
Jackknife Empirical Likelihood Intervals for Spearman’s Rho

Ruodu Wang1,2 and Liang Peng1,2

Abstract

In connection with copulas, rank correlation such as Kendall’s tau and Spearman’s rho has

been employed in risk management for summarizing dependence among two variables and estimat-

ing some parameters in bivariate copulas and elliptical models. In this paper, a jackknife empirical

likelihood method is proposed to construct confidence intervals for Spearman’s rho without es-

timating the asymptotic variance. A simulation study confirms the advantages of the proposed

method.
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1 Introduction

Correlation has been used to summarize dependence among variables for a long history and plays an

important role in modern finance such as Capital Asset Pricing Model and portfolio selection. Given

the fact that copula and elliptical distributions have been heavily employed in risk management,

copula-based dependence measures such as Kendall’s tau and Spearman’s rho are receiving more and

more attention. Some pitfalls on using the linear correlation measure in elliptical models are given in

Embrechts, McNeil and Straumann (2002). Advantages of using Kendall’s tau and Spearman’s rho

include estimating some parameters in copulas. For example, if (X, Y ) is a bivariate meta-Gaussian

distribution with copula

CGa
ρ (u1, u2) =

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1
2π(1− ρ2)1/2

exp{−s2
1 − 2ρs1s2 + s2

2

2(1− ρ2)
}ds1ds2
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and continuous marginals, where Φ−1 denotes the inverse function of the standard normal distribution

function, then the Kendall’s tau and Spearman’s rho can be written as

ρτ =
2
π

arc sin ρ and ρs =
6
π

arc sin
ρ

2
.

Therefore ρ can be estimated via estimating ρτ and ρs. More details can be found in Chapter 5.3 of

McNeil, Frey and Embrechts (2005).

Let (X1, Y1), · · · , (Xn, Yn) be independent random vectors with distribution function H and con-

tinuous marginals F (x) = H(x,∞) and G(y) = H(∞, y). Then the Kendall’s tau and Spearman’s rho

are defined as

ρτ = P[(X1 −X2)(Y1 − Y2) > 0]− P[(X1 −X2)(Y1 − Y2) < 0]

and

ρs = 12E[(F (X1)− 1/2)(G(Y1)− 1/2)],

respectively. Define

Fn(x) =
1
n

n∑
i=1

1(Xi ≤ x) and Gn(x) =
1
n

n∑
i=1

1(Yi ≤ x).

Then the simple nonparametric estimators for ρτ and ρs are

ρ̂τ
n =

2
n(n− 1)

∑
1≤i<j≤n

{1((Xi −Xj)(Yi − Yj) > 0)− 1((Xi −Xj)(Yi − Yj) < 0)}

and

ρ̂s
n =

12
n

n∑
i=1

{Fn(Xi)− 1/2}{Gn(Yi)− 1/2},

respectively.

In order to construct confidence intervals for ρτ and ρs, one can simply use the asymptotic limits of

√
n{ρ̂τ

n − ρτ} and
√

n{ρ̂s
n − ρs}. However, this method requires to estimate the asymptotic variances.

As shown in the next section, the asymptotic variance of ρ̂s
n is quite complicated and it is hard to

estimate it explicitly. Most likely, it involves density estimation and numerical integration. Therefore,
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bootstrap method is a common way to construct a confidence interval for the Spearman’s rho. As an

alternative way of constructing confidence intervals, empirical likelihood method introduced in Owen

(1988, 1990) is powerful in dealing with linear functionals without estimating any extra quantities

such as asymptotic variance. We refer to Owen (2001) for an overview on empirical likelihood method.

Since the Kendall’s tau and Spearman’s rho are non-linear functionals, a direct application of empirical

likelihood method fails to obtaining a chi-square limit. Recently, Jing, Yuan and Zhou (2009) proposed

a so-called jackknife empirical likelihood method to construct confidence intervals for U-statistics.

Since ρ̂τ
n is a U-statistic, one can directly employ the jackknife empirical likelihood method in Jing,

Yuan and Zhou (2009) to construct confidence intervals for the Kendall’s tau without estimating the

asymptotic variance. In this paper, we employ the jackknife empirical likelihood method to construct

confidence intervals for the Spearman’s rho and investigate the finite sample behavior of the proposed

method.

We organize this paper as follows. Section 2 presents the methodology and asymptotic results. A

simulation study and a real data analysis are given in Section 3. All proofs are put in Section 4.

2 Methodology

Define the copula and empirical copula of (Xi, Yi) as

C(x, y) = P(F (X1) ≤ x,G(Y1) ≤ y)

and

Cn(x, y) =
1
n

n∑
i=1

1(Fn(Xi) ≤ x, Gn(Yi) ≤ y),

respectively. Put

C1(x, y) =
∂

∂x
C(x, y) and C2(x, y) =

∂

∂y
C(x, y).
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Assume that
C1(x, y) exists and is continuous on the set {(x, y) : 0 < x < 1, 0 ≤ y ≤ 1},

C2(x, y) exists and is continuous on the set {(x, y) : 0 ≤ x ≤ 1, 0 < y < 1}.
(1)

Then it follows from Proposition 3.1 of Segers (2010) that

sup
0≤x,y≤1

|
√

n{Cn(x, y)− C(x, y)} −W (x, y) + C1(x, y)W (x, 1) + C2(x, y)W (1, y)| = op(1), (2)

where W (x, y) is a Gaussian process with mean zero and covariance

E[W (x1, y1)W (x2, y2)] = C(x1 ∧ x2, y1 ∧ y2)− C(x1, y1)C(x2, y2). (3)

Note that (2) holds via the Skorohod construction. By (2), we have

√
n{ρ̂s

n − ρs} = 12
∫ 1
0

∫ 1
0

√
n{Cn(x, y)− C(x, y)}dxdy

d→ 12
∫ 1
0

∫ 1
0 {W (x, y)− C1(x, y)W (x, 1)− C2(x, y)W (1, y)}dxdy.

Hence, the asymptotic limit depends on the copula C(x, y) and its partial derivatives. In order to

avoid estimating the complicated asymptotic variance for constructing confidence intervals for ρs, we

employ the following jackknife empirical likelihood method.

Define 

Fn,i(x) = 1
n−1

∑n
j=1,j 6=i I(Xj ≤ x),

Gn,i(x) = 1
n−1

∑n
j=1,j 6=i I(Yj ≤ x),

ρ̂s
n,i = 12

n−1

∑n
j=1,j 6=i{Fn,i(Xj)− 1/2}{Gn,i(Yj)− 1/2}

Zi = nρ̂s
n − (n− 1)ρ̂s

n,i

for i = 1, · · · , n. As in Jing, Yuan and Zhou (2009), a jackknife empirical likelihood function for θ = ρs

is defined as

L(θ) = sup{
n∏

i=1

(npi) : p1 ≥ 0, · · · , pn ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

piZi = θ}.

By the Lagrange multiplier technique, we obtain that pi = n−1{1 + λ(Zi − θ)}−1 and −2 log L(θ) =

2
∑n

i=1 log{1 + λ(Zi − θ)}, where λ = λ(θ) satisfies

1
n

n∑
i=1

Zi − θ

1 + λ(Zi − θ)
= 0. (4)
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The following theorem shows that Wilks theorem holds for the proposed jackknife empirical like-

lihood method.

Theorem 1. Assume condition (1) holds. Then −2 log L(ρs) converges in distribution to a chi-square

distribution with one degree of freedom as n →∞.

Based on the above theorem, a jackknife empirical likelihood confidence interval for ρs with level

α can be obtained as

Iα = {θ : −2 log L(θ) ≤ χ2
1,α},

where χ2
1,α denotes the α quantile of a chi-square distribution with one degree of freedom.

3 Simulation study and data analysis

3.1 Simulation study

We investigate the finite sample behavior of the proposed jackknife empirical likelihood method and

compare it with the normal approximation method in terms of coverage accuracy.

We draw 10, 000 random samples of sample size n = 100, 300 from a bivariate normal distribution

with correlation ρ and marginals being the standard normal distribution. In this case, the Spearman’s

rho equals 6
πarc sin(ρ/2). We calculate the jackknife empirical likelihood interval Iα at levels α =

0.9, 0.95, 0.99 for ρ = 0,±0.2,±0.8, which correspond to ρs = 0,±0.1913,±0.7859, respectively. For

constructing a confidence interval based on the asymptotic limit of ρ̂s
n, we employ the percentile

bootstrap confidence interval. More specifically, we draw 1, 000 bootstrap samples of size n from

each original sample. Based on each bootstrap sample, we calculate the Spearman’s rho estimator.

Therefore we obtained 1, 000 bootstrapped Spearman’s rho estimators denoted by ρ̂s∗
n,1, · · · , ρ̂s∗

n,1000.

Let c1 and c2 denote the [1000(1 − α)/2] − th and [1000(1 + α)/2] − th largest order statistics of

{ρ̂s∗
n,i − ρ̂s

n}1000
i=1 . Hence, the percentile bootstrap confidence interval for ρs with level α is

IB
α = (ρ̂s

n − c2, ρ̂s
n − c1).
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The empirical coverage probabilities and average interval lengths for both Iα and IB
α are reported in

Tables 1 and 2, which show that i) the proposed jackknife empirical likelihood method produces much

more accurate confidence intervals than the percentile bootstrap method in most cases, specially for

n = 100; ii) the interval lengths of the jackknife empirical likelihood method are slightly longer.

3.2 Data analysis

Next, we apply the proposed method to the Danish fire insurance claims. This data set is available at

www.ma.hw.ac.uk/∼mcneil/, which consists of loss to buildings, loss to contents and loss to profits.

As described there, the data were collected at the Copenhagen Reinsurance Company and comprise

2167 fire losses over the period 1980 to 1990. They have been adjusted for inflation to reflect 1985

values and are expressed in millions of Danish Kroner. Here we consider the first two variables: loss

to building and loss to contents; see Figure 1 below. For computing IB
α , we draw 1, 000 bootstrap

samples as before. We find that ρ̂s
n = 0.1411, IB

0.9 = (0.0959, 0.1866), IB
0.95 = (0.0897, 0.1942),

I0.9 = (0.0962, 0.1862) and I0.95 = (0.0882, 0.1952), which show that the proposed jackknife

empirical likelihood method produces similar interval length as the bootstrap method. Both intervals

indicate the Spearman’s rho is positive, which means that the loss to contents is positively correlated

with the loss to profits.

4 Proofs

Before proving Theorem 1, we show the following two lemmas.

Lemma 1. Under conditions of Theorem 1, we have

√
n{ 1

n

∑n
i=1 Zi − ρs} d→ 12

∫ 1
0

∫ 1
0 {W (x, y)− C1(x, y)W (x, 1)− C2(x, y)W (1, y)}dxdy

d= N(0, σ2)
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Figure 1: Scatterplot of the Danish fire insurance data.

as n →∞, where

σ2 = E[(12
∫ 1

0

∫ 1

0
{W (x, y)− C1(x, y)W (x, 1)− C2(x, y)W (1, y)}dxdy)2].
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Proof. For i = 1, · · · , n, write

Zi − ρs

= nρ̂s
n − (n− 1)ρ̂s

n,i − ρs

= 12
n∑

j=1

(Fn(Xj)− 1/2)(Gn(Yj)− 1/2)− 12
∑
j 6=i

(Fn,i(Xj)− 1/2)(Gn,i(Yj)− 1/2)− ρs

= 12
∑
j 6=i

[(Fn(Xj)− 1/2)(Gn(Yj)− 1/2)− (Fn,i(Xj)− 1/2)(Gn,i(Yj)− 1/2)]

+(12(Fn(Xi)− 1/2)(Gn(Yi)− 1/2)− ρs)

= 12

∑
j 6=i

(Fn(Xj)− Fn,i(Xj))(Gn(Yj)− 1/2) +
∑
j 6=i

(Gn(Yj)−Gn,i(Yj))(Fn(Xj)− 1/2)

+
∑
j 6=i

(Fn(Xj)− Fn,i(Xj))(Gn(Yj)−Gn,i(Yj))

 + (12(Fn(Xi)− 1/2)(Gn(Yi)− 1/2)− ρs)

= 12

∑
j 6=i

(Fn(Xj)− Fn,i(Xj))(Gn(Yj)− 1/2) +
∑
j 6=i

(Gn(Yj)−Gn,i(Yj))(Fn(Xj)− 1/2)


+O(1/n) + (12(Fn(Xi)− 1/2)(Gn(Yi)− 1/2)− ρs)

= 12{
n∑

j=1

(Fn(Xj)− Fn,i(Xj))(Gn(Yj)− 1/2)︸ ︷︷ ︸
V1,i

+
n∑

j=1

(Gn(Yj)−Gn,i(Yj))(Fn(Xj)− 1/2)︸ ︷︷ ︸
V2,i

+((Fn(Xi)− 1/2)(Gn(Yi)− 1/2)− ρs/12)︸ ︷︷ ︸
V3,i

}+ O(1/n).

Thus

1√
n

n∑
i=1

(Zi − ρs) =
12√
n

n∑
i=1

(Vi,1 + Vi,2 + Vi,3) + O(1/
√

n).

We already have

12√
n

n∑
i=1

V3,i =
√

n(ρ̂s
n − ρs)

d→ 12
∫ 1

0

∫ 1

0
{W (x, y)− C1(x, y)W (x, 1)− C2(x, y)W (1, y)}dxdy.

8



It is easy to check that

1√
n

n∑
i=1

V1,i =
1√
n

n∑
i=1

n∑
j=1

(Fn(Xj)− Fn,i(Xj))(Gn(Yj)− 1/2)

=
1√
n

n∑
j=1

(Gn(Yj)− 1/2)
n∑

i=1

(Fn(Xj)− Fn,i(Xj))

=
1√
n

n∑
j=1

(Gn(Yj)− 1/2)× 0

= 0.

Similarly

1√
n

n∑
i=1

V2,i = 0.

Thus it follows from the above equations that

1√
n

n∑
i=1

(Zi − ρs) d→ 12
∫ 1

0

∫ 1

0
{W (x, y)− C1(x, y)W (x, 1)− C2(x, y)W (1, y)}dxdy.

Lemma 2. Under conditions of Theorem 1, we have

1
n

n∑
i=1

(Zi − ρs)2
p→ σ2 as n →∞.

Proof. Write

σ2 = E[(12
∫ 1

0

∫ 1

0
{W (x, y)− C1(x, y)W (x, 1)− C2(x, y)W (1, y)}dxdy)2]

= 144E[(
∫∫

W (x, y)dxdy︸ ︷︷ ︸
A1

−
∫∫

C1(x, y)W (x, 1)dxdy︸ ︷︷ ︸
A2

−
∫∫

C2(x, y)W (1, y)dxdy︸ ︷︷ ︸
A3

)2]

= 144E[A2
1 + A2

2 + A2
3 − 2A1A2 − 2A1A3 + 2A2A3],

where by convention we use
∫

=
∫ 1
0 . Using (3) we have

E(A2
1) =

∫∫∫∫
(C(x1 ∧ x2, y1 ∧ y2)− C(x1, y1)C(x2, y2))dx1dx2dy1dy2

= 4
∫∫

C(x, y)(1− x)(1− y)dxdy −
(∫∫

C(x, y)dxdy
)2

,

(5)

E(A2
2) =

∫∫∫∫
C1(x1, y1)C1(x2, y2)(x1 ∧ x2 − x1x2)dx1dx2dy1dy2, (6)
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and

E(A2
3) =

∫∫∫∫
C2(x1, y1)C2(x2, y2)(y1 ∧ y2 − y1y2)dx1dx2dy1dy2. (7)

By integration by parts, we have

∫∫∫
C1(x1, y1)C(x1, y2)dx1dy1dy2

=
∫∫

C(1, y1)C(1, y2)dy1dy2 −
∫∫∫

C1(x1, y2)C(x1, y1)dx1dy1dy2

= 1
4 −

∫∫∫
C1(x1, y2)C(x1, y1)dx1dy1dy2,

which implies that ∫∫∫
C1(x1, y1)C(x1, y2)dx1dy1dy2 =

1
8
. (8)

Similarly,

∫∫∫
x1C1(x1, y1)C(x1, y2)dx1dy1dy2

=
∫∫

C(1, y1)C(1, y2)dy1dy2 −
∫∫∫

(x1C1(x1, y1)C(x1, y2)− C(x1, y1)C(x1, y2))dx1dy1dy2,

which implies that

2
∫∫∫

x1C1(x1, y1)C(x1, y2)dx1dy1dy2 +
∫∫∫

C(x1, y1)C(x1, y2)dx1dy1dy2 =
1
4
. (9)

It follows from (8), (9) and (3) that

E(A1A2) =
∫∫∫

C1(x1, y1)(C(x1 ∧ x2, y2)− x1C(x2, y2))dx1dx2dy1dy2

=
∫∫∫

C1(x1, y1)C(x1, y2)dx1dy1dy2 −
∫∫∫

x1C1(x1, y1)C(x1, y2)dx1dy1dy2

−
∫∫∫

C(x1, y1)C(x1, y2)dx1dy1dy2 +
(∫∫

C(x, y)dxdy
)2

= −1
8 +

∫∫∫
x1C1(x1, y1)C(x1, y2)dx1dy1dy2 +

(∫∫
C(x, y)dxdy

)2
.

(10)

Using the same arguments, we can show that

E(A1A3) = −1
8

+
∫∫∫

y1C2(x1, y1)C(x2, y1)dx1dx2dy1 +
(∫∫

C(x, y)dxdy

)2

, (11)

and

E(A2A3) =
∫∫∫∫

C1(x1, y1)C2(x2, y2)(C(x1, y2)− x1y2)dx1dx2dy1dy2. (12)

10



Note that
1
n

∑n
i=1(Zi − ρs)2 = 144

n

∑n
i=1(V1,i + V2,i + V3,i + O(1/n))2

= 144
n

∑n
i=1(V1,i + V2,i + V3,i)2 + O(1/n)

(13)

since V1,i, V2,i and V3,i are uniformly bounded for i = 1, · · · , n. A straightforward calculation shows

that

1
n

∑n
i=1 V 2

1,i

= 1
n

∑n
i=1

(∑n
j=1(Fn(Xj)− Fn,i(Xj))(Gn(Yj)− 1/2)

)2

= 1
n

∑n
i=1

∑n
j=1

∑n
k=1(Fn(Xj)− Fn,i(Xj))(Gn(Yj)− 1/2)(Fn(Xk)− Fn,i(Xk))(Gn(Yk)− 1/2)

= 1
n

∑n
j=1

∑n
k=1(Gn(Yj)− 1/2)(Gn(Yk)− 1/2)

∑n
i=1(Fn(Xj)− Fn,i(Xj))(Fn(Xk)− Fn,i(Xk))

= 1
(n−1)2

∑n
j=1

∑n
k=1(Gn(Yj)− 1/2)(Gn(Yk)− 1/2)(Fn(Xj ∧Xk)− Fn(Xj)Fn(Xk))

p→
∫∫∫∫

(y1 − 1
2)(y2 − 1

2)(x1 ∧ x2 − x1x2)C(dx1,dy1)C(dx2,dy2)

=
∫∫

1
4(x1 ∧ x2 − x1x2)dx1dx2 −

∫∫∫
(x1 ∧ x2 − x1x2)C1(x1, y1)dx1dx2dy1

+
∫∫∫∫

C1(x1, y1)C1(x2, y2)(x1 ∧ x2 − x1x2)dx1dx2dy1dy2

= 1
48 + 1

2

∫∫
C(x, y)dxdy −

∫∫
xC(x, y)dxdy + E(A2

2)

(14)

as n →∞. Similarly, we can show that

1
n

n∑
i=1

V 2
2,i

p→ 1
48

+
1
2

∫∫
C(x, y)dxdy −

∫∫
yC(x, y)dxdy + E(A2

3), (15)

1
n

∑n
i=1 V 2

3,i

p→
∫∫

(x− 1
2)2(y − 1

2)2C(dx, dy)− (ρs/12)2

=
∫∫

(x− 1
2)(y − 1

2)C(x, y)dxdy − 1
48 −

(∫∫
C(x, y)dxdy − 1

4

)2

= 4
∫∫

(x− 1)(y − 1)C(x, y)dxdy +
∫∫

2(x + y)C(x, y)dxdy − 3
∫∫

C(x, y)dxdy

− 1
48 −

(∫∫
C(x, y)dxdy

)2 + 1
2

∫∫
C(x, y)dxdy − 1

16

= E(A2
1) +

∫∫
2(x + y)C(x, y)dxdy − 5

2

∫∫
C(x, y)dxdy − 1

12 ,

(16)
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1
n

∑n
i=1 V1,iV2,i

p→
∫∫∫∫

(x2 − 1
2)(y1 − 1

2)(C(x1, y2)− x1y2)C(dx1,dy1)C(dx2,dy2)

=
∫∫

1
4(C(x1, y2)− x1y2)dx1dy2 −

∫∫∫
1
2C2(x2, y2)(C(x1, y2)− x1y2)dx1dx2dy2

−
∫∫∫

1
2C1(x1, y1)(C(x2, y1)− x2y1)dx1dy1dy2

+
∫∫∫∫

C1(x1, y1)C2(x2, y2)(C(x1, y2)− x1y2)dx1dx2dy1dy2

= 3
16 −

1
4

∫∫
C(x, y)dxdy − 1

2

∫∫
C2(x2, y2)C(x1, y2)dx1dx2dy2

−1
2

∫∫
C1(x1, y1)C(x2, y1)dx1dy1dy2 + E(A2A3),

(17)

1
n

∑n
i=1 V1,iV3,i

= 1
n

∑n
j=1

∑n
i=1(Fn(Xj)− Fn,i(Xj))[(Fn(Xi)− 1

2)(Gn(Yi)− 1
2)− ρ2/12](Gn(Yj)− 1

2)

= 1
n2

∑n
j=1

∑n
i=1[1(Xi ≤ Xj)− Fn(Xj)][(Fn(Xi)− 1

2)(Gn(Yi)− 1
2)− ρ2/12](Gn(Yj)− 1

2)

p→
∫∫∫∫ 1

x2=x1
(y2 − 1

2)C(dx2,dy2)[(x1 − 1
2)(y1 − 1

2)− ρs/12]C(dx1,dy1)

=
∫∫∫

(y2 − 1
2)(1− C2(x1, y2))dy2[(x1 − 1

2)(y1 − 1
2)− ρs/12]C(dx1,dy1)

=
∫∫∫

−(y2 − 1
2)C2(x1, y2)dy2(x1 − 1

2)(y1 − 1
2)C(dx1,dy1)− (ρs/12)2

=
∫∫ (∫

C(x1, y2)dy2 − 1
2x1

)
(x1 − 1

2)(y1 − 1
2)C(dx1,dy1)− (ρs/12)2

= 1
2

∫∫
x1C(x1, y2))dx1dy2 − 1

4

∫∫
C(x, y)dxdy − 1

12 + 1
16 +

∫∫
x1C1(x1, y1)(x1 − 1

2)dx1dy1

−
∫∫∫

C1(x1, y1)C(x1, y2)(x1 − 1
2)dx1dy1dy2 − (ρs/12)2

= 1
2

∫∫
xC(x, y)dxdy − 1

48 + 1
4 −

∫∫
xC(x, y)dxdy − 1

8 −
∫∫∫

x1C1(x1, y1)C(x1, y2)dx1dy1dx2

+1
2

∫∫∫
C1(x1, y1)C(x1, y2)dx1dy1dy2 −

(∫∫
C(x, y)dxdy − 1

4

)2

= 1
24 −

1
2

∫∫
xC(x, y)dxdy −

∫∫∫
x1C1(x1, y1)C(x1, y2)dx1dy1dx2

+1
2

∫∫∫
C1(x1, y1)C(x1, y2)dx1dy1dy2 + 1

2

∫∫
C(x, y)dxdy −

(∫∫
C(x, y)dxdy

)2

= − 1
12 −

1
2

∫∫
xC(x, y)dxdy + 1

2

∫∫∫
C1(x1, y1)C(x1, y2)dx1dy1dy2

+1
2

∫∫
C(x, y)dxdy − E(A1A2),

(18)
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and

1
n

∑n
i=1 V2,iV3,i

p→ − 1
12 −

1
2

∫∫
yC(x, y)dxdy + 1

2

∫∫∫
C2(x1, y1)C(x2, y1)dx1dy1dy2

+1
2

∫∫
C(x, y)dxdy − E(A1A3).

(19)

Hence, it follows from (5)–(7), (10)–(19) that

1
n

n∑
i=1

(V1,i + V2,i + V3,i)2 =
1
n

n∑
i=1

(V 2
1,i + V 2

2,i + V 2
3,i + 2V1,iV2,i + 2V1,iV3,i + 2V2,iV3,i)

p→ E(A2
1) + E(A2

2) + E(A2
3)− 2E(A1A2)− 2E(A1A3) + E(A2A3),

i.e.,

1
n

n∑
i=1

(Zi − ρs)2
p→ σ2.

Proof of Theorem 1. Since V1,i, V2,i and V3,i defined in the proof of Lemma 1 are uniformly

bounded for i = 1, · · · , n, we have sup1≤i≤n |Zi| is bounded. Hence, using the standard arguments in

the empirical likelihood method (see Chapter 11 of Owen (2001)), Lemmas 1 and 2, we obtain that

−2 log L(ρs) =
{
∑n

i=1(Zi − ρs)}2∑n
i=1(Zi − ρs)2

+ op(1) d→ χ2(1).

References

[1] Embrechts, P., McNeil, A.J. and Straumann, D. (2002). Correlation and dependency in risk

management: properties and pitfalls. In Risk Management: Value at Risk and Beyond (ed. M.

Dempster), pp. 176–223. Cambridge University Press.

[2] Jing, B, Yuan, J. and Zhou, W. (2009). Jackknife empirical likelihood. J. Amer. Statist. Assoc.

104, 1224–1232.

[3] McNeil, A.J., Frey, R. and Embrechts, P. (2005). Quantitative Risk Management: Concepts,

Techniques and Tools. Princeton University Press.

13



[4] Owen, A. (1988). Empirical likelihood ratio confidence intervals for single functional. Biometrika

75, 237–249.

[5] Owen, A. (1990). Empirical likelihood ratio confidence regions. Ann. Statist. 18, 90–120.

[6] Owen, A. (2001). Empirical Likelihood. Chapman & Hall/CRC.

[7] Segers, J. (2010). Weak convergence of empirical copula processes under nonrestrictive smoothness

assumptions. http://arxiv.org/abs/1012.2133

Table 1: Coverage probabilities for the intervals Iα and IB
α at levels α = 0.9, 0.95, 0.99 are reported

for n = 100, 300 and ρ = 0,±0.2,±0.8.

(n, ρ) I0.9 IB
0.9 I0.95 IB

0.95 I0.99 IB
0.99

(100, 0) 0.9024 0.8874 0.9524 0.9352 0.9898 0.9794

(100, 0.2) 0.9016 0.8867 0.9524 0.9349 0.9900 0.9791

(100,−0.2) 0.9003 0.8858 0.9513 0.9347 0.9896 0.9773

(100, 0.8) 0.9013 0.8876 0.9473 0.9264 0.9850 0.9624

(100,−0.8) 0.8926 0.8691 0.9390 0.9105 0.9818 0.9509

(300, 0) 0.9055 0.8999 0.9530 0.9476 0.9915 0.9864

(300, 0.2) 0.9035 0.8996 0.9513 0.9440 0.9906 0.9852

(300,−0.2) 0.9073 0.9017 0.9529 0.9467 0.9908 0.9860

(300, 0.8) 0.9037 0.8957 0.9529 0.9393 0.9900 0.9776

(300,−0.8) 0.9008 0.8920 0.9505 0.9377 0.9899 0.9782
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Table 2: Average interval lengths for Iα and IB
α at levels α = 0.9, 0.95, 0.99 are reported for

n = 100, 300 and ρ = 0,±0.2,±0.8.

(n, ρ) I0.9 IB
0.9 I0.95 IB

0.95 I0.99 IB
0.99

(100, 0) 0.337 0.332 0.403 0.394 0.529 0.515

(100, 0.2) 0.327 0.322 0.391 0.383 0.515 0.501

(100,−0.2) 0.327 0.322 0.390 0.382 0.515 0.499

(100, 0.8) 0.148 0.148 0.177 0.177 0.235 0.236

(100,−0.8) 0.147 0.147 0.176 0.175 0.234 0.231

(300, 0) 0.192 0.190 0.229 0.227 0.302 0.298

(300, 0.2) 0.186 0.185 0.222 0.220 0.293 0.289

(300,−0.2) 0.186 0.185 0.222 0.220 0.293 0.288

(300, 0.8) 0.083 0.082 0.099 0.098 0.130 0.129

(300,−0.8) 0.083 0.082 0.099 0.098 0.130 0.128
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