αn,1 αn,2 · · · αn,n

 , A− =


γ1,1 γ1,2 · · · γ1,n

γ2,1 γ2,2 · · · γ2,n

· · · · · · · · · · · ·

γn,1 γn,2 · · · γn,n

 .

The two matrices give all the information on the two-dimensional marginal copulas of

CA,B. Note that

A+ + A− = (s+
i,m)n×n, A+ −A− = (s−i,m)n×n.

Proposition 3.1. (1) We have

A+ = BT B, A− = BT

 0 1

1 0

B (3.2)

and

rank(A−) ≤ rank(A+) = rank(B); (3.3)

(2) Moreover,

s+
i,m = (ai,1 + ai,3)(am,1 + am,3), i, m ≤ n, (3.4)

s−i,m = (ai,1 − ai,3)(am,1 − am,3), i, m ≤ n (3.5)
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and

rank(A+ + A−) ≤ 1, rank(A+ −A−) ≤ 1; (3.6)

(3) Ui, i ≤ n are independent if and only if s+
i,m = 0 for all i 6= m, i,m ≤ n;

(4) For three different positive integers i, l, k ≤ n, if s+
i,l 6= 0 and s+

l,k 6= 0, then s+
i,k 6= 0.

Proof. (1) Equation (3.2) is the matrix expression of (2.3), and (3.3) follows from (3.2).

(2) From (3.2) we get that

A+ + A− = BT

 1 1

1 1

B, A+ −A− = BT

 1 −1

−1 1

B.

Thus (3.4) and (3.5) can be obtained. Since the ranks of the two matrices 1 1

1 1

 ,

 1 −1

−1 1


are all equal to one, (3.6) holds.

(3) When Ui, i ≤ n are independent, from (2.2) we have that for i 6= m, βi,m = 1

holds. Thus s+
i,m = 1− βi,m = 0 follows.

Conversely, when s+
i,m = 0 for all i 6= m, i,m ≤ n, from (3.4) we know that there is

at most one i such that ai,1 + ai,3 6= 0. Assume that ai,1 + ai,3 = 0, i ≤ n − 1. Then

for every i ≤ n − 1 the random variable Ui and U are independent. By the conditional

independence of Ui, i ≤ n on U , we have that for ui ∈ [0, 1], i ≤ n,

P (U1 ≤ u1, · · · , Un ≤ un)

= E
[ n∏

i=1

P (Ui ≤ ui|U)
]

= E
[
P (Un ≤ un|U)

n−1∏
i=1

P (Ui ≤ ui)
]

=
n∏

i=1

ui.

Thus Ui, i ≤ n are independent.

(4) When s+
i,l 6= 0 and s+

l,k 6= 0, from (3.4) we have that ai,1 +ai,3 6= 0 and ak,1 +ak,3 6=

0. Then

s+
i,k = (ai,1 + ai,3)(ak,1 + ak,3) 6= 0.

This completes the proof of the proposition.
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Example 3.1. Let

B =

 1 0 0.5 0 0.3 0.4

0 1 0.5 0 0.4 0.3

 .

For the random variables U,Ui, i ≤ n modeled by the above matrix, U1 and U are comono-

tonic, U2 and U are countermonotonic, U3 and U are uncorrelated but they are dependent,

U4 and U are independent, U5 and U are negatively correlated, and U6 and U are posi-

tively correlated. According to Proposition 3.1,

A+ = BT B =



1 0 0.5 0 0.3 0.4

0 1 0.5 0 0.4 0.3

0.5 0.5 0.5 0 0.35 0.35

0 0 0 0 0 0

0.3 0.4 0.35 0 0.25 0.24

0.4 0.3 0.35 0 0.24 0.25


(3.7)

and

A− = BT

 0 1

1 0

B =



0 1 0.5 0 0.4 0.3

1 0 0.5 0 0.3 0.4

0.5 0.5 0.5 0 0.35 0.35

0 0 0 0 0 0

0.4 0.3 0.35 0 0.24 0.25

0.3 0.4 0.35 0 0.25 0.24


. (3.8)

The two-dimensional marginal copulas of (U1, U2, · · · , Un) can be obtained through A+, A−

and (2.2).

4 The uniqueness of CA,B with given two-dimensional marginal

copulas

It follows from Theorem 2.1 that all two-dimensional marginal copulas of CA,B belong

to the family of the bivariate Fréchet copulas. Conversely, given the two-dimensional

marginal copulas of CA,B, it would be interesting to see whether the corresponding CA,B

is unique, and how to get ai,j in (1.1).
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From Proposition 2.2, each bivariate Fréchet copula is uniquely determined by any

two of the three coefficients of the bivariate Fréchet upper bound, lower bound and

the product copula, and thus all two-dimensional marginal copulas of CA,B correspond

uniquely to one group of coefficients αi,m, γi,m, i 6= m, i,m ≤ n via (2.2). In what

follows, for the given αi,m, γi,m, i 6= m, i,m ≤ n, assume that there exist uniform [0,1]

random variables Ui, i ≤ n with two-dimensional marginal copulas given by (2.2) and

Assumption A and Assumption B are satisfied.

In the case n = 2, the copula CA,B and its two-dimensional marginal copula are the

same. Next we let n ≥ 3. Note that s+
i,j = αi,j + γi,j and s−i,j = αi,j − γi,j .

Proposition 4.1. Suppose that s+
i,m > 0 for all i 6= m, i,m ≤ n. Then ai,1 + ai,3, i ≤ n

are uniquely determined by αi,m, γi,m, i 6= m, i,m ≤ n via (3.4). Moreover,

(1) if s−i,m 6= 0 for all i 6= m, i,m ≤ n, then |ai,1 − ai,3|, i ≤ n are uniquely determined

by αi,m, γi,m, i 6= m, i,m ≤ n via (3.5);

(2) if s−i,m = 0 for all i 6= m, i,m ≤ n, then there exists at most one i such that ai,1 6= ai,3;

(3) if s−i,m = 0 for some m 6= i and there exists an l ≤ n such that s−m,l 6= 0, then

ai,1 = ai,3.

Proof. Since s+
i,m > 0 for all i 6= m, from (3.6) we can see that rank(A+ + A−) = 1.

Thus for the given αi,m, γi,m, i 6= m, i,m ≤ n, the elements s+
i,i, i ≤ n can be determined

uniquely. From (3.4) we see that ai,1 + ai,3 =
√

s+
i,i, i ≤ n.

If s−i,m 6= 0 for all i 6= m, from (3.6) we have rank(A+ − A−) = 1. Thus the given

coefficients αi,m, γi,m, i 6= m, i,m ≤ n determine s−i,i, i ≤ n uniquely, and from (3.5) we

know that |ai,1 − ai,3| =
√

s−i,i, i ≤ n.

In the case s−i,m = 0 for all i 6= m, s−i,m = (ai,1 − ai,3)(am,1 − am,3) = 0 for all i 6= m.

Thus there exists at most one i such that ai,1 6= ai,3. The last part of the proposition

can be proved similarly. The proposition is proved.

We define

I0 = {i ≤ n : s+
i,m = 0 for all m 6= i, m ≤ n}

13



and

I1 = {i ≤ n : i 6∈ I0}.

Let

I0
1 = {i ∈ I1 : s−i,m = 0 for all m 6= i, m ∈ I1}.

Note that I0
⋃

I1 = {1, 2, · · · , n} and I0
1 ⊆ I1. Through above definitions, the index

set {1, 2, · · · , n} has been divided into several groups by the values of αi,m, γi,m, i 6=

m, i,m ≤ n. For a set Ω, its cardinality is denoted as #(Ω) or #Ω.

Proposition 4.2. (1) For any i ∈ I0 and m ∈ I1, we have s+
i,m = 0;

(2) The index set I1 is empty or #(I1) ≥ 2. When #(I1) ≥ 2, we have s+
i,m > 0 for any

i,m ∈ I1;

(3) I1 = I0
1 or #{i ∈ I1 \ I0

1} ≥ 2. When I1 6= I0
1 , we have ai,1 = ai,3 for all i ∈ I0

1 and

s−k,m 6= 0 for all k 6= m, k,m ∈ I1 \ I0
1 ;

(4) The copula CA,B has the following decomposition

CA,B(u1, u2, · · · , un) = P (Um ≤ um,m ∈ I1)×
∏
i∈I0

ui, ui ∈ [0, 1], i ≤ n. (4.1)

Proof. (1) For i ∈ I0 and m ∈ I1, by the definition of I0 we have s+
i,m = 0.

(2) If #(I1) = 1, then for i ∈ I1, by using the result of part (1) we know that

s+
i,m = 0, m 6= i, m ≤ n, which leads to that i ∈ I0. Thus I1 is an empty set or #(I1) ≥ 2.

When #(I1) ≥ 2, fix i,m ∈ I1. If s+
i,m = 0, from (3.4) we know that ai,1 + ai,3 = 0 or

am,1 + am,3 = 0, which leads to that i ∈ I0 or m ∈ I0, contradicting to the assumption

that i,m ∈ I1. Thus we have s+
i,m > 0.

(3) Consider the case #{i ∈ I1 \ I0
1} = 1. Note that #(I1) ≥ 2. For i ∈ I1 \ I0

1 ,

according to the definition of I0
1 we see that s−i,m = 0 for each m ∈ I0

1 , thus i ∈ I0
1 ,

contradicting to the assumption that i ∈ I1 \ I0
1 . Thus #{i ∈ I1 \ I0

1} = 0 or #{i ∈

I1 \ I0
1} ≥ 2.

When I1 6= I0
1 , applying (3.5) we can easily prove ai,1 = ai,3 for all i ∈ I0

1 and s−k,m 6= 0

for all k 6= m, k,m ∈ I1 \ I0
1 .

14



(4) We first consider the case that I0 = {1, 2, · · · , n}. In this case, s+
i,m = 0 for all

i 6= m, i,m ≤ n. By Proposition 3.1, the random variables Ui, i ≤ n are independent.

Thus (4.1) holds.

Next we consider the case that I0 ⊂ {1, 2, · · · , n}. Then there exists an i0 ∈ I \ I0.

For each i ∈ I0, from s+
i,i0

= 0 we get that ai,1 + ai,3 = 0, which leads to that Ui

and U are independent. Due to the conditional independence of U1, · · · , Un on U , for

ui ∈ [0, 1], i ≤ n we have

P (U1 ≤ u1, · · · , Un ≤ un)

= E
[ n∏

m=1

P (Um ≤ um|U)
]

= E
[ ∏

m∈I1

P (Um ≤ um|U)×
∏
i∈I0

P (Ui ≤ ui|U)
]

= E
[ ∏

m∈I1

P (Um ≤ um|U)
] ∏

i∈I0

ui

= P (Um ≤ um,m ∈ I1)×
∏
i∈I0

ui.

Hence we get (4.1).

By Proposition 4.2, the index sets I1 and I1 \ I0
1 can be expressed as

I1 = {i ≤ n : there exists m 6= i such that s+
i,m > 0}

and

I1 \ I0
1 = {i ∈ I1 : there exists m 6= i, m ∈ I1, such that s−i,m 6= 0}.

The following theorem asserts the uniqueness of CA,B.

Theorem 4.1. The copula CA,B is uniquely determined by all its bivariate marginal

copulas.

Proof. Note that CA,B can be expressed in (4.1). Therefore, it suffices to prove that

P (Um ≤ um, m ∈ I1) is uniquely determined by all its bivariate marginal copulas.

This holds trivially if I1 contains at most two indices. For simplicity we assume that

I1 = {1, 2, · · · , k} for some k ≥ 3. We should show that the coefficients ai,j , i = 1, · · · , k,

j = 1, 2, 3, determined by the bivariate marginal copulas, determine a unique copula

P (Um ≤ um,m ≤ k).
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(1) Assume that s−l,m 6= 0 for all l 6= m, l,m ∈ I1. From Proposition 4.1, ai,2, ai,1 +ai,3

and |ai,1 − ai,3|, i ∈ I1 are uniquely determined. Suppose a0
i,j , i ∈ I1, j ≤ 3 and a1

i,j , i ∈

I1, j ≤ 3 are two different solutions of ai,j , i ∈ I1, j ≤ 3. If for some i0 ∈ I1,

a0
i0,1 = a1

i0,1, a
0
i0,2 = a1

i0,2, a
0
i0,3 = a1

i0,3,

then by (3.5) we assert that a0
i,1 − a0

i,3 = a1
i,1 − a1

i,3, i ∈ I1, which leads to that

a0
i,1 = a1

i,1, a
0
i,2 = a1

i,2, a
0
i,3 = a1

i,3, i ∈ I1,

contradicting to the assumption that the two groups of solutions are different. Thus the

two groups satisfy that

a0
i,1 = a1

i,3, a
0
i,3 = a1

i,1, a
0
i,2 = a1

i,2, i ∈ I1.

From the discussion following Theorem 2.1, the two groups generate the same distribution

P (Um ≤ um,m ∈ I1).

(2) Assume that s−l,m = 0 for some l 6= m, l,m ∈ I1. We need to prove that for the

decomposition of copula P (Um ≤ um,m ∈ I1) in (2.1), the coefficients of the copulas in

{C(j1,··· ,jk) : ji = 1, 2, 3, i ≤ k} are unique.

For fixed indices (j1, j2, · · · , jk), let C = C(j1,j2,··· ,jk). Since the sum of all coefficients

equals one, we only need to consider the case that C is different from the product copula.

By Theorem 2.1, the coefficient of C can be expressed as
∏k

i=1 ai,ji +
∏k

i=1 ai,4−ji .

When I0
1 = I1, from Proposition 4.1 we have that
k∏

i=1

ai,ji +
k∏

i=1

ai,4−ji

=
∏

i∈I1,ji=2

ai,2

( ∏
i∈I1,ji=1

ai,1 ×
∏

i∈I1,ji=3

ai,3 +
∏

i∈I1,ji=1

ai,3 ×
∏

i∈I1,ji=3

ai,1

)
=
( ∏

i∈I1,ji=2

ai,2

)
×
( ∏

i∈I1,ji 6=2

(ai,1 + ai,3)
)
/2#{i∈I1,ji 6=2}−1

is unique. Thus P (Um ≤ um,m ∈ I1) is determined uniquely.

Next we assume that I0
1 ⊂ I1. From Proposition 4.2, #{i ∈ I1 \ I0

1} ≥ 2 and for

i ∈ I0
1 , ai,1 = ai,3, and ai,1 is uniquely determined. Thus the coefficient of C equals∏

i∈I1

ai,ji
+
∏
i∈I1

ai,4−ji
=
∏
i∈I0

1

ai,ji
× (

∏
i∈I1\I0

1

ai,ji
+
∏

i∈I1\I0
1

ai,4−ji
). (4.2)
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In the case that #{i ∈ I1 \ I0
1 , ji 6= 2} ≤ 1, the above equation can be written as

∏
i∈I1

ai,ji +
∏
i∈I1

ai,4−ji

=
∏
i∈I0

1

ai,ji × (
∏

i∈I1\I0
1 ,ji=2

ai,2)× (
∏

i∈I1\I0
1 ,ji 6=2

ai,ji +
∏

i∈I1\I0
1 ,ji 6=2

ai,4−ji),

thus its value is unique. When #{i ∈ I1 \ I0
1 , ji 6= 2} ≥ 2, the copula C(ji,i∈I1\I0

1 ) is

different from the product copula, and
∏

i∈I1\I0 ai,ji +
∏

i∈I1\I0
1
ai,4−ji is the coefficient of

C(ji,i∈I1\I0
1 ) in the decomposition of the copula P (Ui ≤ ui, i ∈ I1\I0

1 ). Thus we only need

to prove the uniqueness of P (Ui ≤ ui, i ∈ I1 \ I0
1 ). The case #{i ∈ I1 \ I0

1} = 2 is trivial,

so we will focus on the case #{i ∈ I1 \ I0
1} ≥ 3. From Proposition 4.2 we know that

s−i,m 6= 0, i 6= m, i,m ∈ I1 \I0
1 . Following the same lines in part (1) above, we see that the

distribution of Ui, i ∈ I1\I0
1 is unique. Thus the coefficient

∏
i∈I1\I0

1
ai,ji +

∏
i∈I1\I0

1
ai,4−ji

is unique as well. By (4.2) we get that the coefficient of C is unique. Thus the copula

P (Um ≤ um,m ∈ I1) is uniquely determined.

Combining the above results with (4.1), the uniqueness of CA,B is proved.

Remark 4.1. Normal copulas are widely used in actuarial sciences and finance to model

the correlation between risks (Cherubini, Luciano and Vecchiato(1998)). The copulas

CA,B allow us to model the dependency of risks by setting weights on comonotonicity,

countermonotonicity and independency, respectively. The normal copulas and the copulas

CA,B are all uniquely determined by their two-dimensional marginal copulas. The two-

dimensional marginal copulas of a normal copula are one-parameter distributions, and

those of CA,B are two-parameter distributions.

Example 4.1. (Continuing of Example 3.1) Given the two matrices A+ and A− in (3.7)

and (3.8), where the main diagonal elements are unknown, we can solve for the matrix
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B. We have

A+ + A− =



s+
1,1 1 1 0 0.7 0.7

1 s+
2,2 1 0 0.7 0.7

1 1 s+
3,3 0 0.7 0.7

0 0 0 s+
4,4 0 0

0.7 0.7 0.7 0 s+
5,5 0.49

0.7 0.7 0.7 0 0.49 s+
6,6


and

A+ −A− =



s−1,1 −1 0 0 −0.1 0.1

−1 s−2,2 0 0 0.1 −0.1

0 0 s−3,3 0 0 0

0 0 0 s−4,4 0 0

−0.1 0.1 0 0 s−5,5 −0.01

0.1 −0.1 0 0 −0.01 s−6,6


.

Note that I0 = {4} and I1 = {1, 2, 3, 5, 6}. Since rank(A+ + A−) = rank(A+ −A−) = 1,

then we get that

s+
1,1 = s+

2,2 = s+
3,3 = 1, s+

4,4 = 0, s+
5,5 = s+

6,6 = 0.49

and

s−1,1 = s−2,2 = 1, s+
3,3 = 0, s−4,4 = 0, s+

5,5 = s+
6,6 = 0.01.

Using ai,1 + ai,3 =
√

s+
i,i, |ai,1 − ai,3| =

√
s−i,i and (3.5), finally we obtain

B =

 1 0 0.5 0 0.3 0.4

0 1 0.5 0 0.4 0.3

 or B =

 0 1 0.5 0 0.4 0.3

1 0 0.5 0 0.3 0.4

 .

Given one family of bivariate Fréchet copulas, one natural problem is that whether

there exists a copula CA,B having the given family as its two-dimensional marginal cop-

ulas. Our next theorem gives a necessary and sufficient condition.

Theorem 4.2. Give two-dimensional Fréchet copulas Ci,m, 1 ≤ i < m ≤ n with

Ci,m(u, v) = d+
i,mM(u, v) + d⊥i,mΠ(u, v) + d−i,mW (u, v),
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where constants d+
i,m, d⊥i,m, d−i,m ≥ 0, and d+

i,m + d⊥i,m + d−i,m = 1. There exist uniform [0,1]

random variables Wi, i ≤ n with a copula CA,B such that for each 1 ≤ i < m ≤ n,

P (Wi ≤ u, Wm ≤ v) = Ci,m(u, v)

if and only if there exist non-negative constants ai,j , i ≤ n, j = 1, 2, 3 satisfying
∑3

j=1 ai,j =

1, i ≤ n, such that for each 1 ≤ i < m ≤ n the following equations hold:

d+
i,m = ai,1am,1 + ai,3am,3, d−i,m = ai,1am,3 + ai,3am,1, d⊥i,m = 1− d+

i,m − d−i,m. (4.3)

Proof. We first prove the sufficiency. Suppose that there exist ai,j ≥ 0, i ≤ n, j = 1, 2, 3

such that (4.3) holds for all 1 ≤ i < m ≤ n. Let W,Vi, i ≤ n be independent uniform

[0,1] random variables, and for each i ≤ n the random partition (A+
i , A−

i , A⊥
i ) of the

probability space satisfies that

P (A+
i ) = ai,1, P (A−

i ) = ai,3, P (A⊥
i ) = ai,2.

Assume that W,Vi, (A+
i , A−

i , A⊥
i ), i ≤ n are independent. The random variables Wi, i ≤ n

are defined as follows:

Wi = WIA+
i

+ ViIA⊥
i

+ (1−W )IA−
i
.

Then Wi, i ≤ n are conditionally independent on W , and

P (Wi ≤ u, W ≤ v) = ai,1M(u, v) + ai,2Π(u, v) + ai,3W (u, v).

Applying Theorem 2.1, we have

P (Wi ≤ u, Wm ≤ v) = Ci,m(u, v).

Conversely, suppose that there exist uniform [0,1] random variables Wi, i ≤ n with a

copula CA,B such that for each 1 ≤ i < m ≤ n,

P (Wi ≤ u, Wm ≤ v) = Ci,m(u, v).

By the definition of the copula CA,B, there exist uniform [0,1] random variables U,Ui, i ≤

n and constants ai,j , i ≤ n, j = 1, 2, 3 satisfying Assumption A and Assumption B,

such that

P (Ui ≤ ui, i ≤ n) = CA,B(u1, · · · , un).
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Thus (W1, · · · ,Wn) and (U1, · · · , Un) have the same distribution, which leads to that

P (Ui ≤ u, Um ≤ v) = P (Wi ≤ u, Wm ≤ v) = Ci,m(u, v).

Then (4.3) follows from Theorem 2.1. This proves the necessity part. The proof of the

theorem is complete.

5 The applications of copula CA,B

In this section we focus on the applications of the copula CA,B in two insurance risk

models: the joint-life status where the future lifetimes of the individuals in the group

are correlated with the copula CA,B, and the individual risk models with the individual

risks’ dependency modeled by the copula CA,B.

5.1 Joint-life status

For n individuals with ages x1, x2, · · · , xn, their future lifetimes are denoted as

T1(x1), T2(x2), · · · , Tn(xn). The future lifetime on the joint-life status is defined as

T (x1 : x2 : · · · : xn) = min{T1(x1), T2(x2), · · · , Tn(xn)}.

Consider the payment of one unit at time T (x1 : x2 : · · · : xn) with force of interests r.

The actuarial present value of the payment can be expressed as

APV = : E(exp(−rT (x1 : x2 : · · · : xn)))

=
∫ ∞

0
e−rtdP (T (x1 : x2 : · · · : xn) ≤ t) = −

∫ ∞

0
e−rtdP (T (x1 : x2 : · · · : xn) > t).

Integration by parts leads to

APV = 1− r

∫ ∞

0
e−rtP (T (x1 : x2 : · · · : xn) > t)dt. (5.1)

For simplicity, we assume that x1 = x2 = · · · = xn = x, and that the marginal distribu-

tions of (T1(x), T2(x), · · · , Tn(x)) are the same, denoted as Fx. Assume that there exist

uniform [0, 1] random variables U,Ui, i ≤ n satisfying Assumption A and Assumption

B, such that

(T1(x), T2(x), · · · , Tn(x)) = (F−
x (U1), F−

x (U2), · · · , F−
x (Un)).
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Here F−
x denotes the left-continuous inverse function of Fx. For given (j1, · · · , jn), for

simplicity we denote

δ(j1, · · · , jn) = I{#{i:ji=1}>0,#{i:ji=3}>0}

and

η(j1, · · · , jn) = #{i : ji = 2}+ I{#{i:ji=1}×#{i:ji=3}=0,#{i:ji=1}+#{i:ji=3}>0}.

Detailed calculation shows that∫ ∞

0
e−rtP (T (x : x : · · · : x) > t)dt

=
3∑

j1=1

· · ·
3∑

jn=1

(
n∏

i=1

ai,ji)
∫ ∞

0
e−rt(1− 2Fx(t))δ(j1,··· ,jn)

+ (1− Fx(t))η(j1,··· ,jn)dt

=:
3∑

j1=1

· · ·
3∑

jn=1

(
n∏

i=1

ai,ji)hj1,j2,··· ,jn . (5.2)

Hence APV can be expressed as a linear combination of hj1,j2,··· ,jn , ji ≤ 3, i ≤ n. Note

that the coefficients ai,j have no influence on hj1,j2,··· ,jn .

The actuarial notations tqx = Fx(t), tpx = 1−Fx(t) and qx = Fx(1), px = 1−Fx(1)

will be used here. Assume that the mortality of the group follows the uniform distribution

of death over each age interval (Bowers et al.(1997)), that is, for each non-negative integer

y the equation

tqy = tqy, t ∈ [0, 1]

holds. For given j1, j2, · · · , jn,

hj1,j2,··· ,jn =
∞∑

k=0

∫ k+1

k
e−rt(1− 2 tqx)δ(j1,··· ,jn)

+ ( tpx)η(j1,··· ,jn)dt

=
∞∑

k=0

∫ k+1

k
e−rt(2 tpx − 1)δ(j1,··· ,jn)

+ ( tpx)η(j1,··· ,jn)dt

=
∞∑

k=0

∫ 1

0
e−r(k+t)(2 kpx(1− tqx+k)− 1)δ(j1,··· ,jn)

+

×( kpx × (1− tqx+k))η(j1,··· ,jn)dt. (5.3)
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The equations (5.1)-(5.3) can be used for calculating APV . Assume that r =

0.025, n = 4 and ai,j = a1,j for i ≤ 4, j ≤ 3. We use the mortality for male nonsmokers in

2001 Valuation Basic Table – Ultimate Only (CSO Task Force Report (2002)). The four

cases in Table 5.1 are considered. For Case 1 and Case 2, Ui and U are dependent and

uncorrelated for each i. For Case 3, Ui and U are positive correlated for each i. Case 4

describes the situation that Ui and U are independent, thus Ui, i ≤ 4 are independent in

this case.

Case 1 Case 2 Case 3 Case 4

ai,1 0.1 0.2 0.3 0

ai,2 0.8 0.6 0.7 1

ai,3 0.1 0.2 0 0

Table 5.1: The coefficients ai,j

The numerical results for x = 20, 50 and 80 are given in Table 5.2. We also calculate the

ratios of Cases 1-3 to Case 4 to demonstrate the influence of the dependency assumptions

on APV .

Case 1 Case 2 Case 3 Case 4 Case 1
Case 4

Case 2
Case 4

Case 3
Case 4

x = 20 0.3453 0.3387 0.3356 0.3476 0.9933 0.9744 0.9655

x = 50 0.6307 0.6228 0.6175 0.6334 0.9957 0.9834 0.9750

x = 80 0.9273 0.9240 0.9198 0.9284 0.9988 0.9953 0.9908

Table 5.2: APV under different ai,j

5.2 Individual risk models

Individual risk models play an important role in insurance to model the total claims of

an insurance portfolio; see, e.g., Kaas et al.(2001) for details.

Let Y1, Y2, · · · , Yn be n individual risks with marginal distributions Fi and Yi =

F−
i (Ui), where Ui, i ≤ n satisfy Assumption A and Assumption B and F−

i denotes

the left-continuous inverse function of Fi. Then the copula of (Y1, Y2, · · · , Yn) equals
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CA,B. In the following we define 0×∞ = 0.

Proposition 5.1. Let f be a non-negative n-variable function. Then

Ef(Y1, · · · , Yn) =
3∑

j1=1

· · ·
3∑

jn=1

(
n∏

i=1

ai,ji)Ef(Y (j1,··· ,jn)
1 , · · · , Y (j1,··· ,jn)

n ).

Here for each (j1, j2, · · · , jn) the random vector (Y (j1,··· ,jn)
1 , · · · , Y

(j1,··· ,jn)
n ) has marginal

distributions Fi, i ≤ n and copula C(j1,j2,··· ,jn).

Proof. Using Theorem 2.1, we have

Ef(Y1, · · · , Yn)

=
∫ 1

0
· · ·
∫ 1

0
f(F−

1 (u1), · · · , F−
n (un))CA,B(du1, · · · , dun)

=
3∑

j1=1

· · ·
3∑

jn=1

(
n∏

i=1

ai,ji)
∫ 1

0
· · ·
∫ 1

0
f(F−

1 (u1), · · · , F−
n (un))C(j1,j2,··· ,jn)(du1, · · · , dun)

=
3∑

j1=1

· · ·
3∑

jn=1

(
n∏

i=1

ai,ji)Ef(Y (j1,··· ,jn)
1 , · · · , Y (j1,··· ,jn)

n ).

The proposition is proved.

Proposition 5.1 shows the advantage of Assumption A and Assumption B on

analyzing the influence of the correlation on risk portfolios. Note that the coefficients∏n
i=1 ai,ji don’t depend on the marginal distributions.

Next we focus on the stop-loss premium. It is easily obtained that

E(Y1 + · · ·+ Yn − t)+ =
3∑

j1=1

· · ·
3∑

jn=1

(
n∏

i=1

ai,ji)E(Y (j1,··· ,jn)
1 + · · ·+ Y (j1,··· ,jn)

n − t)+.

It follows from Dhaene et al.(2002a) that

E(Y (1,··· ,1)
1 + · · ·+ Y (1,··· ,1)

n − t)+ ≥ E(Y (j1,··· ,jn)
1 + · · ·+ Y (j1,··· ,jn)

n − t)+.

By comparing terms E(Y (j1,··· ,jn)
1 + · · ·+ Y

(j1,··· ,jn)
n − t)+, we can see the influence of the

different correlations on the stop-loss premiums. Let n = 3 and the marginal distribution

be Fi(x) = 1− x−α, x ≥ 1 with parameter α > 1. Denote

gj1,j2,j3(t) = E(Y (j1,j2,j3)
1 + Y

(j1,j2,j3)
2 + Y

(j1,j2,j3)
3 − t)+.
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Note that gj1,j2,j3(t) must equal one of g1,1,1(t), g1,1,2(t), g1,1,3(t), g2,2,2(t) and g1,2,3(t),

and that gj1,j2,j3(t) = 3α
α−1 − t, t ≤ 3 for all possible (j1, j2, j3). For α = 2 and α = 3, we

plot g1,1,1(t), g1,1,2(t), g1,1,3(t), g2,2,2(t) and g1,2,3(t) in Figure 5.1 and Figure 5.2. Based on

the above numerical results, we can calculate the stop-loss premium E(Y1 +Y2 +Y3− t)+.

For comparison we consider the two cases given in Table 5.3 and Table 5.4. For Case 1,

U1, U2 and U3 are pairwise positively correlated. For Case 2, U1 is negatively correlated

with U2 and U3. The numerical results are given in Table 5.5.
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Figure 5.1: gj1,j2,j3(t), α = 2
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Figure 5.2: gj1,j2,j3(t), α = 3
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i = 1 i = 2 i = 3

ai,1 0.8 0.7 0.8

ai,2 0.2 0 0.1

ai,3 0 0.3 0.1

Table 5.3: ai,j , j ≤ 3, Case 1

i = 1 i = 2 i = 3

ai,1 0 0.5 0.5

ai,2 0.1 0.4 0.5

ai,3 0.9 0.1 0

Table 5.4: ai,j , j ≤ 3, Case 2

t = 3 t = 4 t = 5 t = 7 t = 10 t = 20 t = 50

α = 2, Case 1 3.0000 2.1379 1.5974 1.0724 0.7188 0.3429 0.1337

α = 2, Case 2 3.0000 2.0315 1.3891 0.8257 0.5014 0.2130 0.0778

α = 3, Case 1 1.5000 0.7336 0.4242 0.1967 0.0908 0.0215 0.0034

α = 3, Case 2 1.5000 0.6261 0.2939 0.1047 0.0399 0.0078 0.0011

Table 5.5: Numerical results of E(Y1 + Y2 + Y3 − t)+

6 Conclusions

Under the assumption of conditional independence, the multivariate copulas with bivari-

ate Fréchet marginals are obtained. These copulas can be expressed as weighted sums of

some special copulas. Some properties of the copulas are investigated. In particular, it is

proved that these multivariate copulas are uniquely determined by their two-dimensional

marginal copulas. Some applications of the copulas are discussed.
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7 Appendix

Proof of Proposition 2.2: When l < n− 1, the number of the copulas in the set

{
C(j1,j2,··· ,jn) : #{i : ji = 2, 1 ≤ i ≤ n} = l, ji ∈ {1, 2, 3}, 1 ≤ i ≤ n

}
equals (

n

l

)
× 1

2

{(
n− 1

0

)
+
(

n− l

1

)
+ · · ·+

(
n− l

n− l

)}
= 2n−l−1

(
n

l

)
.

For the case l ≥ n − 1, we have C(2,2,··· ,2,3) = C(2,2,··· ,2,1) = C(2,2,··· ,2,2). Thus, the total

number of the distinct copulas in the family Sn is

1 +
n−2∑
l=0

2n−l−1

(
n

l

)
=

1
2
(3n − 2n + 1).

Next we prove the second part. In [0, 1]n, we define the set

D(j1,j2,··· ,jn)

=
{
ui = um, i, m ∈ J1

}⋂{
ul = uk, l, k ∈ J3

}⋂{
ui + ul = 1, i ∈ J1, l ∈ J3

}
⋂{

ur + us 6= 1, ur 6= us, r ∈ J2, r 6= s, s ≤ n
}
,

the support of copula C(j1,j2,··· ,jn). Note that D(j1,j2,··· ,jn) = D(4−j1,4−j2,··· ,4−jn).

The probability measure generated by C(j1,j2,··· ,jn) is denoted as P (j1,j2,··· ,jn). Then

P (j1,j2,··· ,jn) = P (4−j1,4−j2,··· ,4−jn)

and

P (j1,j2,··· ,jn)(D(j1,j2,··· ,jn)) = P (4−j1,4−j2,··· ,4−jn)(D(j1,j2,··· ,jn)) = 1.

For simplicity, the copulas in Sn are denoted as Ci, i = 1, 2, · · · , 1
2(3n − 2n + 1). For

each i, the probability measure generated by Ci is denoted as Pi and the corresponding

support is denoted as Di. Then Pi(Dj) = 0 for i 6= j.

Assume that for fi, gi ≥ 0, copula C can be expressed as

C =
∑

i

fiCi =
∑

i

giCi.
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Suppose that there exists i such that fi 6= gi. We can define a probability measure

Q =:

∑
gi−fi>0(gi − fi)Pi∑
gi−fi>0(gi − fi)

.

Then we have

Q =

∑
fi−gi>0(fi − gi)Pi∑
fi−gi>0(fi − gi)

.

Note that for any j with fj − gj > 0,

Q(Dj) =

∑
fi−gi>0(fi − gi)Pi(Dj)∑

fi−gi>0(fi − gi)
> 0.

On the other hand,

Q(Dj) =

∑
fi−gi<0(gi − fi)Pi(Dj)∑

fi−gi<0(gi − fi)
= 0,

contradicting to that Q(Dj) > 0. Thus fi = gi holds for all i, and the expression of

copula C is unique. The proposition is proved.
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