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Abstract

For fitting a parametric copula to multivariate data, a popular way is to employ
the so-called pseudo maximum likelihood estimation proposed by Genest, Ghoudi
and Rivest (1995). Although interval estimation can be obtained via estimating
the asymptotic covariance of the pseudo maximum likelihood estimate, we pro-
pose a jackknife empirical likelihood method to construct confidence regions for the
parameters without estimating any additional quantities such as asymptotic covari-
ance. A simulation study shows the advantages of the new method in case of strong
dependence or having more than one parameter involved.
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1 Introduction

Let X; = (X1,1,--- ,XLd)T, e Xy = (X, ,Xn,d)T be independent random
vectors with common distribution function F' and continuous marginal distributions

Fi,--- , Fy4. Then the copula of X; is defined as
Clx1, - xq) = F(F (21), -+, Fy (2a)) (1)

for 0 < x1,---,x4 < 1, where Fj_ denotes the inverse of F}. Since the copula is inde-
pendent of marginals, it becomes a more or less standard tool in modeling dependence
in risk management. Many research papers and review papers have appeared in the
literature with particular applications in insurance, finance and risk management; see
references in Haug, Kliippelberg and Peng (2011).

For fitting a family of parametric copulas {C(-;0) : § € © C R} to a data set, a
popular semi-parametric estimation is the so-called pseudo maximum likelihood estima-
tion proposed by Genest, Ghoudi and Rivest (1995). That is, = arg max L(6), where

L(9) is the pseudo likelihood function for 6 defined as
L(O) = [[e(Fi(Xin), -+ Fu(Xia); 0), (2)

where ¢(+;0) denotes the density function of the parametric copula family C(-;6), and
Fi(z) = %—i—l Yo I(X;; < ) for j =1,---,d. Alternatively, the pseudo maximum

likelihood estimator can be defined as a root of the score equations
n
Z 1(Fi(Xin), - Fu(Xi4);0) =0, (3)
i=1

where 1(x;0) = (I1(x;0),--- ,l4(z;0)) and I(x;0) = a%jlog ¢(x;0). The asymptotic dis-
tribution of the above pseudo maximum likelihood estimator and a consistent estimator
for the asymptotic variance are given in Genest, Ghoudi and Rivest (1995). Since the

asymptotic covariance of the pseudo maximum likelihood estimator is complicated and



involves the contribution from both the copula and marginals, it is of importance to
seek a more efficient way to construct confidence regions for the parameters 8 without
estimating the asymptotic covariance. In this paper, we investigate the possibility of
employing empirical likelihood methods.

Since Owen (1988, 1990) introduced the empirical likelihood method for construct-
ing a confidence interval/region for a mean, it has been extended and applied to many
different settings and fields as a powerful interval estimation procedure; see Owen (2001)
for more details. A key step in applying the empirical likelihood method is to formulate
the nonparametric likelihood function. This is commonly done via estimating equations
as proposed by Qin and Lawless (1994). Since the pseudo maximum likelihood estimator
is a solution to the score equations (3), one may apply the method in Qin and Lawless
(1994) to construct confidence regions for 3 by defining the empirical likelihood function

as
Li(0) =sup{[[;\2y(npi) :p1 >0, ,pn 20,330 pi = 1,
S PPy (Xin), -, Fa(Xi0);:0) = 0}

Unfortunately, this likelihood function can not catch the variances of F]’ s and thus Wilks
theorem fails, i.e., —2log L1(0) does not converge in distribution to a chi-squared limit.

In general, Wilks theorem does not hold when an empirical likelihood method is
applied to nonlinear functionals. A common way to deal with nonlinear functionals is
to linearize it before employing the empirical likelihood method; see Chen, Peng and
Zhao (2009) and Molanes-Lopez, Van Keilegom and Veraverbeke (2009) for constructing
confidence intervals for copula at a particular point. However, it remains unknown on
how to linearize the score questions (3). Recently, Jing, Yuan and Zhou (2009) proposed
a so-called jackknife empirical likelihood method to deal with nonlinear functionals. In

this paper, we apply the jackknife empirical likelihood method to construct confidence

intervals/regions for the parametric copulas. When the copula is estimated nonpara-



metrically, Peng, Qi and Van Keilegom (2011) proposed a smoothed jackknife empirical
likelihood method to construct confidence intervals for a copula at a fixed point.

We organize this paper as follows. Section 2 presents the methodology and main
results. A simulation study and a real data analysis are given in Section 3. All proofs

are put in Section 4.

2 Methodology and Main Results

In order to formulate an empirical likelihood function with F J’ s taken into account,
we follow the idea in Jing, Yuan and Zhou (2009) to construct a jackknife sample first
and then apply the empirical likelihood method to the jackknife sample.

Define Fj,,i(x) = %Zzzlvk# I(Xp;<z)forj=1,---,dandi=1,--- ,n and the

jackknife sample {Z;(0) = (Z;1(0),- -+, Zi 4(0))T}7; as

n

Zij(0) = L(FY(Xpa), - Fa(Xpa);0) = D L(F i(Xen), s Fai( Xpa); 0)
k=1 k=1 ki

fori=1,---,nand j =1, ---,q. Based on this jackknife sample, we define the jackknife
empirical likelihood function as
n n n
L(0) = sup{] [(nps) : p1 = 0,-++ ,pn =2 0,> pi=1,> piZi(0) = 0}.
i=1 i=1 i=1

By the Lagrange multiplier technique, we have

—2log L(6) =2 ) _log{1 + A" Z;(6)},
=1

where A = (A1(6), -, A\g(0))T satisfies
~ Zi(9)
————=0. 4
iZ; 1+ )\TZi(Q) 0 ( )
Before showing that the Wilks theorem holds for the above jackknife empirical

likelihood method, we list some regularity conditions. Throughout we use 6y to denote

the true value of 6 and define r(u) = u(1 — u).



A1) There exist some constants 0 < a3 < 1/2 and M; > 0 such that, uniformly for

0<up, - ,uqg <1,
d
(- uas 0)| < My [ ] r(us) ™,
i=1
9 d
|l§'S)(ul7"' 7ud;60)‘ :|%l](ula Ud,90)| <M1T us IHT 7
§ i=1
(sm) 0 -1 -1 : —ay
[ (s s uas O)| 1= 5 — Hu (w1, s ug; 00)] < Mir(us) ™ (um) ™ [T r(w) ™,
i=1
and

E[l}(Fi(X11), -, Fa(X1,a);00)] < My

forj=1,---,gqand s, m=1,--- ,d.

A2) For a given 0 < ap < 1/2, there exist some constants 0 < ag < 1/2 and My > 0

such that, uniformly for 0 < uq,- - ,uq <1

/ /0 i HT’ (wi)”*c(u, -+ ,ug; 0o) duy - - - dus_1dugyy - - - dug < Mor(us)™ ™

fors=1,---,d, and

/ / Hr (ui) "2 c(uy, - -+ ug;00) dug - - - dug_1dtig g1 - - - Aty Aty - - - dug
[0,1]4=2

< Mor(ug) ™ r ()~

forl1<s<m<d.

Remark 1. Commonly used copulas such as Clayton, Frank, Gumbel, Normal and t
copulas satisfy A1) and A2).

Theorem 1. Under conditions Al) and A2), we have
—2log L(6p) LN x*(q) as n — oo,

Based on the above theorem, an empirical likelihood confidence interval /region for
0o with level £ is {0 : —2log L(0) > X;f}, where Xg,g is the &-th quantile of a chi-squared

distribution with ¢ degrees of freedom.



3 Simulation and Data Analysis

3.1 Simulation study

In this subsection, we examine the finite behavior of the proposed jackknife empir-
ical likelihood method and compare it with the normal approximation method.

We draw 10,000 random samples with size n = 300 from the Clayton copula
Cluy, - ,ug;0) = (1—d+u;“+-- -—|—u;o‘)*1/a, bivariate normal copula C(uq,us;0) =
Op(P(uy), 1 (ug)), where ® denotes the standard normal distribution and ®y denotes
the standard bivariate normal distribution with correlation 6, and bivariate t-copula with
0 = (p,v), where p € (—1,1) and v > 0.

We employ the 'copula’ package in R to calculate the pseudo maximum likelihood
estimator and its asymptotic variance so as to construct a confidence interval/region
for 0, denoted by NAM. We also denote the proposed jackknife empirical likelihood
method by JELM. For calculating the score equations of the bivariate t-copula, we use
the formulas in Dakovic and Czada (2011) with some typos corrected. More specifically,
i) the integrals in (7) and (8) have to be divided by 2; i) #? in (8) is x?; iii) the term
“+2 in the formula for %(ul, us) after (11) is %4-2. Note that equations (7), (8) and (11)
mean those in Dakovic and Czada (2011).

In Tables 1-3 we report coverage probabilities for these two methods with levels
0.9 and 0.95. Note that for the t-copula, the ’copula’ package in R does not provide
asymptotic covariance. Hence we only report the coverage probabilities for the pro-
posed jackknife empirical likelihood method in this case. From these tables, we observe
that (i) the proposed jackknife empirical likelihood method works better than the nor-
mal approximation methods for large 6 in the Clayton and normal copula (i.e., strong

dependence); (ii) results for the cases of d = 4,0 = 10,15 in Table 1 indicate that

the asymptotic variance for the Clayton copula given in the ’copula’ package may be



problematic when the dimension is large; (iii) the proposed jackknife empirical likeli-
hood method performs well for t-copulas, where the asymptotic variance in the ’copula’

package is not available.

3.2 Data analysis

We apply the proposed method to an insurance company data on losses and ALAESs.
This particular data set has been analyzed by Frees and Valdez (1998), Klugman and
Parsa (1999), Dupuis and Jones (2006), and Peng (2008). Like Klugman and Parsa

(1999), we fit the Frank copula

(efozu _ 1)(670&1 _ 1)
e -1

1
C(u,v;a) = —alog{l—l— }.

Using the ’copula’ package in R, we find the pseudo maximum likelihood estimator for
« is 2.992 and the confidence intervals based on the normal approximation method are
(2.694, 3.290) and (2.637, 3.348) for levels 90% and 95%, respectively. The proposed jack-
knife empirical likelihood intervals are calculated to be (2.702,3.292) and (2.653, 3.352)
for levels 90% and 95%, respectively, which are slightly skewed to the right than the

normal approximation based intervals.

4 Proofs

Lemma 1. Under conditions of Theorem 1, we have

1 n
\/ﬁ;Zi(Qo)iN(O,E) as m — oo,

where ¥ = (045)1<ij<q

d d
(lz’(Tl;HO) +> W, 3)) (lj(Tlst%) +> W, 3))] < 00,

s=1 s=1

O'ij:E

Ti = (Fi(X11), -, Fa(X1,4)T and

1 1
i,8) = ; U1, ,Ug; 00 s(X1s) < ug)—ug)e(uy, -+ ,uq; o) duy - - - dug.
W ] 1 00) (I(Fs(X1, 00) duy - - d



PT’OOf. We denote Tk = (Fl(XkJ), s ,Fd(Xkyd))T, Tk = (Fl(XkJ), s ,Fd(Xk’d))T and

T i = (F1_i(Xg1), -, Fy_i(Xpa)T forik=1,--- ,n. Write

Z; i (6o)
= 1i(Tk;00) + {1;(Tk; 00) — 1j(Tk i3 60)}
k=1,ki
n d .
= L(Trbo)+ Y D 1T 00){Fu(Xis) — Fomi( Xis)}
k=1,k#i s=1
1 n d d
st ~ ~ ~ A
5 Z Z Zl]( )(Yk’fw 00){Fs(X,s) = Fo,—i( Xpp,s) HE(Xpt) — Fi—i(Xit) }
k=1,k#i s=1 t=1
1 G .
= L(Trto) + = Y S (T 00 I(Xis < X)) — Fo(Xis)}
" Lkt s=1
1 n d d
st ~
T35 D DO (Yisbo) X {I(Xis < X)) — Fu( X))
k=1k#i s=1 t=1
X{I( Xt < Xiy) — Fr(Xiy)}
=: Il(l7j)+-[2(l’])+-[3(27])> (5)

where
Yo = BTh + (1 — Be) T —s

and [ € [0, 1] depending on ¢ and j. Since

Fs(Xi s 1— Fs(Xs
sup — (Kis) =0p(1) and sup # = 0p(1) (6)
1<i<n Fg(Xis) 1<i<n 1 — Fg(X;5)

(see (4) in Page 415 of Shorack and Wellner (1986)), it follows from A1) that

ﬁ Z?:l 12(iaj>

= a2 S S I (T 00T (X < Xiey) — Fal(Xs))
= L S B (T 00){1 - F(Xis)}

= 3R S Y (T 00){1 — 2F(Xio)}

= Op(n 32300 S r(Fu(Xis)) 7 Ty r(FU (X)) ™)

= Op(n™*2 30 30 r(Fo(Xiw) T T r(Fu( X)) ™).



By A2) and choosing § > 1 and daz < 1/2, where a3 is given in A2), we have for any
e>0

P(n =323 r(Fs(Xis) ™ Hle r(F (X)) > €)

IN

P(n 3230 I(n70 < Fy(Xis) <1—n0)r(Fo(X;6)) T, 7(F( X))~ > )

)

+]P)(Hlin1§i§n Fs(Xi,s) < n_‘S) + P(maxlgign Fs(Xi,s) >1-— n_‘s)

IN

(n*2€) VST E[I(n 0 < Fy(Xis) < 1= n0)r(Fo(Xis) 7 TTi r(F(Xig))~ ]

+o(1)

IN

Mon 2 B[I(n™0 < Fy(X16) <1 —n"0)r(Fs(X16)) " 7%] + o(1)

IN

M2n71/2+5a3671 + 0(1)

o(1).

Therefore, it follows from (7) and (8) that

jﬁgw,j) —o,(1) for j=1,.q )
By A1), (6) and noting that
Y (I(Xis < Xis) — Fu(Xis))?
= (n4+ DEF(Xpe)(1 = Fy(Xps)) — F2(Xp5)
< (n4D)r(Fy(Xps)),
we have
02 S SR i 15 (Y 00) (I (Xi s < Xio) — Fa(X )
X (I(Xig < Xiy) — Fi(Xpy))|
= Op(n 2 SRy r(Fo( X)) T (B (X)) ™ Ty (B (X m )~
<{(I(Xis < Xp) = F(Xp,0)? + (I(Xip < Xip) = Fi(Xi0))?) w0)
= Op(n ™23 r(Fo( X))~ (B (X)) ™ Ty 7 (Fon (X n))~
X (n+ D{r(Fu(Xp)) + r(=F(Xea)})
= Op(n™¥2 0 r(Fi(X5)) ™ Tt 7 (Fon(Xkm)) ™)

+O0,(n 32 3 1 (Fo( X)) ! Hgn:1 7(En(Xkm))~)



for s,t =1,-

fort =1, -

Write

11(7’7.7)

where

-+, q. Like the proof of (8), we have

n d
Tl73/2 Z’I’(Ft(Xk,t))il H T(Fm(Xk’m))*Oél _ Op(l)
k=1 m=1
,d, i.e.,
\}ﬁ ;1'3(@".7') =0p(1) for j=1,---,q (11)

= [i(Ti00) + 0, 18 (T3 00) {Fs (Xis) — Fo(Xis))

A S (Y ) (B (Xis) — Fs(Xis) HE (Xip) — Fi(Xin))

=: I111(i,§) + 1153, §) + I13(i, 5),

Y =8'Ti+(1-38)T;

and 8 € [0, 1].

Since

fors=1,--

show that

max ’ \/H{FS(XLS) - FS(XZ',S)}

' | = Op(logn) (12)
1<i<n F;/Q(Xl75)(]. — Fs(Xi,S))1/2 ’

-, d (see Mason (1981)), using the same arguments in proving (8), we can

1 n
~ IIsi5) = 0p(1) for j=1,.q (13)
i=1

It is easy to check that

E({Fs,fi(xi,s) - L_lFs(Xz,s)}{F ,—k(Xk,S) - nT_lFs(Xk,S)HX’Lan)

n—2

for i # k. Put

n

(14)
{FS(X’i7S A Xk,s) - FS(X’i7S)F8(Xk,S)}

Wl(iajv 5) = ZJ('S)(Ti§ 00){F3(Xi,s) - Fs(Xi,s)}a

n—1

Wali, j.s) = I (Tis 00){ B —i(Xis) — = Fy(Xis)}

n

10



and

W3(’i,j, S) = / / S ul, . ,ud;Oo){I(FS(Xivs) < us) — us} X

c(uy, -+ ,uq;0p) duy - - - dug.

Since
Wii,j,8) = —"—Wa(i, j, 8) + 1) (Ts: o) {—— — —2— Fy(Xi)}
1 7j7 _n—l—l 2 7]7 j iy Y0 n+1 7’L+1 S 1,8 Y
it follows from the same arguments in proving (8) that
! Zn:W(z'js) ! iW(ijs)—i—o(l) (15)
= 1\% J, = = 2\% J,
v i=1 v i=1 "
forj=1,---,gand s=1,--- ,d. By (12), we have
3 \/7{Fs 7.( zs) nilFs(Xi,s)}
maX1§z<n| 1/2(X )(1 Fs(Xzs))1/2 ’
. LH \/>{FS( ) 7,5 }
< maxi<i<pn |F1/2(X )(1 F( 1/2| (16)
Fmaxicign{ViF (X0 (1 - F5<Xi,s>>1/2}—1
= Op(logn)
for s=1,---,d. Using (16) and the same arguments in proving (8), we have
L= s .
EZWZ(Z’]’S):OP(]') for ]:15"'7q73:1""ad' (17)

By (14) and (17), we have

B{L Sy i Wali, 5, $)Walk, 4, s)}
= E(E{% ZZkz:l,i;ﬁk WQ(ivjv S)WZ(k7j7 8)|X’ia Xk})
= E{22 50 8 (Ti00) 18 (T 00) (Fu(Xis) A Fu(Xiys) — Fo(Xi6) Fo(Xi))}

= f fo l(s (ug,--- ud,é?o)l](s)(vl, g 00) (us A vs — usvg) X

C(Ul, s, Uds 90)0(U17 s, Uds 9) dUl e dUdd’Ul o d’l)d + 0(1)5
(18)

11



E{% Z?:l ZZ:I WQ(ivjv 5)W3(k7j7 S)}
- E(E{% Z?:l Zzzl WQ(iv.ja S)W3(k7j7 3>‘Xi; ch})

= E(E{% Zf?;kzl,i;ék WQ(ivjv S)W?)(kaja S)|Xia Xk})

19
= E{iz Xiimrizk ZJ('S)(Ti; 00)(I(Xk,s < Xis) — Fs(Xis))Ws(k,j,5)} "
= fol - fol lj(s)(ul, Ce L ug; Hg)lg-s)(vl, g 00) (us A vs — usvg) X
c(uy, -+ ,ug;0p)c(vy, -+ ,vgq;00) duy - - - dugdvy - - - dvg + o(1)
and
E{} iy Xkoy Walis g, s)Wa(k, . 5)}
= E{; XL W3i,4,)} 20)

= S 8 g 00)L (v, vas 00) (s A vs — ugvs) @

c(ur, -+ yug; Oo)e(vr, -+, va;00) duy - - - dugdvy - - - dvg

forj=1,---,qgand s =1,--- ,d. Hence, it follows from (17)—(20) that for any € > 0

P(| = i (Wali g, s) = Wa(i, . 5))| > €)
= P(y i W3, 5,8) + 5 ke ink Wali . s)Wa(k, j, )
— 2y Yy Wali, g, 8)Walk, 4, s) + 5 300y Sy Wali, g, 5)Walk, j, ) > €2)
P(L o0, W3(i, g, s) > €2/2)
+6%E{% ZZk:l,z’;ﬁk Wa(i, j, s)Wa(k, j, s) — % Z?:1 ZZ:1 Wa(i, j, s)Ws(k, j, s)
3 i1 Dokmy Wali, 4, )Wk, j, )}

= o(1).

IN

(21)
By (13), (15) and (21), we have
ﬁ Z?:l Il(ivj)

= ﬁ Z?:l L;(Ti; 60) + ﬁ Z?:l Zgzl fol o fol l§s) (ur,- -+, uq; o) (22)

X(L(Fs(Xis) < ug) —ug)e(ur, -+ ,uq;00) dug - - - dug + op(1)

12



for j =1,---,q. Note that by Al) and A2),

2

1 1
E {/ / Z(S)(Ula"' sud; 00) (I(Fs(Xis) < us) —us)e(ur, -+, ug; bo) duy - - - dug
/ / l( (w1, s ug; Oo)c(ur, - - Ud,QO)ZJ(S)(Uh'“ s vg; Bo)c(vr, -+, va; bo)

X (min{us, vs} — usvs) duy - - - dugdvy - - - dvg

< 0.

Hence, the lemma follows from (9), (11), (22) and the central limit theorem.

Lemma 2. Under conditions of Theorem 1, we have
—ZZ (00)Z 00 2y as n — 0o,
where ¥ is defined in Lemma 1.

Proof. Using the same notation in the proof of Lemma 1, we can show that for fixed

jvmzla"'7Q7

% Z L(i,5) (i, m) = E[1j(T1; 00)lm(T1;5 00)] + 0,(1),

—Zlg i, )){11(i,m) + I2(i,m)} = o,(1), Zlg i,7)13(i,m) = op(1),
i=1 i=1
d
Li(T1;60) Y W(m,s)
s=1

+ Op(l)a

L=y o nn
=" h(i )l m) = E
and

+ Op(1)7

d d
E DD W, s)W(m,t)

s=1 t=1

—ZIgZ]Igzm

which implies that

1 n
EZZi,j(9o)Zi,m(90) L ojm for jm=1,--- ¢,
=1

i.e., the lemma holds.

Lemma 3. Under conditions of Theorem 1, we have for j =1,--- ,q,

_ 1/2
lrilax |Zi,j(60)] = op(n’/7).

13



Proof. We shall use the same notation in the proof of Lemma 1. For any M > 0, we

have

1/2
P(lrg_ |I2(i,5)] > n M>

1 (s) 1/2
< —
< I£13J< - Z Z‘l Tk,00\>n M
- k=1,k#i s=1
1 n d
< - 1) (Ty: 00)| > n/2M
< (L3N 2

Hence by the same arguments in (7) and (8) we have

n d
w3253 S T (T 00)] = 0,(1),

k=1 s=1
i.e., P (maxi<i<y |I2(4, j)| > n'/2M) = o(1), which implies that
max |I5(i, )| = op(n'’?). (23)

1<i<n

Note that in (10) and (11), we actually showed

= 1300, 5)] = o),
=1

which implies

I3(2,7)| = 172y, 24
max |56, )] = op(n'/?) (24)

Similarly, we have
12%’[[2<Z,j)‘ =op(n'/*) and lrg%\flg(z,j)\ = op(n'/). (25)

Since E[l (T1;00)] < oo, we have nIP’(ZJQ-(Tl;HO) >n) =o(l), ie.,

max [I1(i, j)] = op(n'/?). (26)

Hence the lemma follows from (23) to (26).
Proof of Theorem 1. It follows from Lemmas 1-3 and the standard arguments in the

empirical likelihood method for a mean vector (see Owen (1990)).

14
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Table 1: Empirical coverage probabilities are reported for Clayton copulas with dimen-

sion d = 2, 4.

(d,§) JELM  NAM JELM NAM

Level 0.9 Level 0.9 Levle 0.95 Level 0.95

(2,0.2)  0.8846 0.8875 0.9363 0.9417

(2,1) 0.8902 0.8950 0.9430 0.9448

(2,10) 0.9114 0.9162 0.9563 0.9566
(2,15) 0.9184 0.9160 0.9628 0.9582
(4,0.2)  0.8750 0.8734 0.9336 0.9331

(4,1) 0.8767 0.8791 0.9295 0.9294

(4,10) 0.9167 0.9418 0.9573 0.9703

(4,15) 0.9211 0.9519 0.9604 0.9781

Table 2: Empirical coverage probabilities are reported for the bivariate normal copula.

0 JELM NAM JELM NAM

Level 0.9 Level 0.9 Levle 0.95 Level 0.95

0.2  0.8847 0.8851 0.9438 0.9434

0.5 0.8864 0.8750 0.9411 0.9314

0.8  0.8880 0.8818 0.9393 0.9331
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Table 3: Empirical coverage probabilities are reported for the bivariate t copula.

0=(p,v) JELM JELM

Level 0.9 Level 0.95

(0.2,3)  0.8853 0.9404

(0.5,3) 0.8874 0.9385

(0.8,3) 0.8945 0.9476

(0.2,8) 0.8808 0.9352

(0.5,8)  0.8861 0.9412

(0.8,8) 0.8878 0.9415
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